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ABSTRACT 
Applying computer techndou to vehicle driving has 

been studied ,for many years. Most o f  the studies focused 
on autonomous vehicle driving in a simplified environment 
like freeways, or life independent systems like GPS. A 
general case where kind of unexpectedly fatal conditions 
may occur which we are driving in an urban area, however, 
has not been considered. In this papev, we proposed a 
system to satisjj the basic criteria for  such a general 

in front of the vehicle we art! driving, and then classifi 
them into three predefined categories: pedestrians, 
vehicles, and others. 

In the proposed system, we exploit a simplified 
stereovision system to detect t,he obstacles instantly. Ajler 
that, to search and track pedestrians and vehicles, 
different methods are useL! .for adapting to their 
heterogeneity. For the sake of implementation, we also 
propose a method to decide the maximal speed of driving 
to keep such kind of systems working. 

driving assistance. We detect ihe obstacles on the ground 

1. Introduction 

Motivation & Objective 

In the past hundred ycars, humans have made 
tremendous advancements in ti ansportation. We made cars, 
trains, aircrafts, etc., that go faster and faster to meet our 
unlimited desire. However, the space and the speed the 
traffic tools can achieve are becoming larger and higher 
than that humans can control. To resolve such problems, 
many driving assistant tools am-e developed. However, the 
gap of speed causes many more subtle-problems of which 
few of them are exactly resolved. Obstacle detection and 
warning is the most important one in the unresolved set. If 

a system can detect the existence of an obstacle and tell if 
it may affect the safety of the vehicle driving, then the 
diver can be asked to be more careful of such a condition 
so that a possible traffic accident may be avoided. This is 
especially important when the driver is drunk or when the 
vehicle is traveling at a very high speed, and then many 
lives, including the driver and pedestrians, could be saved. 
On the other hand, the. system may also facilitate the 
subsequent design of an automatic vehicle guiding system 
whereby the driver only needs to specify the destination or 
to choose the strategy for cruising when he is inside a 
vehicle for driving. 

Related Work 

For generic obstacle detection, Badal et al. [ I ]  
developed a practical obstacle detection and avoidance 
system. They obtain the range information through stereo 
images by computing a disparity picture from the image 
pair and by extracting points above the ground plane. 
Obstacles are detected and located to guide the vehicle to 
move toward the direction with the least obstacles. 
Bertozzi and Broggi proposed the so-called GOLD system 
which both detects the generic obstacles and the lane 
position in a structured environment [2]. It also uses 
stereovision based hardware and software architecture to 
extract obstacles, and the robustness of their system under 
some conditions like shadows, changing illuminations, and 
different road textures is tested. A similar result can be 
found in [3]. 

The existent methods to recognize pedestrians can be 
classified into four types: generalized cylinder 
model-based, stick model-based, rhythm model-based, and 
distance transform-based methods [4]. The fore two types 
of methods are too complex for real-time purpose, while 
Mori and Charkari performed a sign pattern-based method 
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which can quickly recognize a specific type of obstacle 
depending on its respective sign pattern [4]. The sign 
pattern for pedestrians is the rhythm of walking. Distance 
transform-based method is used to adapt to a variety of 
shapes of non-rigid bodies. Huttenlocher et al. have 
demonstrated applying the method to human recognition 
[5]  [6], while a real-time obstacle detection method in the 
following used it for obstacle recognition [7]. 

In vehicle recognition, Wetzel et al. [SI presented a 
fully automatic system, MOSAIK, which recognizes and 
describes all visual vehicles on or near the road. They used 
geometrical hypothesis and verification method to 
recognize vehicles instead of prototypes of vehicles for 
recognition. In the contrast, Tan et al. proposed a 3D 
model construction, recognition, and localization method 
[9] based on the simple rectangular shapes of vehicles. 
They constructed four models depending on the type of 
vehicle: saloon, minibus, transit van, and high-roof van. 

