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Abstract

This paper presents a new algorithm for correct-

ing incorrect projections of a polyhedral scene. Such

projections arise in applications where an image of a

polyhedral world is taken and its edges and vertices are

extracted. Along the way, the true positions of the ver-

tices in the 2D projection are perturbed due to digiti-

zation errors and the preprocessing. As most available

algorithms for reconstructing polyhedral scenes from

projections are \superstrict", they judge these noisy

inputs as incorrect and fail to obtain a 3-dimensional

scene from them.

The presented method overcomes this problem by

moving the positions of all vertices until a very close

correct projection is found. With this tool, any su-

perstrict method for reconstructing scenes from pro-

jections is now practical, as it can be applied to the

corrected projection.

1 Introduction

Consider the pictures of the plane-faced alarm de-
vices in �g. 1. How can we tell whether such pictures
actually represent the correct projection of a spatial
object? Even more, how can we reconstruct all 3D ob-
jects they represent? Answering these questions and
producing an algorithm able to recognize a plane-faced
object from its projection, with similar results as a
human gets, has been one of the goals of Computer
Vision and Arti�cial Intelligence, with applications in
Robotics, since the early seventies.

Along the years, several methods have been pro-
posed to test the correctness of polyhedral projec-
tions and give their possible spatial reconstructions
[4, 13, 17]. These tests succeed in judging as incor-
rect impossible �gures like those in �g. 2. However,
even when the projections are pictures of a real scene,
the tests usually judge them as incorrect, failing to
derive a spatial reconstruction. To see why, consider
the examples in �g. 1-bottom, showing the projections
of truncated pyramids extracted from two real scenes.
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n

Figure 1: A picture of an alarm device (top) can be processed
to detect the sharp edges, extract the straight lines, and derive
a polyhedral projection (bottom) which is usually incorrect.

It can be shown that they are only correct when the
three lines l, m and n meet at a common point. This
is a general characteristic of most projections: they
are only correct for very speci�c positions of the ver-
tices, satisfying a number of concurrence conditions

(already identi�ed in [17] and [10]). Hence, as any ge-
ometric relationships between the vertices are lost due
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to digitization errors and the image processing, many
existing tests are superstrict [13, page 111], judging
a projection of a real scene as incorrect when it just
deviates slightly from a correct and reconstructable
con�guration.

Our contribution is a new procedure to search for
the closest correct projection to a given incorrect one.
Such a procedure allows overcoming the superstrict-
ness problem in an easy way: to apply a superstrict
method on an incorrect projection P inc, �rst compute
the closest correct projection Pcor to it. If the vertices
on Pcor are too far from those in P inc (according to
a well-de�ned distance and a given tolerance), P inc is
judged as incorrect, otherwise we accept it as \prac-
tically correct" and we can start the reconstruction
process from Pcor.

The next section shortly reviews three classic cor-
rectness tests and shows, through an example, why

they are superstrict. Then, in section 3, we compare
our approach to two previous methods for overcoming
the superstrictness. A rational parameterization of all

correct projections for a given polyhedron is given in
sections 5 and 6, which allows us to write down the
correction problem as an unconstrained minimization
of a rational function (section 4). This minimization
can be tackled using a conjugate gradient method, but
a good starting point for the search is needed and sec-
tion 7 provides one. Finally, section 8 shows the results
of the implementation, and section 9 summarizes the
conclusions and points deserving further attention.

2 Superstrict Methods

We begin with a few de�nitions and assumptions
used along the paper. To simplify, we will deal with or-
thogonal projections of a single spherical polyhedron,
onto the XY plane, showing all edges (even the hidden
ones). By spherical, we mean here that it is homeo-
morphic to a sphere. This is not too restrictive, and
section 9 explains how to extend the results to pro-
jections of more complicated scenes, without hidden
edges, several objects, and possible occlusions between

them. So, we say that a projection is correct, or re-

constructable, if there exists a spherical polyhedron
that projects onto it, with distinct planes for adjacent

Figure 2: Some impossible projections.

faces. Such a polyhedron is called a reconstruction of
the projection. The edges and vertices of a projection
directly correspond to their spatial counterparts.

