
Proceedings of the 2001 IEEE
International Conference on Robotics & Automation

Seoul, Korea . May 21-26, 2001

A Distributed Environment for Virtual and/or Real Experiments for
Underwater Robots

P. Ridao', J. Batlle', J. Amat', M.Carreras'
'Informatics and Applications Institute

Univeristy of Girona
Avda. Lluis Santa16 s/n Girona CP. 17071 Spain.

'Automatic Control and Computer Eng. Dept.
Politechnical University of Catalunya
Pau Gargallo n"5 08028 Barcelona-Spain.

{ pere,jbatlle,marcc} @eia.udg.es amat @esaii.upc.es

Abstract
This paper presents the Distributed Environment for

Virtual and/or Real Experiments for Underwater Robots
(DEVRE). This environment is composed of a set of
processes running on a local area network composed of
three sites: (I) the onboard AUV computel; (2) a Surface
computer used as human machine interface (HMI) and (3)
a computer used for simulating the vehicle dynamics and
representing the virtual world. The HMI can be
transparently linked to the real sensors and actuators
dealing with a real mission. It can also be linked with
virtual sensors and virtual actuators, dealing with a virtual
mission. The aim of DEVRE is to assist engineers during
the software development and testing in the lab prior to
real experiments.

1. Introduction
The development of an autonomous vehicle is not a

simple task. Besides the mechanical and electrical issues,
the vehicle needs an intelligent software architecture
responsible for driving the vehicle during the mission. This
software must be able to deal with unstructured and
probably unknown environments in real time. In order to
build this kind of software, an intensive set of experiments
in an exhaustive number of environments is necessary.
Nevertheless, the vehicle for testing purposes, must often
be shared among a number of researchers and engineers.
Also, testing in real environment is expensive in both in
resources and man hours. Hence, we are presented with the
following problem: the number of real experiments must
be reduced while at the same time intensive
experimentation is being carried out. On the other hand,
almost any engineer involved in the software development
of an AUV has experienced frustration due to a simple
mistake in the software. Sometimes, the mistake can be
corrected at the place, but often it means aborting the
mission and returning to the lab to patch the software. For
these reasons, a graphical simulator implementing a virtual
vehicle and a virtual world are desirable tools for research.
In our laboratory we have designed an AUV software

architecture in such a way that i t can indistinctly control
the real vehicle or the simulated one. This means that the
vehicle software can be simulated in the lab before real
experiments take place. Moreover intensive testing is easy
and feasible.

Popularity of graphical simulators and virtual worlds is
growing daily in the AUV community. The necessity of
these kind of tools was clearly shown by D. P. Brutzman
.who implemented an integrated simulator for the NPS
AUV [11. Several authors extended this concept to include
multiple vehicles working in either a virtual or hybrid
virtuallreal environment. At the University of Tokio,
Kuroda et al. [2] developed a Multi-vehicle Graphical
Simulator for the twin-Burger underwater robots. S.
Chappell et al. (Autonomous Undersea Systems Institute)
developed the CADCON concept [3] which employs a
distributed multi-agent simulation and visualisation
system. In a similar way S . K. Choi et al. at (University of
Hawaii) presented a Distributed Virtual Environment
Collaborative Simulator for Underwater Robots [4].

In this paper we present DEVRE, a Distributed
Environment for Virtual and/or Real Experiments which
has been developed in order to aid the software
development for our underwater vehicle GARB1 [SI. This
paper is organized as follows. In section 2, we present an
overview of the DEVRE system. Section 3 describes the
real and the virtual vehicle and section 4 describes the
virtual world. Section 5 presents each component of the
system and section 6 reports the results before the
conclusions in section 7.

2. Overview of DEVRE System
DEVRE is an integrated software platform (see Fig. 1)

composed of three modules: (1) the Human Machine
Interface (HMI), (2) the Mathematical Model of the
Vehicle and the Virtual Environment (MMVVE), and (3)
the Object Oriented Control Architecture for Autonomy
(02CA2).

The HMI operates as an interface with the human
operator. It allows for monitoring the state of the vehicle as
well as sending commands to it.

0-7803-6475-9/01/$10.000 2001 IEEE 3250

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:31:08 UTC from IEEE Xplore. Restrictions apply.

The MMVVE has two functions: (I) simulating the
movement of the vehicle under water using the dynamical
model and (2) providing a virtual representation of the
underwater world. The utility of the world model is
twofold. Firstly, it allows the visualization of the vehicle
within the environment and secondly, it allows the
simulation of sensors providing environment dependent
information like sonar.