Few complete studies have done on both obstacle 
detection and recognition for real vehicle driving. Gavrila 
and Philomin [7] perform real-time object detection for 
vehicle driving. They used a distance transform based 
matching to dctect pedestrians and to recognize traffic 
signs. Their source code was optimized by the SIMD 
instructions of Pentium 11. The performance of the system 
is about 1 to 5 Hz, a near real-time detecting speed. 

2. Preliminaries 
Before we proceed, we must first define what 

obstacles are. Assume that vehicles drive on a flat ground 
plane, then obstacles are those on the ground and are 
higher than the ground plane. They include buildings, 
landmarks, trees, pedestrians, vehicles, motorcycles, and 
so on. More precisely, we call them “generic obstacles”. 
Although there are so many kinds of objects belonging to 
the generic obstacle, pedestrians and vehicles are no doubt 
the most important obstacles to be concerned with. The 
overall system in this paper can be defined as: 

- A t  time t, the system gets information of the traffic 
condition Info(t), then decides four things,from Info(t): I )  
Is there any generic obstacle? 2) Is there any pedestrian 
or vehicle in the detected generic obstacles? 3) Where 
are the obstacles? 4) In such a situation, should the 
driver puy more attention to the road condition the 
system responds at time t+l? 

Since we almost always drive forward, the obstacles 
are now those just detected in front of the vehicle. Info(t) 
may be provided by any kind of sensor attached on the 
vehicle; for example, radar sensors, infra-images, or sonar. 
In this paper, we use stereo computer vision to get the 
most complete information since it can detect large range 
of space but subject to less limitation on detecting a 
variety of obstacles. The sub-problems described in the 
following paragraph have to be resolved in order to 
construct such a system. 

Before any other analysis that can start, we need to 

know if there are some generic obstacles on the ground 
and then decide if it is worth or not to do further 
processing. The existence problem is to extract objects 
satisfying the definition of generic obstacles as described 
above. We emphasize that the existence problem is just to 
check the existence of generic obstacles instead of the 
exact number of generic obstacles, because an obstacle 
may be occluded by or very close to another. Without 
object identification or distance measuring, we can hardly 
assure that each instance of existence detected is just a 
single obstacle. Thus, we simply name the detected 
instances as “obstacle groups”. 

To get more precise information on the obstacle group, 
we have to separate each obstacle from it. In the paper, we 
are only just interested in pedestrians and vehicles. 
Thereby the classification problem here is to distinguish 
the generic obstacles into three categories: 1) pedestrians 2 )  
vehicles 3 )  others. After we have confirmed the existence 
and the type of generic obstacles in front of the vehicle, 
the locations of each obstacle should be calculated. The 
objective here is to find the relative homogeneous 
coordinate transform ~lj; i ; ; ’~( t )  for each of the found 
obstacles, from the image data at time t. And then we 
know how “far” an obstacle is from our vehicle. 

3. Obstacle Detection 
In this paper, a simplified binocular stereopsis for 

obstacle detection is proposed. The idea is to get rid of the 
disparity computations in traditional models. The ground 
plane can be removed easily and obstacles are detected at 
the same time. On the other hand, the distance measure of 
an obstacle in this method is more precise than the old 
ones. The reason we can have a simplified version of the 
binocular stereopsis is that the main objective of our work 
is to verify the existence of pedestrians or vehicles, not to 
reconstruct the whole three-dimensional environment. 

In the proposed method, two cameras are placed such 
that one is above the other along a vertical line, but not 
right and left. Assume the ground plane is completely flat, 
the optical axes of the two cameras are parallel to the 
ground plane. For simplicity, we also assume that the two 
cameras are the same, and the intrinsic parameters of them 

Figure 3-1 The projection of a point on the ground plane in 
the two frames 
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are both adjusted to be equal. Let the images be obtained 
by the two cameras are I ,  and I,, respectively. 