We will also assume that the projection is given
along with its incidence structure. The incidence
structure tells the combinatorial structure of the spa-
tial reconstruction|basically, which points will be in-
cident to which faces. More formally, it is a triple
I = (V; F;R), where V is the set of vertices and F is
the set of its faces. We put a face in F for every subset
of vertices that must be kept coplanar in the spatial
reconstruction. R � V � F is the incidence set: there
is an incidence pair (v; f) in R if vertex v must lie on
face f in space. The incidence structure can be com-
puted by applying the method in [13, page 45], after a
labeling of its edges has been obtained using standard
techniques like those in [2, 15, 7, 6].

In his book [13], Sugihara gives an algebraic test for
correctness that, roughly speaking, consists of telling
whether a system of linear equalities and inequalities
has a solution, which is solvable via linear program-
ming. This system contains an equation of the form

(vx; vy; vz ; 1) � (Af ; Bf ; 1; Df )
T = 0 (1)

for every incidence pair (v; f) 2 R, to express the con-
straint that, in any reconstruction, vertex v must lie
on the plane of face f : Afx + Bfy + z + Df = 0.
To have a set of necessary and su�cient conditons for
correctness, Sugihara also adds other depth relations,
but, for simplicity, these are omitted here.

One can easily see that after collecting all the equa-
tions (1) for the projection in �g. 3a this linear system
has a solution space of dimension four, corresponding
to the heights of four vertices that one must �x to get
a spatial reconstruction. However, the reader can eas-
ily check the superstrictness of this test: after moving
slightly v6 the dimension of the solution space drops
to three, meaning that the only reconstruction is a 
at
object, with all vertices coplanar, and the projection
is judged as incorrect.

In Whiteley's cross-section test [17], a projection of
a spherical polyhedron is correct if, and only if, it is
possible to draw a compatible cross-section of it. The
cross-section is a diagram showing the lines of inter-
section of all faces with one selected face of the poly-
hedron. Fig. 3b shows (in bold gray) a cross-section
of a correct truncated tetrahedron: every line Lf is
the intersection of a face plane f with the background
face f5. The cross-section is compatible if the line of
any edge between a pair of faces contains the point of
intersection of the cross-section lines of these faces.

This is also a superstrict test. For example, after
moving v6 slightly (�g. 3e), the cross-section is not
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Figure 3: A correct truncated tetrahedron (a), with two compatible diagrams: the cross-section (b), and the gradient-space diagram
(c). If v6 is slightly moved (d), the diagrams are not compatible anymore (e and f).

compatible anymore: edge e does not meet the inter-
section of lines L� and L� .

Hu�mann [3] and Mackworth [4] use the so-called
dual diagram for the same purpose 1. For a projection
to be correct, it must have a compatible dual diagram.
In this diagram, there is a dual vertex vf for every face
f in the projection, and there is a dual edge joining two

dual vertices if their corresponding faces share an edge
in the projection. The dual diagram is compatible if
every edge in the projection is orthogonal to its dual
edge in the diagram. Hence, it is possible to generate a
dual diagram for a correct truncated tetrahedron, but
not for an incorrect one (�g. 3, c and f), and \almost
correct" projections are judged as incorrect.

3 Related Work

Up to the authors' knowledge, the Literature o�ers
two approaches to overcome the superstrictness issue:
a correction strategy due to Sugihara [13, chapter 7]
and an explicit handling of uncertainty, due to Ponce
and Shimshoni [8, 12].

Roughly speaking, Sugihara's method works as fol-
lows. Think about the truncated tetrahedron in
�g. 3a. We see that �xing the heights of v1; v2; v3
and v4 is enough to determine the heights of the oth-
ers, as we can use the coplanarity constraint of each
face to derive them. However, the height of v6 is over-
constrained, as it can be deduced from both the copla-

1Actually, this diagram was already discovered in the last
century by Maxwell. See for example [5].

