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Abstract: This paper proposes a simple and eÆ-
cient algorithm for computing a form-closure grasp
on a 3D polyhedral object. This algorithm searches
for a form-closure grasp from a \good" initial grasp
in a promising search direction that pulls the convex
hull of the primitive contact wrenches towards the
origin of the wrench space. The \good" initial grasp
is a set of contact points that minimizes the distance
between the origin and the centroid of the primi-
tive contact wrenches, and can be calculated by the
quadratic programming. The local promising search
direction at every step is readily determined by the
ray-shooting based qualitative test algorithm devel-
oped in our early work. By using the \good" initial
grasp, the iteration times of search can be signi�-
cantly reduced so that a form-closure grasp can be
found more eÆciently. Since the algorithm adopts a
local search strategy, its computational cost is less
dependent on the complexity of the object surface.
Finally, the algorithm has been implemented and its
eÆciency has been ascertained by three examples.

1 Introduction

In the context of manipulation, it might be desir-
able to have a multi-�ngered robot hand rather than
carrying a specialized gripper for each operation to
be performed. For a multi�ngered grasp, an impor-
tant property is the stability of the resulting grasp,
which is characterized by form-closure. A grasp is
considered to be of form-closure type if it is possi-
ble to apply forces and torques at the contact points
so that any external forces and torques can be bal-
anced [1][5]. Salisbury and Roth[5] have demon-
strated that a necessary and suÆcient condition for
form-closure is that the primitive contact wrenches
resulted by contact forces positively span the entire
wrench space. This condition is equivalent to that
the origin of the wrench space lies strictly inside the
convex hull of the primitive contact wrenches[4].
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The synthesis of a form-closure grasp involves two
steps. First, the qualitative test for the form-closure
property. Many works have been done [3] [7]. Liu[3]
demonstrated that querying whether the origin of
the wrench space lies inside the convex hull of the
primitive contact wrenches is equivalent to a ray-
shooting problem, which is dual to a LP problem.
The developed algorithm is applicable to 2D and 3D
grasps with any number of contacts.

The second step is to calculate the contact points
that ensure the form-closure property. Despite the
huge e�ort, up to now, there is no eÆcient and com-
plete algorithms to tackle the problem of calculat-
ing a form-closure grasp, especially in 3D cases due
to the high dimension of the grasp space and the
nonlinearity of the commonly accepted contact fric-
tion models. Ponce and Sudsang showed that four-
�nger force-closure grasps fall into three categories:
concurrent, pencil and regulus grasps and proposed
techniques to compute them [6]. Recently, the au-
thors developed an algorithm to compute contact
points on the object surfaces yielding a form-closure
grasp [8]. The algorithm searchs for a set of feasible
grasp points from a set of randomly selected contact
points.

In this paper, an eÆcient and simple algorithm is
proposed for computation of 3D form-closure grasps.
For a non-form-closure grasp, a local search direc-
tion is calculated in each iteration along which the
convex hull of the primitive contact wrenches is
moved towards the origin until the origin is com-
pletely contained by the hull. The motion is formu-
lated as a set of quadratic programming problems.
To reduce the iteration numbers, a \good" set of ini-
tial grip points is required, which can be calculated
by another quadratic programming with the objec-
tive function of minimizing the distance between the
centroid of the primitive contact wrenches and the
origin. Finally, the performance of the algorithm is
con�rmed with simulations. It should be noted that
the proposed approach is applicable to any number
of contacts and it is not necessary to provide a ran-
dom initial grasp.
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2 Form-Closure Grasps

Assume that n hard �ngers are to grasp a polyhedral
object with friction coeÆcient � at the grip points.
To ensure non-slipping at the contact point of �nger
i, the grasping force fi must be within the friction

cone (Fig.2), which can be linearized by a polyhe-
dron convex cone with m sides for simpli�cation.
Under this approximation, the grasping force fi can
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Figure 1: The friction cone at a grasping point.

be represented as

fi =

mX
j=1

�ij~sij ; �ij � 0 (1)

where ~sij represents the j-th edge vector of the
polyhedral convex cone. CoeÆcients �ij are non-
negative constants. The force and torque, corre-
sponding to the grasping force fi, applied at the
center of mass of the object is given by

wi =

�
fi
�i

�
=

�
fi

ri � fi

�
(2)

where ri denotes the position vector of the i-th
grasping point w.r.t. the object coordinate frame
at the center of mass. The combination wi of the
force fi and moment �i is called wrench. Substitut-
ing eq. (1) into eq. (2) derives

wi =

mX
j=1

�ijwij (3)

where

wij =

�
~sij

ri � ~sij

�

wij is called primitive contact wrenches of the �nger.
The net wrench applied at the object by the �ngers
is

wnet =

nX
i=1

mX
j=1

�ijwij =W� (4)

where W and � are given by

W = (w11; w12; :::; w1m; :::; wn1; wn2; :::; wnm)

� = (�11; �12; :::; �1m; :::; �n1; �n2; :::; �nm)
T

W is a 6 � N matrix called wrench matrix where
N = nm and its column vectors are the primitive
contact wrenches.