In the following, we will show the properties held by 
such a configuration of stereovision. In Figure 3- 1, we use 
the pinhole camera model to show how a point P on the 
ground plane will be projected onto the image planes of 
the upper and lower cameras, respectively. The pinhole 
model describes that each ray of lights passes through i2 

common center of projection .and intersects the image 
plane at a unique position. We define two two-dimension 
(2D) image coordinates for the upper and the lower image, 
respectively, namely, X u  - p u  and X ,  - y ,  . For 
convenience, in the following discussions, G represents the 
ground plane. 

Property 3.1: For any point PE G , P = (X,Y, ,O),  
where Y, is a constant, the projections of P onto I ,  and 
I , ,  are P,, = ( x , , y u )  and P, = ( x , , ~ , ) ,  respectively, 
which also lie on the two horizontal lines Y, = y ,  and 
Y, = y, , respectively. On the other hand, x u  = x,. 

.In Fact, since the intrinsic pzrameters are equal for the 
two cameras, o,c, =o,c, = f , where 0, and 0, are 
the origins of the two 2D image coordinates, one for the 
above and one for the lower, and f is the distance 
between the image plane and the lens center, and C,  and 
C, are the lens centers for tile upper and the lower 
cameras, respectively. 

In Figure 3-2, the projections of a point A = ( 0 , ~ ‘  ,o) 
onto I ,  and I , ,  are A,  and A, . Due to similarity 
between triangles A PAC, and A P,,A,C, , we have 
y ,  = A,O, = f . W / ( y  - f) , (ind similarly we have 

implies that the y-direction offset of the projections in the 
two images will depend on the height of the two cameras. 

Property 3.2: For any point PE  G , P = ( X , Y  ,O)  , 
where Y = m, the projections of P onto I ,  and I , ,  
namely P, = ( x u ,  y , )  and P, = (x,,?,) , respectively, 
will fall on the center horizontal lines Y, = O  and 
Y, = 0 ,  respectively. We call them “vanishing lines”. 

_ _ _ _  

~~ 

y ,  =A,O,= f .OO,/ (y-  f) , J I J Y ,  =oo,/oo, . This 

Property 3.3: If there is nothing on G, the lower half of 
I ,  can be zoomed in the Y, direction by a scalar e ,  
e =  OO,/OO, , 0 < c I 1, such that the zoomed image 
is equal to the (0.5 . c . Image Height ) rows start from 

We call the zoomed I ,  refixred in property 3.3 I,, , 
and the respective equal part in I ,  I , .  The image I ,  is 
defined as the absolute difference between I,, and ZIP. 
Without losing generalities, any generic obstacle would 
result in its respective pixels in I ,  with large values. 
Because the row scaling value WI: take for G to coincide is 
not appropriate for parts higher than G, which is 
considered at a different plane. The respective scaling 
value ~~ for a specific height h is ((00, - h ) / ( w  - h ) ,  not 
00, f00, . This becomes the basic idea that we can 

~~ 

Y, = 0 of I , .  

detect generic obstacles simply by getting I ,  . 
On the other hand, we can construct a distance map 

D&r(y) for each row of I ,  , which indicates the 
effective range on the ground that will be projected onto 
some particular row. The construction relies on some prior 
knowledge of the size of a pixel on the CCD and the focal 
length of the camera, which should be obtained by some 
off-line experiments under appropriate settings. Assume 
that the height of a pixel in the CCD is h, and the 
distance between the CCD and the lens is f , the effective 
range Y,  for the r-th row ( Y ,  = r , r > 0 ) can be 
assessed by the inequality: 

Similarly, Distc(x) can be constructed in a similar 
manner. If the width of a pixel in the CCD is w p  , the ef- 
fective range X ,  for the e-th column ( X u  = c  and 
x, = c ) is: 

We define the area of interest (AOI) in I ,  since we 
only care about pedestrians or vehicles on G that would be 
mapped to the AOI. Others are too far for us to recognize, 
and are less important than those in the AOI. The A01 is 
shown in Figure 3-2. 