Figure 4: Corrected projections (in grey) of a truncated tetra-
hedron.

narity of f3 and f2. Only when the projection is cor-
rect, this height will be identical when computed from
both faces. As �g. 3d is incorrect, a possibility is to
drop out the constraint that v6 must lie on f3, f2 and
f4, �x the heights of v1; v2; v3; v4, compute the result-
ing planes for the faces, and intersect f2; f3; f4 to get
a corrected position for v6.

In sum, the strategy is to remove some vertices until
a reconstructable projection appears, then reconstruct
it, and derive the new positions for the removed ver-
tices. Sugihara gives a characterization of when the
incidence structure yields a reconstructable projection
with vertices in generic position and an e�cient graph

ow algorithm to remove a minimal set of incidences
until the reconstruction is possible.

However, as already noted by himself, this correc-
tion is not possible when the removed vertices are in-
cident to more than three non-triangular faces. Un-
fortunately, one can �nd projections where this does
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happen (see the analyis by Whiteley in [16]). Also, an-
other problem of this technique is that the corrected
projection may deviate substantiously from some orig-
inal vertices, when, moving just a bit all of them, one
can �nd projections that fall in a smaller neighbor-
hood (compare �gs. 4-left and right).

On a di�erent approach, Ponce and Shimshoni ex-
plicitly consider that a vertex true position (xi; yi) is
unknown in the projection, but that must fall in a
square of side 2� around the measured position (~xi; ~yi).
Then, they take Sugihara's system of linear equations
(1) and do the change of variables xi = ~xi + �i,
yi = ~yi + �i for every vertex (xi; yi), and add the
constraints j�ij � �, j�ij � �.

This leads to a system of nonlinear equalities and
inequalities that, after a clever addition of gradient-
space constraints, and some algebraic manipulation,
they are able to linearize again. The linearization,
however, is gained at the cost of the su�ciency of the
test and, as they note, the resulting constraints are
only necessary for a projection to be correct.

The approach we present overcomes the problems
of both methods. On the one hand we allow the move-
ment of all vertices, to get closer corrected projections.
On the other hand, as we avoid adapting to a speci�c
correctness test, any one o�ering neccessary and suf-
�cent conditions can be applied to the corrected pro-
jection.

4 The Overall Algorithm

Given an incorrect projection P inc, our goal is to
obtain a correct one Pcor, with the same incidence
structure as P inc, which is as close to P inc as possible.
As a function measuring the distance between the two
projections, we have chosen the sum of the squared eu-
clidean distances between pairs of corresponding ver-
tices in P inc and Pcor.

The problem can be stated as follows. If vinci and
vcori denote, respectively, the 2D coordinates of the ith
vertex of P inc and Pcor, we want to minimize

nX

i=1

kvinci � vcori k2

subject to the constraint that the vertices vcori de�ne a
correct projection Pcor with the same incidence struc-
ture as P inc.

However, we will show that it is possible to pa-
rameterize the 2D coordinates of the vertices of
all correct projections with a given incidence struc-
ture. More precisely, given an incidence structure
Icor = (V; F;R), it is possible to write the coordinates
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Figure 5: (a) A pyramid with a quadrangular base. (b) Two
faces sharing more than two vertices. (c) Two vertices sharing
more than two faces.

(xcori ; ycori ) of every vertex vcori 2 V as functions

xcori = �i(p1; p2; :::; pn)

ycori =  i(p1; p2; :::; pn);

in such a way that any tuple of parameters
(p1; p2; :::; pn), pi 2 <n � F 8i, where F is a zero-
measure subset of <n, �xes a correct projection. �i
and  i are rational functions and, thus, everything
reduces to the unconstrained minimization of the ra-
tional function

nX

i=1

kvinci � (�i(p1; p2; :::; pn);  i(p1; p2; :::; pn))k
2;

which can be solved computationally by starting a gra-
dient search at an initial correct projection that esti-
mates the �nal solution.

The next section presents the resolvable sequence,
the key concept that leads to this parameterization.

