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Abstract 
The recovery of the three-dimensional structure of the 
environment is a pre-requisite for many tasks in mobile 
robotics. Unfortunately, calibration acts as a brake upon 
visual adaptation and robotical autonomy. In this paper, 
we provide tools and constraints based on structured 
light for a complete and efficient uncalibrated Euclidean 
reconstruction of the environment. Experimental results 
achieved both on simulated and real data validate the 
method. 

1 Introduction 
Calibration was for many years the only way to recover 
three-dimensional scene structure from images. 
However, this approach suffers from two major 
drawbacks: firstly, the calibration process is very 
sensitive to errors and unstable; secondly, in many 
robotical applications, it is just not possible to calibrate 
on-line (for instance, if a calibration pattern is not 
available or if the camera is involved in visual tasks). 
Moreover, this process has to be repeated each time that 
one of the parameters is modified, which prohibits its 
use for visual adaptation, that is, working with a camera 
with automatic focus and aperture. As a consequence, 
reconstruction methods by means of uncalibrated 
sensors have been developped from the end of the 
eighties. For instance, Koenderink and Van Doom [6] 
showed that the affine structure of a scene could be 
recovered from two images by computing an affine 
shape invariant. Faugeras [4] developed a reconstruction 
method from the knowledge of epipolar geometry. 
Mohr, Brand and Boufama [8] proposed a method of 
simultaneous retrieval of 3-D co-ordinates and 
projection matrices. Luong and Vieville [7] used a 
canonical representation of views based on the 
fundamental matrix in order to recover the projective 
structure of the scene. 
Without any knowledge of scene geometry nor sensor 
parameters but pixel correspondences, it is 
demonstrated that it is possible to reconstruct three- 
dimensional scenes only up to a collineation; such a 
reconstruction is called projective. In order to upgrade a 
projective reconstruction into an Euclidean one, 
constraints on camera motion, intrinsic parameters or 
Euclidean scene geometry have to be added. The 
projection of a known regular pattern onto the scene 
permits to easily retrieve geometrical constraints which 
relate the object points. Moreover, it permits to 

artificially structure the observed surfaces. In this paper, 
we show how structured lighting is used to recover 
Euclidean structure of the observed scene from an 
uncalibrated sensor. As our purpose is to provide a 
practical and implementable method of reconstruction, 
we also give a set of useful tools for uncalibrated vision. 
The paper is structured as follows. In the section two, 
the structured light sensor is described. Next, tools for 
uncalibrated vision are presented. Then, the generation 
of Euclidean constraints by the analysis of coded images 
is detailed and experimental results are shown. Finally, 
the paper ends with conclusions. 

2 Structured Light Vision 
It is well known that the major drawback of stereoscopy 
is the correspondence problem, i.e. the matching of 
homologue points among the images. With the aim of 
reducing this drawback, coded structured light 
techniques have been developed [2 ] .  In a structured 
light system, the second camera is replaced by a light 
source that projects a known pattern of light onto the 
scene, as shown in Figure 1. Since a projector can be 
seen as a camera acting in reverse, it can be modelled in 
the same way a camera is. 

scene 

Figure 1. Structured Light Geometry 

The pattem is composed by a set of vertical and 
horizontal slits, uniquely colour-encoded in a single 
pattern projection. The reader is pointed to Salvi et al. 
[9] to get deeper into the pattem design. 

3 Tools for Uncalibrated Vision 
This section first recalls the definition of the cross-ratio 
and its basic formulations. Then, it is described how to 
use it to perform a test of spatial colinearity and a test of 
coplanarity only from pixel co-ordinates. 
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3.1 The Cross-Ratio 
The cross-ratio is the fundamental projective invariant. 
It is a numerical value, computed from a certain 
configuration of points, which remains unchanged 
through homographies (Figure 2). The cross-ratio k = 

{ P;  A, B, C, D }  of a pencil of four convergent lines in a 
plane is dcfined by: 

k=-.- sin( A k )  sin( BkD)  (1) 
sin( B k )  sin( A i D )  

With a line crossing the pencil and A ' ,  B',  C' ,  D', the 
subsequent intersections, the same cross-ratio can be 
computed by: 

-- 
A' C' B' D' k = {A', B' ,  C', D'}= = .=== 
B'C' A'D' 

A 

Figure 2. The Cross-Ratio 

The cross-ratio -can be used for obtaining two 
gcometrical constraints : a test of spatial colinearity and 
a test of coplanarity. They are both described in the 
following of this section; an analysis of the stability of 
the cross-ratio with respect to these tests is also 
proposed. 