The 02CA2 is the high level control of the GARBI
vehicle. It is a hybrid deliberative-reactive architecture in
charge of controlling the vehicle during a mission.

All these programmes are written in different
languages and run on different computers under different
operativc systems. HMI and MMVVE modules are
programmed in Labwindows and executed on two
individual PCs under Win32 OS. The 02CA2 is
programmccl in C++ and executed on the onboard x486
computer running VxWorks. All components are
networked through a TCP/IP LAN (1 0 Mbs ethernet).

Research & Development Lab
-. _ _ ~ -.

Tesls ~n Real Environmeni

Fig. 1 DEVRE System

3. The Real and the Virtual Vehicles
In this section we present the real vehicle and its virtual

partner V-GARBI.

3.1. GARBI: The Real Vehicle
GARBI was first conceived as a Remotely Operated

Vehicle (ROV) for exploration in waters up to a depth of
200 meters. At this time, a control architecture is being
implemented to transform the vehicle into an Autonomous
Undcrwatcr Vehicle. GARBI (see Figure 2) was designed

Tz

Prow

Fig. 2 Garbi Underwater Robotic Vehicle

with the aim of building an underwater vehicle using low
cost materials such as fiber-glass and epoxy resins. To
solve the problem of resistance to underwater pressure, the
vehicle is servo-pressurized to the external pressure by
using a compressed air bottle, like those used in scuba
diving. Air consumption is required only in the vertical
displacements. When the robot dives in the heave
direction, a servo system introduces air into the, hull in
order to increase the internal pressure until it reaches the
external pressure. On the other hand, when the robot goes
to the surface decompression valves release the required
amount of air to maintain the internal pressure at the same
level as the external one. The vehicle allows for the
incorporation of two mechanical arms which would
perform some tasks of object manipulation through tele-
operation.

The vehicle has 4 thrusters, see Figure 2, two for
horizontal movements (axis x) and two for vertical
movements (axis 2). Additionally it is possible to add
another thruster in the transverse direction (axis y). Due to
the distribution of the weights, the vehicle passively stable
in Roll and Pitch. The vehicle also has several sensors: 2
compass, 2 pressure sensors and 2 water speed sensors.
Dimensions are: length 1.3 m., height 0.9 m and width 0.7
m. Maximum speed is 3 knots and the weight is 150 Kg
aprox.

3.2. V-GARBI: The Virtual Vehicle
The virtual vehicle is a software module which behaves

as the real vehicle does. It is composed of the dynamic
model of the vehicle and the onboard sensors model.

3.2.1. Dynamical Model of the Vehicle
As described in the literature [6], the hydrodynamic

equation of motion of an underwater vehicle with 6 DOF
can be conveniently described as follows:

Bu = (‘ M R B + ‘hi,). “i, + (‘C,,(‘ U) + CA (‘U)) .

+ D (‘ U) ~ U + ‘ G (0) (eq. 1)
where,

B is the thruster configuration matrix
u=(o,*, o;,w:,o>)~ is the control inputs vector
mi is the angular speed of the propeller i

‘MRR is the inertia matrix
‘MA is the added-mass matrix

cZ, = (cVEc , cOEG)I is the velocity vector

0 = (G e v)’ are the Roll, Pith & Yaw angles
GCRB is the rigid-body Coriolis matrix
‘CA is the added Coriolis matrix
‘0 is the damping matrix
GG is gravity &buoyancy vector

G . = (caEG, G ~ ,
is the acceleration vector

3251

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:31:08 UTC from IEEE Xplore. Restrictions apply.

The super-index denotes the coordinate system where
vector components are expressed. { G } is a robot fixed
coordinate system and (E) is an earth fixed coordinate
system. For simulation purposes we are interested in
computing the evolution of the robot position and
orientation as a function of forces acting on the vehicle.
This can be computed easily arranging the terms of (eq. 1)
as follows:

K = (K u - (‘CKH(‘v) + CA (‘v)). “V - D (“ V) ‘U - “ G (0))

i, = (G M R B + G M A) ’ . K (eq. 2)

‘V = ‘zjdt (eq.3)

G

The velocity vector can be computed through integration:

and the rate of change of position and orientation can be
computed as follows:

where:

ER, is the rotation matrix

= (2 y 2)‘ and

1 s in4tg8 cos@tg8
0 cos@ -sin@

sin$ cos$ 0 - -
cos8 cos8

so finally the robot position and orientation can be
computed as follows:

E [“ 0)= j E [;) dt

3.2.2. Sensor Models
Concerning the sensors, we can consider three different

types. First, the sensor related to the vehicle state (speed,
acceleration, depth, position, etc.. .). Second, the sensors
responsible for sensing a relation between the robot and its
surrounding environment (sonar, computer vision).
Finally, the mission payload sensors. When dealing with
control architectures we are only interested in the first two
types.