5 The Resolvable Sequence

Is there a set of independent choices that can be
made to construct a polyhedron in a consistent man-
ner? To illustrate this question, let us focus on the
simple example of �g. 5a, a pyramid with a quadrilat-
eral base. The shape of this polyhedron can be �xed
by, for example, giving the coordinates of all its ver-
tices or the face plane coe�cients of all its faces. But
care must be taken in any of the two ways. If we ar-
bitrarily �x all planes, then f1, f2, f3 and f4 will not
probably have a common point of intersection and ver-
tex v4 will be inconsistently de�ned. On the contrary,
if we arbitrarily �x all vertices, v2, v3, v4 and v5 need
not be coplanar and face f5 might be inconsistently
de�ned.

In general, we say that a polyhedron is resolvable if
it is possible to list its vertices and faces in a sequence
S = (: : : ; vi; : : : ; fj ; : : : ) in such a way that:
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(C1) when a vertex occurs in S, it is incident to at
most three previous faces;

(C2) when a face occurs in S, it is incident to at most
three previous vertices;

(C3) when two faces f and f 0 share three or more ver-
tices (�g. 5b), f and f 0 appear earlier in S than
the third of the common vertices;

(C4) when two vertices v and v0 are incident to three or
more common faces (�g. 5c), both v and v0 appear
earlier than the third of the common faces.

S is called a resolvable sequence for the polyhedron.
Note that if such a sequence exists, then we can con-
struct the polyhedron in a consistent way. We just
need to �x its vertices and faces, one by one, following
the order in S. Along the way, when an element is un-
derconstrained by previous choices, additional choices
can be taken arbitrarily.

In 1934, Steinitz proved that all polyhedra whose
graph of vertices and edges is planar and 3-connected
are resolvable [18]. Actually, for these polyhedra it
su�ces to �nd a sequence satisfying conditions (C1)
and (C2) above as their 3-connectedness ensures they
have no face sharing more than two vertices, nor any
pair of vertices sharing more than two faces.

Recently, in [14] Sugihara has extended Steinitz's
results, �nding that actually all spherical polyhedra
are resolvable. He also gives an algorithm to compute
a resolvable sequence in O(v+ f) time, where v and f
are the number of vertices and faces of the polyhedron,
respectively.

6 Parameterizing Correct Projections

The resolvable sequence induces a parameterization
of all polyhedra with a given incidence structure. For
example, a trivial resolvable sequence for the trun-
cated tetrahedron in �g. 3a is to �rst list all faces, and
then all vertices: S = (f1; : : : ; f5; v1; : : : ; v6). (This
is clearly valid for any simple polyhedron, one where
every vertex has exactly three incident faces.) Thus,
here, the coordinates (xi; yi; zi) of every vertex vi can
be written as functions of the coe�cients its three in-
cident planes by, e.g., solving for xi; yi and zi using
Cramer's rule, and varying these coe�cients we get
di�erent reconstructions of the truncated tetrahedron.

Note that the resolvable sequence also induces a
parameterization of all correct projections with the
given incidence structure, as we only need to project
the (parameterized) spatial polyhedron onto the XY
plane, keeping the parameterization for the X and Y
coordinates of every vertex.

In the general case, we can write a parameterization
of all polyhedra with a given incidence structure I as
follows. First, we compute a resolvable sequence S for
I . Then, we visit every element of S, following the
order of the sequence. If the element is a face, then:

� If it is not incident to any previous vertex, there
is total freedom in choosing its position and the
four coe�cients of its plane are free parameters.

� If it is incident to three previous vertices, the pa-
rameters of the plane are totally �xed and no new
parameter is introduced.

� If it is incident to two previous vertices, say p and
q, we must select one of all the planes meeting the
segment pq. Such a plane can be written as:

�
�
�
�
�
�
�
�

px qx rx x

py qy ry y

pz qz rz z

1 1 1 1

�
�
�
�
�
�
�
�

= 0

and the three coordinates of a third point
r = (rx; ry; rz) are introduced as new parameters.

� If a face is incident to one previous vertex p, its
plane can be expressed as

(nx; ny; nz) � ((x; y; z)� (px; py; pz)) = 0

and the three coordinates of the normal vector
(nx; ny; nz) are chosen as parameters.