De�nition 1 Suppose that a n-�nger frictional

grasp is given. For any external wrench wext ap-

plied at the object, if it is always possible to �nd an

� with �i � 0 so that

W�+ wext = 0;

the grasp is said to be form-closure.

It is well-known that a form-closure grasp is
equivalent to that the origin of the wrench space R6

lies exactly inside the convex hull of the primitive
contact wrenches[5].

The problem addressed in this paper is to cal-
culate a form-closure grasp on a given polyhedral
object.

3 Calculation of a

Form-Closure Grasp

3.1 Outline of the algorithm

The grasp computation algorithm works in the fol-
lowing simple way. The algorithm �rst calculates a
set of points as the initial grasp that minimizes the
distance between the origin of the wrench space and
the centroid of the primitive contact wrenches by the
convex quadratic programming. If the grasp calcu-
lated satis�es the form-closure property, the algo-
rithm ends; otherwise, it searches for a form-closure
grasp locally in a proper direction. The local search
direction is determined based on the qualitative test
algorithm developed by Liu [3]. As shown in Fig. 2,
the ray from the interior point P of the convex hull
of the primitive contact wrenches to the origin O of
the wrench space intersects the convex hull at point
Q. If the distance kPOk is strictly smaller than
kPQk, the grasp is form-closure.

For a non-form-closure grasp, if the primitive con-
tact wrenches move at a step along the normal vec-
tor of the facet intersected by the ray PO, the con-
vex hull will approach the origin iteration by itera-
tion until the origin is completely contained by the
hull. The change of grasp points on the object sur-
faces corresponding to the desired motion of the
primitive contact wrenches can be calculated by a
quadratic programming problem.
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3.2 Qualitative Test and Local

Search Direction

The qualitative test algorithm, proposed in our early
work [3], is used to test whether the convex hull of
the primitive contact wrenches contains the origin as
well as to calculate the local search direction in each
iteration. We brief the idea below and the details
can be referred to [3].

Theorem 1 Suppose that a n��nger frictional

grasp is given. Denote the convex hull of the prim-

itive contact wrenches wi by H(W ). Let point P be

the centroid of the primitive contact wrenches. The

ray from P to the origin O of the wrench space R6

intersects H(W ) in a point Q only. A form-closure

grasp is equivalent to that the distance d1 between

points P and Q is strictly larger than the distance

d2 between points P and O(Fig.2).

P

O

Q
ray PO

(a)

P

Q
O

ray PO

(b)

Figure 2: A form-closure grasp (a) and a non-form-
closure grasp (b).

The centroid P is calculated as follows:

P =
1

N

NX
i=1

wi (5)

Denote the direction vector of the ray PO by t.
To �nd the intersection of H(W ) with the ray t,
we need to �nd the facet of the convex hull inter-
sected by the ray, which is closely related to the ray-
shooting problem and is equivalent to a problem of
maximizing the objective function

z = tTx (6)

subject to the constraints:

(wi � P )Tx � 1 i = 1; 2; :::; N (7)

The details can be found in [3]. Suppose that the
optimal solution of the linear programming problem
is ~e = (e1; e2; :::e6). Then the facet E of H(W )
intersected by the ray t is

e1x1 + e2x2 + e3x3 + e4x4 + e5x5 + e6x6 = 1: (8)

The intersection point Q of H(W ) with the ray PO
is the intersection of the hyperplane de�ned by (8)
with the ray PO.

The normal vector ~e of the facet E is used as the
local search direction along which the convex hull
of the primitive contact wrenches are moved in each
iteration.

3.3 Heuristic Search for Grip Points

Ensuring Form-Closure

The motion of the primitive contact wrenches along
the local search direction ~e = (e1; e2; :::; e6) is real-
ized as follows: for each primitive contact wrench
wk
i at the k � th iteration, we select a desired point

wd
i at the (k+1)�th iteration, which is obtained by

movingwk
i along the direction parallel to the normal

vector ~e at a step size �, i.e.

wd
i = wk

i + � � ~e (9)

In actual cases, the primitive contact wrenches can-
not follow the direction ~e exactly due to the fact
that the �rst three components(force vector) of each
primitive contact wrench are constant, and thus de-
viations from the direction ~e always arise no matter
how the wrenches are moved. To solve the problem,
we determine the grasp point rj on the surface by
the following quadratic programming problem.