State Sensors

implemented for our vehicle:
2compasses
2 water speed sensor
1 Depth sensor

At this point in time, 5 virtual state sensors have been

Several experiments where conducted for each of these
sensors allowing us to compute the mean and the standard
deviation of the absolute error (see table 1). Hence, each
virtual sensor was implemented using the corresponding
output of the dynamic vehicle model adding a gaussian
error signal with the corresponding mean and variance.

1 Pressure sensor for the air conipressed bottle

Fig. 3 Virtual compass

Figure 3 shows how the virtual compass is implemented.
The virtual sensor for depth and speed follow the same
approach. The last one has a dead zone so, it only provides
response for speeds greater than 0.05 [d s] . The virtual
sensor related to the pressure sensor used for monitoring
the air consumption is modeled as follows.
Let

pk.] is the external pressure at instant tk.1

bk.] the pressure in the air bottle at instant tk.,
V, the volume of the hull
V, the volume of the air bottle

the pressure of the air bottle at instant t k . can be computed
as :

Ap = P k - Pk-1

10 otherwise

bk = bkP1 -Ab
where the temperature has assumed to be constant.
Since bk is the real pressure, we can obtain a realistic
measurement by adding an error source similar to the one
stated in table 1

I Sensor I U I 0 1

sonar 10.057 [m]

Table 1 Error parameters of the robot sensors

3252

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:31:08 UTC from IEEE Xplore. Restrictions apply.

Environmental Sensors
Concerning the environmental sensors, only the sonar

has been implemented. Sonar can be simulated at different
levels. From the physical point of view, we can use the
sonar equation. Each transducer can be considered as a
sound sourcc, and taking into account the transmission
losses (spreading and attenuation), we can compute the
sound level in the position where the beam impacts with
the surrounding objects. Each of these points of impact can
then be considered a new sound source and we can
compute the way back in order to compute the sound level
of the reading at the receptor. When this sound level is
higher than a threshold, we consider its corresponding time
of flight in order to compute the range. With this kind of
simulation, important effects like the multi-path can be
taken into account. The drawback is the computation time.
Since we are interested in simulating sonar behavior in
real-time, such a method is unaffordable.

The second method is graphical. Each sonar beam is
simulated as a cone with p degrees of aperture. While the
robot moves in the virtual environment, the points
belonging to this cone are explored in order to see if they
impact with objects in the vehicle surroundings. In this
case, the axial distance plus a gaussian error are considered
as thc measurement given by the transducer. Moreover, in
order to consider the multi-path problem, a second error
source is added periodically. This second source has a high
variance and a mean greater than zero producing glitches

Fig. 4 2D and 3D rerpresentation of the virtual world

Fig. 5 Human Machine Interface

in the sonar ranges.

4. The Virtual World
In order to keep the software simple, we have chosen a

world model representation based on contour lines (Fig.4).
Although this representation does not allow representation
of caves, it is general enough to represent most common
underwater environments. The world is considered a 2D
grid of arbitrary dimension, containing the height of the
corresponding area. These kinds of worlds can be easily
generated using conventional drawing tools.

5. DEVRE

DEVRE and their relationship.
In this section, we describe the components of the

5.1. HMI
The HMI is the interface between the 02CA2 control

architecture (described below) and the operator. Its main
functions are the following:

Monitoring the state of the sensors during the mission:
their values are shown in a control panel (see Fig.5).
Logging sensor readings: sensor data is saved in a file
for post-mission study purposes.
Sending commands to the control architecture (such
us enabling or disabling robot behaviors)
Sensor calibration (such us the definition of the zero
depth pressure).
Low-level teleoperation of the vehicle (using a
joystick and sending commands to the low level
controller).
Switching between real and virtual environments.

In order to provide this function, the HMI uses a custom
defined protocol which provides message frames for each
one of these functions. It also provides frames for
communicating the 02CA2 with the MMVVE, like sending
the angular speed of the thrusters to the MMVVE or
receiving the position, velocity and acceleration from the
MMVVE. This protocol runs on a 10 Mbits Ethernet link.