Before tracking and matching a specific type of 
obstacle, we can first produce an appropriate obstacle map 
(OM) for it that only obstacles with some obstacle 
type-specific properties will be in the map. The obstacle 
map for pedestrians is called POM, whereas that for 
vehicles is called VOM An obstacle map is a binary image 
as large as I , .  All pixels out of AOI in the map is set to 
black, and only obstacles with specific properties in A01 
will be set to white. The procedural steps are: 
( I )  Image Preprocessing: We should remove signals of 
difference which are too small in size and too small in 
value to avoid quantization error and digitizing error. And 
the pixels which are considered to be obstacles are set to 
be 255 in gray level, whereas the ground plane is set to be 
0. 
(2) Obstacle Hypothesis: We assume each of the 
“on”(gray value = 255) pixels in I ,  represents that there 
is an obstacle of our interested type which stands on the 
ground plane. 
(3) Hypothesis Verification and Localization: Although 
the “on” pixels in Id are indeed produced by generic 
obstacles, we need to reduce the number of hypotheses to 
speed up our searching and tracking process. Since the 
bottom of an object often results in an edge, we first apply 
thinning operator to the “on” pixels and then only keep the 
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I Road. I 
Figure 3-2 Area of Interest: 

The dotted rectangle area is I , ,  and we defined the 
A01 as the two rectangle shade areas. 

pixels that its respective pixels in\ the upper and lower 
images are both edges. After that, ,we can use the image 
coordinate of the “on” pixel.to yproximate the location of 
the obstacle. It is done by3inding the respective ranges in 
the x and y coordinates on.the map. 

We will send the respective obstacle maps to the 
pedestrian tracking process and the vehicle tracking 
process separately. Either of the tracking processes will 
remove the obstacles which are successfully tracked from 
the respective obstacle map: The rest of the map is sent to 
the searching process to find new obstacles. 

After such a localization procedure, if a hypothesis is 
verified by the following tracking or searching processes, 
we can solve the transformation Tz;::(t) for the 
obstacle. Therefore, the location problem is implicitly 
resolved in the detection process. 

4. Pedestrian Matching Template Con- 
struction 

In this papcr, we use template matching for pedestrian 
searching. A large pedestrian template data set is obtained. 
It consists of faces and shapes of pedestrians with various 
clothes, sexes, and motions. The searching process 
becomes a problem whose objective is to find a template 
which is sufficiently similar to the tested image. 

To construct the database structurally, we use GKA 
[ 121 to obtain a near optimal clustering result. We select a 
variation of the Hausdorff distance, the M-HD [ 111, to be 
our distance measure, i.e., dissimilarity measure for the 
pedestrian templates. M-HD replaces the Euclidean 
distance by the cost function that can eliminate outliers 
and occlusion problems. The cost function p is defined 
as: 

where Z is a threshold value. 

based on M-estimation is defined as: 
On the other hand, the directed Hausdorff distance 

A two stage clustering strategy is used to construct the 
4-level hierarchical database. Stored in it are binarized 
pedestrian contour images and some other necessary 
information that we will explain later. The inputs are 
hundreds of gray level single pedestrian images. These 
pedestrians wear roughly single color clothes since the 
texture of clothes is not a good feature to separate a 
pedestrian from the general surrounding environment, and 
it may deteriorate the matching accuracy in our method. 

In each image, the shape of a pedestrian and the high 
frequency elements like eyes, noses, and mouths are 
extracted by a Sobel edge detector. Two numbers h and w 
are taken in advance. Each edge image is scaled to let the 
height of the pedestrian be h, shifted horizontally to keep 
the pedestrian stay at the center of the image, and then cut 
to be h in height and w in width. We call the shifted one a 
normalized edge image. 