min
r2R3n

NX
i=1

(wk+1
i (r) � wd

i )
2 (10)

subject to

(wk+1
i (r) � wk

i ) � ~e � 0; i = 1; 2; :::; N (11)

Fj(rj) = 0 j = 1; 2; :::; n (12)

Normjl � rj � 0 l = 1; 2; :::tj ; j = 1; 2; :::; n (13)

where wk
i and wk+1

i denote the primitive contact
wrench of k� th and (k+1)� th iteration. The ob-
jective function is chosen to minimize the distance
between the actual primitive contact wrenches and
the desired ones. The �rst linear constraint eq. (11)
denotes that each primitive contact wrench should
move along the direction with less than 90 degrees
to the ray ~e. rj 2 R3 is the position vector asso-
ciated with face j. The constraints eq. (12) and
eq. (13) ensure that the position vectors r calcu-
lated should satisfy the equation of corresponding
faces and remain inside respectively, where tj is the
edge number of the j� th face and Normjl denotes
the internal norm of the l� th boundary face of the
cone formed by the origin of the object frame(cone
vertex) and the edges of face j.
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Figure 3: Primitive contact wrenches moving along
the normal vector ~e.

3.4 Calculation of A Good Set of Ini-

tial Grip Points

The heuristic search procedure requires a set of ini-
tial grip points from which the algorithm starts to
search for a feasible solution. If the initial grip
points are not `good' enough or the stepsize in each
iteration is not proper, the iteration number may be
large before the algorithm terminates with a feasible
solution. In this section, we choose a set of points
as the initial grasp points that minimize the dis-
tance between the centroid of the primitive contact
wrenches and the origin of the wrench space.

The centroid P of the primitive contact wrenches
can be represented as A + Br, where A and B are
constant matrices with dimension 6� 1 and 6� 3n
respectively, and r = [r1; :::; rn] denotes 3n � 1 po-
sition vector which de�nes a set of grip points. The
computation of the \good" set of initial grasp points
can be formulated as the quadratic programming
problem as follows:

min
r2R3n

(A+Br)T (A+Br) (14)

which is also subject to the two constraints eq. (12)
and (13).

The quadratic form in the objective function eq.
(14) can be written as rTBTBr, where BTB is pos-
itive semide�nite. And any positive semide�nite
quadratic form q(x) � xTDx, where D is symmet-
ric, is a convex function over all of En [10]. There-
fore, the objective function is convex. Moreover, the
constraints are all linear and thus convex also, so the
above quadratic programming problem is a convex
programming problem and the solution is a global
one. In other words, the set of initial grip points
calculated through the QP problem above ensure a
global minima of the distance between the centroid
and the origin, which increases the robustness of the
grasp, so in this sense, the position vector calculated

are optimal. Furthermore, as the \good" set of ini-
tial grip points already stays as closely as possible
to the origin, even if it cannot yield form-closure, it
will take less time to �nd a proper solution.

3.5 The Algorithm Description

The discussion above is summarized as the following
algorithm:

(1)Calculate the two constant matrices A and B so
that the centroid P can be represented.

(2)Solve the quadratic programming problem
eq.(14) to obtain a \good" set of initial grip
points. Use the qualitative test algorithm
to check whether the grasp obtained is form-
closure. If so, the program ends with proper
solution found.

(3)Calculate the desired primitive contact
wrenches wd

i and the local search direction ~e.

(4)By the quadratic programming eq.(10-13), ob-
tain the new position vectors r and then calcu-
late the new primitive contact points wk+1

i .

(5)If form-closure cannot be achieved, turn to (3).
Otherwise, the algorithm ends with proper so-
lution found.

The main advantage of the algorithm proposed here
lies in two aspects. First, the solution obtained by
the algorithm is optimal to the extent, as it tries to
coincident the origin and the centroid of the primi-
tive contact wrenches, which can decrease the e�ect
of gravitational and inertial forces during the motion
of the robot and achieves a robust grasp. Second,
due to the \good" set of initial grip points, the iter-
ation number for the heuristic searching procedure
is greatly reduced and thus the computation time
is greatly shortened, which is demonstrated by the
examples in the next section. The main disadvan-
tage is that the algorithm is incomplete due to the
local search, i.e. the algorithm has no way to judge
whether the problem has solutions and thus when
the algorithm fails to �nd a feasible solution, there
is no guarantee that there is none for the problem.