5.2. Overall Description Of The o2CA2
Architecture

The control software of GARB1 is arranged in three
layers Deliberative, Control Execution and Reactive.
The Deliberative layer is used for mission planning. It is in
charge of inserting new tasks in the plan structure trying to
minimize a cost function. The planning process takes place
when the user specifies a new task or when a previously
planned task fails and needs re-planning. Planning and
execution is de-coupled so both processes can be executed
concurrently.

The Control Execution layer is responsible for the plan
representation and controlling its execution. The plan is
represented as a Finite State Machine where each state is

3253

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:31:08 UTC from IEEE Xplore. Restrictions apply.

related to one task. The control execution layer makes the
actual state evolve from the beginning state to the end state
through a sequence of states. For each state, the execution
of the related task means turning on or off a set of
behaviors.

The real-time control of the vehicle is in charge of the
reactive layer which provides three reactive mechanisms:
(1) behaviors, (2) monitors and (3) timers. Each behavior
has its own goal and can be executed independently or
concurrently with the others. There are safety behaviors
such as obstacle avoidance and navigation behaviors like
going to one point or circumnavigation. Behaviors read
input values from the sensor subsystem and use fuzzy IF-
THEN rules to compute the new set-point to the low level
controller. A cooperative coordinator is responsible for
merging the set-points provided by the active behaviors
into a unique set-point which is then sent to the low-level
controller. Monitors are used for situation recognition (the
robot has reached the programmed position, or depth,
etc ...) and event handlers provide pre-programmed
reactions to these situations. Timers are used for
computing deadlines, allowing the event handler to
execute when the robot is unable to reach its goal within a
deadline. See [7] for a detailed description.

5.2.1. Sensor Subsystem
The sensor subsystem is arranged hierarchically. For

each robot sensor there is a physical sensor object which
acts as an interface to the real sensor. This entity contains
the code and data needed for accessing the sensor and for
data filtering. A set of related physical sensors are
grouped in a logical sensor. They provide physical
magnitudes as inputs for the behaviors. For instance, the
logical sensor, which provides the angular speed (yaw
derivative), makes use of the compass physical sensor
while the logical sensor providing the x position makes use
of the lineal speed physical sensor and the compass
physical sensor. When needed, sensor fusion takes place at
the logical sensor level. For instance, since our robot uses
two compasses it has two physical sensors, and one logical
sensor which merges the values of the two previous ones
by means of a Kalman Filter.

Fig. 6 Software Architecture of the MMVVE and its
relation with the 02CA2

5.2.2. Actuator Subsystem
Each actuator is represented within the software

architecture by an actuator object. This object acts as an
interface, receiving the actuator set point and sending it to
the hardware.

5.3. MMVVE
As stated above, the MMVVE is composed of the

dynamic model of the vehicle and the model of the virtual
world (Fig.6). The dynamic model block sequentially
computes from eq.2 to eq.5. The outputs of this block are
the acceleration, velocity and position vectors. The
position vector is used by the virtual world module to
compute the range measured by the sonar (vector s). The
four vectors are periodically sent to the Simulator Data
Server object. This object acts as a mediator between the
simulator and the 02CA2. The virtual sensors which
simulate the corresponding physical sensors access the
Simulator Data Server and then add an error signal as
defined in Table 1. On the other hand, the set points sent to
the virtual actuators (col,. . ., 0,) by the low-level controller
are sent to the Simulator Data Server and then forwarded
to the MMVVE. Note that the logical sensor code and the
code corresponding to the low-level controller is the same
when we run both, real and virtual experiments. Hence, the
interface between the MMVVE and the 02CA2 is
contained in the virtual sensor and virtual actuators plus
the Simulator Data Server. This is a powerful feature of
DEVRE, since the 02CA2 code is always the same
regardless of experiments being carried out in a real or
virtual environment.

5.4. Modes of Function
DEVRE has three modes of function although only two

are ready to work at this moment: - Real Mode: In this mode the logical sensors are linked to
the physical sensor objects and the low-level controller is
linked to the real actuators. Hence, the control commands
carried out by the 02CA2 are executed by the robot. This is
the mode used when real experiments are carried out in a
real environment.
- Virtual Mode: In this mode the logical sensors are
linked to the virtual sensor objects and the low-level
controller is linked to the virtual actuators. Hence, the
control commands carried out by the 02CA2 are executed
by the MMVVE. This is the mode used in the lab while
developing.
- Hybrid Mode: This mode will be ready in the near
future. When using this mode some of the sensors are real
while others are virtual. The low-level controller is
attached to the real actuators, so. the robot moves through a
real environment. Nevertheless. since some of the sensors
are virtual, it can sense a virtual synthetic environment.
From our point of view, this mode is very interesting. It
allows experimenting in virtual environments, while

3254

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:31:08 UTC from IEEE Xplore. Restrictions apply.