In the hierarchical pedestrian template database, a rule 
is obeyed that each descendant template is more similar to 
its parent template than any other templates in the same 
level with its parent. We select a predefined number of 
images to be the seed images for the first stage clustering. 
They are level 1 images in our hierarchical template 
database. Each of the level 1 images contains a walking or 
standing pedestrian viewed from a different viewpoint, 
including front, back, left, right, front-left, front-right, 
back-left, and back-right. Such a division can help us to 
track down a pedestrian we have found in the further 
processing. Other edge images are then separately 
assigned to the nearest cluster according to the minimum 
M-HD between the seed image of a cluster and the edge 
image we want to classify. 

The second stage occurs in the clusters we have 
constructed in the first stage. We apply GKA to each 
cluster with K = 8. The distance measure we use in GKA is 
again the M-HD. The centroid of a sub-division is, a 
synthetic image, where each pixel value is the average of 
pixel values at the same location in all images that belong 
to* this sub-division. We cannot directly use a centroid 
image to be’a  level 2 image since no edge pixel exists. 
Instead, we, find an image nearest to the synthetic centroid 
image by the directed M-HD, h,-,(A,B), to be a 
level 2 image. This image is called the “physical centroid 
image” of the sub-division. The level 3 images are all the 
contour images. The parent image (level 2 image) of a 
level 3 image is the physical centroid of the sub-division to 
which this level 3 image belongs. 

On the other hand, we calculate an average image of 
the level 1 images, and then find the level 1 image nearest 
to the average image to be the level 0 image. 

For a pedestrian template in the database, we store not 
only the binarized edge image (template image) but a 
matching threshold of it for the matching purpose Assume 
the maximal M-HD value between the template image 7: 
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and all other the same level template images having the 
same parent (level number - 1) is d,'eve,, a matching 
threshold value El is calculated depending on one of the 
two types of location the template image is in the database: 
1) If the template image is a leaf image (level 3) in the 

2) If the template image is an internal image belonging to 
database, E' = u';,,~~. 

level 1 in the database, E' is defined as: 
= m a x ( M - H D ( i , j ) + ~ ~ l V T ,  E T.'schild,T, E level3) 

5. Searching and Tracking of Movable 
Obstacles 

Pedestrian Searching and Tracking 
In the searching process, a new pedestrian in the input 

image should be matched against a template in our 
hierarchical template database. A.ll generic obstacles that 
might be pedestrians have been extracted and the related 
information is stored in the pedeslrian obstacle map during 
the obstacle detection stage. The pedestrian obstacle map 
is first sent to the tracking proce:js to remove the already 
found pedestrians. The rest of the map will contain the 
candidates of new pedestrians, and is the so-called a 
"residual pedestrian obstacle map"(RPUM). We will use it 
for the guidance of our subsequ,mt pedestrian searching 
process. 

Before matching, a scaling table scale@) refers to the 
scaling factor we should apply to our pedestrian templates 
for matching a pedestrian whose feet is in the input image. 
It is constructed by the unified height of our pedestrian 
templates in the previous section, and the fixed camera 
configuration parameters. 

The matching process consists of edge detection, 
Hausdorff distance transform, location determination, hi- 
erarchical template matching, and parameter creation for a 
pedestrian. We now describe them in detail. 
( I )  Edge Detection: We use the lower image I ,  to be 
our source image for matching. A Sobel edge detector is 
performed on I ,  to extract edge pixels, and the resulting 
image is I ,  
(2) Hausdorff Distance Transfarm: Like the pedestrian 
template database construction, we use M-HD to be our 
distance measure, and construct the distance transform 
A[x,y] for Il-hi,l ( x , ~ )  by the chamfer method. 
(3) Location Determination: Consider all the obstacle 
pixels in RPUM to be P. For a pixel R P O M ( x , y ) e  P ,  
assume that it indicates a pedestrian standing there. The 
location of the pedestrian can be determined by the two 
distance map Distc(x) and DiBtr(y) as described in 
Chapter 3, and then a scaling facta- for our pedestrian tem- 
plates, s, is extracted by the scalini; table scale&). 
(4) Hierarchical Template Matching: We start our 
hierarchical template matching -from the root template 
image. For each matching template image, we perform the 
following three steps: 

a) Scale the template image by s in height and in width. 