On the other hand, if the element is a vertex v, then:

� If v is incident to no previous face, there is to-
tal freedom in choosing its position and its three
coordinates are taken as free parameters.

� If v is incident to three previous faces, the vertex
is totally �xed and can be found computing the
intersection of the three planes.

� If v is incident to two previous faces, say fi and
fj , we can write two equations:

Aivx +Bivy + Civz +Di = 0

Ajvx +Bjvy + Cjvz +Dj = 0

and solve for vx and vy in terms of vz, which is
introduced as a new parameter.

� Finally, if v is incident to one previous face, say
f , we can freely choose vx and vy and get vz from
the equation of f 's plane.
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Note that this parameterization is rational, as at
each step of its construction we can write a vertex or
face coordinate as a quotient of polynomials in the
parameters. Although for certain choices of the pa-
rameters it may fail to provide a polyhedron (e. g.,
there is an indetermination when a vertex is incident
to three previous faces, and the chosen planes are not
all distinct), this only happens for a zero-measure sub-
set of the parameter space, posing no problem to the
minimization, as section 8 explains.

7 A Good Starting Point

The resolvable sequence also gives an e�cient way
to derive a \reasonably close" correct projection to
P inc. The idea is to properly place every vertex and
face of the sequence, so that the 2D projection is lo-
cally close enough to the projection. Let us see this in
detail.

We distinguish several situations, depending on
whether we are �xing a vertex or a face.

Assume �rst that we are �xing a vertex v, whose
2D position in the incorrect projection is vinc. v can
be incident to zero, one, two or three previously-�xed
faces. In the �rst case, there is total freedom in choos-
ing v's spatial position but, to be compliant with the
projection, we choose it to lie in the vertical line over
vinc, at any height. If v is incident to just one previous
face, then we choose it over this face's plane, in the
vertical line at vinc. If v is incident to two faces with
planes � and � (respectively), we �x v on the line of
intersection of � and � at the place where its 2D pro-
jection is at a minimum distance from vinc. Finally, if
v is incident with three previous faces, we �x it in the
intersection of their respective planes.

On the other hand, if we are �xing a face f , it can
be incident to three, two, one or zero previously-�xed
vertices. In the �rst case, there is no choice for the
plane of f as it is fully determined by the three ver-
tices. If the face is incident to two �xed vertices, say
p and q, we can choose among all the planes meeting
the line pq. But, which one? If some of the neigh-
boring faces of f have already been �xed, say faces
fi1 ; fi2 ; : : : , then we would like that the lines of inter-
section of these faces with f lie reasonably close to the
corresponding edges in the incorrect projection. If we
label the common vertices between f and fi1 ; fi2 ; : : :
as w1; : : : ; wm, and z(wi) denotes the height of vertex
wi as computed on the plane of its already-�xed face,
over its position in the projection, then a reasonable
way to achieve this is to �x f to the plane � that that
meets the line pq and minimizes the sum of squared

residuals:
mX

i=1

(z(wi)� z�(wi))
2

where z�(wi) denotes the z-coordinate of vertex wi as
given by the plane �. Obviously, if no adjacent face of
f was previously �xed, we simply �x f at any plane
meeting pq.

The remaining cases, when f is incident to one or to
no previous vertex are analogous, the only di�erence
being that we choose among all the planes meeting a
�xed point in the �rst case, and among all possible
planes of 3-space in the second.

Of course, following this strategy, the resulting cor-
rect projection may deviate substantially from P inc

at some vertices, specially if the projection is large
enough. However, the experiments show that, even
with a very far initial estimation, the minimization
converges rapidly to a very close projection (see be-

low).

8 Implementation and Results

The correction algorithm has been implemented in
C for projections of simple polyhedra, as these have
the advantage that every vertex is easily parameter-
ized by the twelve coe�cients of its three incident
planes.