4

3

2

1

0
100 200 300 400 500 600

:: 500 600 ~ ~~

100 2w 330 400

0 0 0 0

50

Fig.7 (a) Real vertical experiment. (b) Virtual vertical experiment. (c) Virtual
dock circumnavigation experiment. (d) Hybrid dock circumnavigation
experiment.

observing the response of the real robot to the virtual
environment sensed by the virtual sensors.
The selection of the mode of function is done using a
simple switch of the HMI.

6. Results
In order to test the capabilities of the DEVRE system, two
experiments were undertaken. The first experiment
consisted in programming the robot to alternate among
depths zd=I, zd=3 and zd=4. A simple PI controller was
used (P=200, I=1). First, the experiment was executed in
the lab on the virtual simulator (Fig.7b), and then it was
reproduced i n the lake (Fig.7a). Both Figures show the
readings of the virtual and real depth sensor before
filtering.

The second one was an hybrid experiment. The robot
was considered to be located at position (0,0,0) and it was
programmed to track the trajectory [(35,10,0), (35,10,3),
(35,33,3), (35,33,0)] while circumnavigating a dock
located in the virtual world. The experiment was first
executed in virtual mode obtaining the result shown in fig.
7c, and then reproduced in the lake but sensing the same
virtual world (sonar was simulated). Fig.7d shows the local
map built during the experiment and the tracked trajectory
as sensed by the vehicle.

The execution of the experiments in virtual mode
before executing the real experiments proved to be very
useful, allowing us to detect and solve development
problems i n the lab before going to the trial environment.

7. Conclusions and further work
DEVRE is a distributed system which integrates

graphical simulation and real execution of a mission by an
underwater robot. It is composed of three main
components: HMI (operator interface), MMVVE (the
virtual vehicle + the virtual world) and the 02CA2 (
thehigh level control of the robot). The 02CA2 can work
equally well with the real and/or the virtual vehicle. This
feature has been easily achieved as a result of the
distributed object oriented structure of the 02CA2.
Although the system works with a 3D virtual world, at this
moment it only provides two two-dimensional views (XU
plane, and Z). This is probably the weak point of DEVRE.

In the future, the MMVVE will be partitioned in two
applications: (1) the dynamic model of the vehicle and (2)
a 3D representation of the virtual world using a graphical
package like OPENGL.

Acknowledgements
The authors wish to acknowledge’the support of the

Spanish government for the financial project MAR99-
1062-CO3 -02 (CICYT).

References
[I] D.P. Brutzman, Y. Kanayama & M.J. Zyda, “Integrated

Simulation for Rapid Development of Autonomous
Underwater Vehicles,” Proceedings of the IEEE
Oceanic Engineering Society Autonomous Underwater
Vehicle 92 Conference, Jun. 1992.

[2] Y. Kuroda, K. Aramaki, T. Fujii & T. Ura, “A Hybrid
Environment for the Development of Underwater
Mechatronic Systems,” Proceedings of the 1995 IEEE
2 1’‘ International Conference on Industrial Electronics,
Control, and Instrumentation, Nov. 1995.
S.G. Chappell, R.J. Komerska, L. Peng &Y. Lu,
“Cooperative AUV Development Concept (CADCON)
- An Environment for High-Level Multiple AUV
Simulation,” Proceedings of the 1 ITh International
Symposium on Unmanned Untethered Submersible
Technology, Aug. 1999.
S.K.Choi, S.A. Menor and J.Yuh, “Distributed Virtual
Environment Collaborative Simulator for Undewater
Robots”, IEEE/RSJ Int. Conf. on Robots and Systems
IROS’2000, November 2000.

[5] Amat, J. Batlle, J. Montferrer, A. Salvi, J. and Ridao,
P., 1998, “Capabilities of GARB1 - A Low cost
underwater Vehicle”. IEEE/RSJ Int. Conf. on Robots
and Systems lROS’98, WS1- Workshop on Recent
Trends in Intelligent Underwater Robotics.

[6] Fossen, T.1, “Guidance and Control of Ocean
Vehicles”, John Willey & Sons, 1995.

[7] P. Ridao, M.Carreres, J.Batlle, J. Amat, “O’CA’: A
New Hybrid Control Architecture for A Low Cost
AUV”, to be published in the Proc. of the Control
Application in Marine Systems, Scotland, 2001.

3255

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:31:08 UTC from IEEE Xplore. Restrictions apply.