4 Implementation

We have implemented the proposed algorithm using
Matlab on a Sun SPARC5 workstation and veri�ed
its computational eÆciency by several examples.
Example 1:

The example concerns a four-�nger grasp of a cube
shown in Fig.(4). The friction coeÆcient � = 0:1
and the friction cone is linearized by 8 segments.
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The \good" initial grip points calculated through
eq. (14) can satisfy the form-closure condition (see
Fig.4). The �nal grip points calculated are as fol-
lows: r1 = (2:0; 0:0; 0:0)T ; r2 = (0:0; 2:0; 0:0)T ; r3 =
(0:0; 0:0; 2:0)T ; r4 = (0:0;�2:0; 0:0)T . However, if
we randomly select the initial grip points ri as:
r1 = (2:0; 1:9;�1:8)T ; r2 = (�1:9; 2:0;�1:8)T ; r3 =
(1:5; 1:8; 2:0)T ; r4 = (1:9;�2:0; 1:9)T . A feasible so-
lution can be found after 7 iterations within 3.89s
when the stepsize is set 0.5.
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Figure 4: Example 1.

Example 2:

The second example is about a three-�nger grasp
shown in Fig.(6). The friction coeÆcient � =
1:3 and the friction cone is linearized by 8 seg-
ments. We �rst obtain the \good" initial grip points
r1 = (0:0; 0:52; 5:0)T ; r2 = (0:67; 4:2; 0:16)T ; r3 =
(0:0;�3:9; 0:28)T , from which the algorithm starts
to �nd a feasible solution after 8 iterations within
1.93s(Fig. 6). The distance di�erence kPOk�kPQk
is plotted vs the iteration number(Fig. 5). How-
ever, if we randomly choose the initial grip points
as r1 = (�1:5; 2:4; 5)T ; r2 = (1:0; 4:0; 1:0)T ; r3 =
(2:0;�4:0; 0:0)T , by the algorithm with a random
initial grasp and the convex hull is moved along
the ray PO, no feasible solution can be found and
the distance kPOk remains unchanged after sev-
eral iterations. When the convex hull is moved
along ~e, after 15 iterations(Fig. 7), the proper
position vector can be found within 6.03s when
the stepsize is 1.5. The position vector calcu-
lated are as follows: r1 = (�0:68; 1:05; 5:0)T ; r2 =
(�0:2; 4:0; 2:19)T ; r3 = (0:81;�3:78; 1:15)T . In ad-
dition, if we change the friction coeÆcient � = 1:25,
then there is no feasible solution found. The dis-
tance di�erence kPOk�kPQk shows the descending
trend at �rst, but gets rise and then osciliates(Fig.
8). The negative value of the distance di�erence
corresponding to a feasible solution can never be
achieved.
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Figure 5: Distance Di�erence kPOk � kPQk
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Figure 6: Example 2.

Example 3:

The third example concerns a four-�nger grasp
of a tetrahedron shown in Fig.(9). The fric-
tion coeÆcient � = 0:2 and the friction cone
is linearized by 8 segments. Using the algo-
rithm with a \good" initial grasp, the �nal po-
sition vectors r1 = (1:26;�0:10; 3:00)T ; r2 =
(3:00;�0:05; 0:05)T ; r3 = (1:13; 3:00; 0:34)T ; r4 =
(1:76; 0:84; 0:40)T can be obtained after 4 iterations
within 0.99s. If the initial position vectors are given
as r1 = (1:2;�1:2; 3:0)T ; r2 = (3:0; 2:2;�1:2)T ; r3 =
(0:2; 3:0; 2:6)T ; r4 = (1:0; 1:0; 1:0)T , by the algo-
rithm with a random initial grasp and when the con-
vex hull is moved along ~e, proper solutions can be
found after 8 iterations and it takes 3.34s when the
stepsize is 1.0s.

Table 1: Comparison of computation time and it-
eration number of the approach with random ini-
tial grasp(Approach 1) and that with \good" initial
grasp(Approach 2).

T ime(s)=Iteration ex:1 ex:2 ex:3

Approach1 3.89/7 6.03/15 3.34/8

Approach2 0.21/1 1.93/9 0.99/5
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Figure 7: Iteration numbers by using random initial
grip points
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Figure 8: Distance di�erence when no feasible solu-
tions can be found

It should be noted that the iteration number
for Approach 2 consists of the iteration number for
the local search and that for getting initial \good"
grasp, which always equals one.

5 Conclusions

This paper addressed the problem of computing con-
tact points yielding form-closure for a given set of
faces. For a non-form-closure grasp, we �rst formu-
late a quadratic programming problem to shorten
the distance between the centroid of the primi-
tive contact wrenches and the origin of the wrench
space. Furthermore, another sequence of quadratic
programming problems are formulated to move the
primitive contact wrenches at a �xed step along the
direction ~e as closely as possible, so that the origin
will be contained by the convex hull eventually. We
have implemented the algorithm and demonstrated
its eÆciency by 3 numerical examples. The result
can be applied to obtain contact points when plan-
ning regrasp sequences.
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