The scaled height of the template image is h A ,  and the 
three stored parameters x I l ,  xI  , and wP becomes xr0 , 
x r S ,  and wpr in the scaled template image. We will use the 
w,, x,h, rectangle R,, with its lower left pixel 
coincldent with (x,, hy ) to be our matching area. 
b) Define the area to be matched in I ,  as the wP, x h, 
rectangle R,, , where the lower left pixel of the rectangle 

c) Calculate the directed M-HD, hM-HD(R, , ,Roh) ,  to be 
the dissimilarity measure. If the dissimilarity measure is 
less than E'  X S  , the measure is saved and the template 
image matching is considered to be passed. 

is (x - (x, - xrs )> Y )  ' 

We proceed our matching with all the same level 
template images, and then choose the most similar 
template image T, among the passed ones. Such a 
process will be applied to all the next level images 
belonging to T. . If no template is passed at the same level, 
the matching process for this pixel fails and stops so that 
RPUM(x,y) will be marked black. If a level 3 template 
matching is passed, we believe that there is a pedestrian 
with this template shape standing there. The whole 
pedestrian area in RPUM will then be set black to avoid 
duplicate matching. A best first search without 
backtracking should be effective if the pedestrian 
templates we take distribute averagely. 

The reason why we just use the directed version of 
the M-HD is that our goal is to check if a pedestrian 
similar to the template is in the image, but the distance 
measure of the other direction may include the information 
about dissimilarity between non-pedestrian edges in the 
environment and our template image so that an 
unreasonable large amount of undirected M-HD occurs. 
(5) Parameter Creation for Pedestrian Tracking: If a 
pedestrian is matched at RPUM(x,y), we add a new pedes- 
trian tracking data node to the pedestrian found list. It 
means that we have found a new pedestrian and will track 
him subsequently. In the data node, the location 
T L L r  ( t )  transferred from RPUM(x,y) and the gray 
level image in Roh area of I , ,  which includes the pedes- 
trian shape, are saved. 

In the tracking stage, assume that the time period of 
our pedestrian detecting-tracking-searching cycle is a 
constant, and we use the period to be our unit of time. Let 
a PUM be produced at time t ,  then it is first sent to the 
tracking process. We track each found pedestrians node by 
node in the pedestrian found list, and use PUM to speed up 
our tracking. An inverse array is produced to indicate that 
if we know the location of the pedestrian T z T  ( t )  , 
where should the feet of the pedestrian appear in the lower 
image I , .  

Another assumption is that the motion of a pedestrian 
is relatively slow and steady in the sequence of images. 
We can then estimate the location of a found pedestrian at 
time t by extrapolating. 

However, we don't have enough data to extrapolate 
for a pedestrian we have just found at t-1. If the pedestrian 
is stationary, the processing steps described above are still 
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available for this case. Unfortunately, if the pedestrian is 
actually moving, the applied tracking area does not work. 
We then use the routing direction of the matching template 
image we got in the searching process to extrapolate the 
location of the pedestrian. The extrapolating values of x 
and y coordinates depend on two things: A predefined 
distance that an average pedestrian will move in our time 
unit, and the routing direction. The correlation-based 
matching is again applied to the newly estimated area for 
tracking. 

Vehicle Searching and Tracking 
Unlike pedestrians, the shapes of vehicles are simpler 

to describe since they are rigid bodies. Although the 
Hausdorff distance can also be used for vehicle matching, 
we employ an easier and fast method based on sign pattern 
(SP) [4] for vehicle searching to exploit the advantage of 
fixed shapes. 

The SP of vehicle is dark undemeath. It is observed 
that the underneath of a vehicle is obviously darker than 
shaded parts of the road. The complete inductions can be 
found in [4]. 111 the paper, vehicles need not to be moving 
since we detect thcm in a diffcrent manner to thc work 
done in [4]. 