For the minimization, we use TNPACK, a freely
available package specially suited for large-scale prob-
lems with possibly thousands of variables [11]. To min-
imize a function F (X); X 2 <n TNPACK implements
the iterative truncated Newton method, based on min-
imizing a local quadratic approximation to F at every
step. For e�ciency, an approximated (truncated) so-
lution of this local minimization is allowed, which is
computed through a preconditioned conjugate gradi-
ent algorithm.

The user must essentially supply three routines, re-
turning F , its gradient, and the Hessian matrix, eval-
uated at a given point X 2 <n. For the gradient we
directly provide the symbolic expressions, as they are
easy to derive. For the Hessian matrix, we rely on an
(optional) internal TNPACK routine that uses �nite
di�erences of the gradient to compute it. To prevent
the minimization from falling in a point X of parame-
ter space yielding indetermination (see section 6) the
routine computing F (X) is implemented to return a
very high value for these con�gurations.

We have tested the correction process on sev-
eral projections of simple polyhedra: a truncated
tetrahedron, a dodecahedron, a truncated icosa-
hedron, a rhombitruncated-cubeoctahedron, and a
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rhombitruncated-icosidodecahedron (�g. 6). The
number of optimization variables involved in these ex-
amples is 20, 48, 104, 128, and 248, respectively|four
times the number of faces. A corrected projection for
them is obtained in less than 5 seconds of CPU time
on a SUN Ultra-2. We note that, although simple,
these projections are far more complex than those one
can �nd in the literature [13, 12].

After the tests, the heuristic technique of section 7
reveals as a good way for computing a starting point
from which local minima are avoided. But, even when
the initial approximation is somewhat distant to the
input projection, the minimization converges rapidly
to a neighborhood of the incorrect projection. Fig-
ure 6 illustrates this, showing the sequence of inter-
mediate projections of a dodecahedron as the mini-
mization progresses.

9 Conclusions and Future Work

Real scenes of polyhedra di�er substantiously from
the model assumed: hidden edges are not visible, sev-
eral objects coexist, and they possibly occlude one an-
other (�g. 7 left). However, this paper's results can be
extended to deal with them. We shortly comment how
and point the reader to [9] for further details.

First, instead of a polyhedron, we can assume the
projection depicts a projected polysurface: a surface
made of planar polygonal panels glued along some
edges, and possibly containing holes. This provides an
accurate model for opaque objects, as invisible parts
underneath the \topmost" visible panels are irrele-
vant. For such projections, we need to have every hole
identi�ed, which can be done by collecting all contours
of occluding edges (as de�ned in [13]) after an edge-
labeling algorithm has been applied. Then, we can �ll
every hole with triangles connecting its vertices to ob-
tain a new polysurface with spherical incidence struc-
ture. The addition of triangles is inoquous: it can be
seen that the original polysurface is correct if and only
if the new one is. But, as the latter is spherical, we
can derive a resolvable sequence for it, which can be
used to parameterize the realizations of the original.
Finally, when several polysurfaces coexist in a projec-
tion, we can treat each one separately in the same way.
This strategy has been implemented and �g. 7 shows
the results on a synthetic polyhedral scene.

Finally, it is worth to mention two points deserv-
ing further attention. Although the initial estimated
projection is fairly good, the minimization is not guar-
anteed to converge to the global minimum. To mend
this up, one can always start the search at several
di�erent initial estimations, derived from di�erent re-

(a) (b) (c)

Figure 6: Top: correct projections of a truncated icosahedron
(a), a rhombitruncated cubeoctahedron (b) and a rhombitrun-
cated icosidodecahedron (c). Bottom: A correction sequence
of a dodecahedron (left) from which the initial estimation and
the �nal correction (overlapping the input incorrect projection)
have been singled out (right).

solvable sequences of the same projection, and select
the best corrected projection.

Another possibility could be to derive a polynomial

(rather than rational) parameterization, by working in
projective instead of a�ne coordinates, and attempt
to �nd the global minimum through interval arith-
metic techniques [1].
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Figure 7: Two views of a same polyhedral scene (left) together with two incorrect projections of them, with the contours labelled
in black (central), and the �nal corrections (right).
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