Another important difference between our work and 
the original SP based vehicle detecting algorithm lies in 
the tracking stage. They still apply the undemeath window 
method shifting to the lower side of the image for an 
incoming vehicle, and then use the same searching 
routines for vehicle tracking. However, if the tracking 
speed of our system turns out to be slow relative to the 
vehicle, the method will make a mistake since it only 
detects the existcnce of a vchicle without checking the 
similarity between the two vehicles obtained in the sequent 
images. To avoid this, we choose the Kalman filter to 
estimate the dynamic parameters of the vehicle and then 
apply a correlation based matching to verify that the 
vehicle we have tracked is indeed the one we want. 

System Speed Requirement 
Generally speaking, a complete braking process 

includes three stages: perception, reaction, and braking 
[14]. In each stage, some time is consumed, and the 
vehicle keeps moving until the braking stage is complete. 
So the total stopping distance is: 

Total Stopping Distance = Perception Distance + 
Reaction Distance + 
Braking Distance 

The fateful case is that the driver does not see an 
existent obstacle, or fails keep enough safe distance to stop 
when he or she has perceived the obstacle existence. An 
obstacle warning system for vehicle driving should be able 
to send a message by text, voice, or light to assure that the 
driver must get the message and have enough distance to 
complete the stopping process. In the worst case where the 
driver always takes a look in front of the vehicle only 

when the warning system sends out a message, the total 
stopping process distance becomes: 

Warning System Distance + 
2 x Perception Distance t 

Reaction Distance + 
Braking Distance 

Total Stopping Distance = 

where we defined the warning system time is the time pe- 
riod during which the warning system completes an obsta- 
cle detection-recognition-warning cycle. The warning sys- 
tem distance is the distance the vehicle traverses during the 
warning system time. 

We count the perception distance twice in the above 
equation because our warning message is also a 
perceptional signal to human. After the driver receives the 
massagc he will start the normal stopping process. Assume 
the acceleration of the vehicle is a, = -2.5m/s2 , which is 
typical for strong braking and good weather [13], and the 
perception time as well as the reaction time are both 0.75 
seconds, the total stopping distance for an effective 
obstacle warning system is: 
V,  x (warning system time + 2.25 + V,  / 5 ) .  

However, if the obstacle is moving, the equation 
should include the consideration of velocity of the obstacle. 
The term becomes the relative velocity between our 
vehicle and the obstacle in our moving direction. 

6. Experiment 
The sequence of images for our experiments are taken 

from two SONY DCR PC-100 digital video cameras (DV). 
The Matrox Image Library (MIL) 6.01 is used to develop 
our whole program. The system runs on a PC with an Intel 
Pentium I1 450MHz CPU and 256MB RAM. 

To construct the pedestrian template database, we still 
use a DV to capture a series of pedestrian motion 
sequences. These sequences include pedestrians of 
different sexes and in different dresses. We choose the 
proper images from the continuous sequences to be our 
source pedestrian shape images, and about 1,000 images 
are saved. In this research, we have just used 562 images 
to construct the basic structure of our hierarchical 
pedestrian template database. Any other pedestrian shape 
image can be added to the database later by searching for 
the most similar level 2 image in the constructed 
hierarchical structure and then appending it to the database 
as a level 3 image. Figure 6-1 shows the different stage 
images which will be produced during the database 
construction process for an input pedestrian shape image. 

Original Edge Normalized Edge DT 

Figure 6-1 Different Images for a Pedestrian template 

In our systcm configuration, onc digital vidco camera 
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Scaling 4 
Subtrpt - 

We demonstrate our pedestrian matching result in 
Figure 6-4. The pedestrian is detected and bounded by a 
rectangle. A simple scene can inspire us to enlarge the 
threshold values for each node in the hierarchical database 
to accept a pedestrian more easily, and then he or she can 
be tracked in the following sequences. But if the scene is 
too complex, a tradeoff between the rate of false alarm and 
that of miss detection appears, we have to follow a strict 
version of the threshold values to insure the most 
probability of which the matched ones are indeed 
pedestrians. On the other hand, the vehicle searching cycle 
is about 330ms-660ms, and the miss rate is about 17%. 

Figure 6-2 The Original Inpul 
spective Subtraction Result 

Iniage Pair and the Re- 

7. Conclusion 
Figure 6-3 Obstacle Map 

is put at a height of 85cm, and th.e other is put at a height 
of 170cm. The compression factor for the upper image is 
then 85 / 170 = 0.5, and the effective range of the overall 
system is 9m - 00. In Figure 6-2, the original two images 
grabbed from the upper and lower digital video cameras 
and the resulting image after 'subtraction are shown. We 
can find that only the objects higher than the groundplane 
will result in a large difference value. However, the dearest 
lane mark also makes a large difference blob because the 
degrees of vibration of the two digital video cameras are 
not the same. The nearer the landmark is, the greater the 
effect takes. After taking our assumption selection operator, 
we can compare the actual obstacle map we produced in 
Figure 6-3 with the original version in Figure 6-2. Only the 
foot points of the obstacles will remain, and the further 
processing steps can take only those pixels for some 
complex operations. The time fo:l image compression and 
subtraction is about l0ms in cur system, whereas the 
hypothesis verification operator takes about 60ms. 

If we only apply the pedestrian matching process in 
our system, the pedestrians are indeed detected in the 
scene, but it requires about 1 to 3 seconds to complete. On 
the other hand, the performance cf which after the tracking 
process is added in depends on the proportion of the 
tracked points to the whole obstacle points in the obstacle 
map. If the portion of the tracked point in the obstacle map 
is small, we,can hope small advantage from the tracking 
process since the matching proce:ss, still. need much time to 
check for new pedestrians. However, if the number of 
obstacles in front of our vehicle is. not large, the tracking 
process may helps us bypas:; this time consuming 
operation because most of the obstacle points in the 
obstacle map are deleted by it. In our experiment, the 
tracking process can even shorten our tracking-matching 
cycle to 690ms, and the miss rate is 15%. 

Figure 6-4 Pedestrian 
Matching and Tracking 

In this paper, an obstacle detection and recognition 
system for vehicle driving based on computer vision is 
proposed. We have developed a complete mechanism 
including obstacle detection, pedestrian matching and 
tracking, vehicle searching and tracking, and warning 
signal sending decision. 

A fast generic obstacle detection method by the 
simplified stereovision is presented. Any existing 
algorithm for obstacle recognition, no matter it bases on 
computer vision or not, can be speeded up by our method 
to minimize the number of recognition candidates in the 
environment. On the other hand, for our own system, 
although the obstacles we processed are just pedestrians 
and vehicles, a searching and tracking algorithm for any 
other kind of obstacles can be developed on the established 
detection base and then concentrate ourselves on 
processing the features of such kind of obstacles. Even we 
can reduce the obstacle map by the features if it is fast 
enough to get the feature information from the upper and 
lower images. 

To avoid time-consuming matching for complex 
human models, we choose the M-estimation Hausdorff 
distance as our dissimilarity measure. It uses the shape of 
an object as the matching feature, and provides a smoother 
matching score to adapt the variability of pedestrians. A 
hierarchical template database is used in this paper. We 
construct the database not only for speeding up our 
matching process, but also for the pedestrian moving 
direction prediction in the tracking process. We have also 
presented a meaningful matching threshold setting strategy 
for each node in the hierarchical template database which 
satisfies the coarse to fine property when matching. 

Although the processing speed now is not fast enough 
to meet the requirement of real driving, some heuristics 
may be added into our system to obtain a better 
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performance in the real world. On the other hand, since the 
tracking process has some chases of speeding up the 
searching process, a more efficient tracking method for a 
movable observer and movable obstacles may be helpful. 
Due to the objective obstacles we have processed in this 
paper are the most complex and movable ones, other 
obstacles should be able to be recognized in some simpler 
manner which costs a shorter processing cycle time in our 
system. 
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