3.2 Colinearity and Coplanarity 
Let us consider four points in space P, Q, R, S, their 
respective corresponding points p ,  q, Y, s in the pattern 
projector frame and their projectionsp', q', U', s' onto the 
image plane (Figure 3). Whether P, Q, R and S are 
aligned, it is obtained: 

The changc from points of the pattern projector frame to 
points of 3-D space is achieved through an homography; 
likewise, the change from points of 3-D space to points 
of the image plane is also achieved through an 
homography. As cross-ratios are preserved through 
homographies, it can be inferred that the three values 
are equal. Conversely, it can be inferred that whether 
the cross-ratio of four imaged points is equal to the 
cross-ratio of the four corresponding projected points, 
the points P, Q, R and S belong to the same straight line 
in space. Since the co-ordinates of the projected points 

are perfectly known, structured light provides an 
accurate measure of this cross-ratio. The test of 
colinearity will simply consist in checking the value of 
the cross-ratio of four points within the image. 

Figure 3 .  Test of Colinearity 

Now, let us consider the two configurations of points 
shown in Figure 4. Whether the points o,, p , ,  ql, U, et s, ( i  
= I or 2) are projected onto a plane, the cross-ratio 
within the pattern is equal to the cross-ratio of the five 
points formed onto this plane; moreover, the cross-ratio 
of the homologue points within the image is equal to 
both. Once more, the change from projected points to 
imaged points is obtained by two successive 
homographies. 

Figure 4. Test of Coplanarity 

It can be deduced that if equation (4) is verified, the 
corresponding object points 0, P, Q, R and S are 
coplanar. 

(0,; p, ,  q,,  r ; ,  J, >= b: ;PI, ,q', , rl, ,sf, 1~1 th  i = 1 or 2 (4) 

We have tested the stability of the cross-ratio for both 
configurations of points, i.e for the test of colinearity 
and for the test of coplanarity. For the first, we took 
four aligned points for which the distances d between 
two successive points are equal. A noise, varying from 0 
to 0.5 x d, is added on the points co-ordinates. The 
results are illustrated by Figure 5 (Top). For the second, 
experimental protocol remains unchanged: only the 
points configuration changes and, consequently, the 
formula used for the cross-ratio. The results are 
gathered in Figure 5 (Bottom). 
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I 
Figure 5. (Top) Test of colinearity (Bottom) Test of 

coplanarity (Left) Measures with error 5 5% (Right) 
Measuring error with a noise from 0 to 50%. 

To be able to compare the theoretical cross-ratios with 
the cross-ratios computed from the images, we used a 
projective distance based on the method of the random 
cross-ratios [I] .  The tolerance error is empirically fixed 
to 5 ~ 1 0 - ~ .  Under these conditions, a noise up to 
f15% is allowed to well discriminate configurations of 
colinear and coplanar points. Obviously, as it can be 
deduced from the results of Figure 5 ,  the more the 
distance d is large, the more the measure of cross-ratio 
is robust. The left part of Figure 5 shows that, with a 
moderate noise (+ 5%), the measured cross-ratio is very 
near to the theoretical one. Hence, the stability of cross- 
ratio is good enough for applications in uncalibrated 
reconstruction. 

4 System Modelling 
This section presents the affine camera model and 
proposes a test of validity for this model. The purpose is 
to provide a method to verify the affine assumption 
without any knowledge of scene geometry nor sensor 
parameters. 

4.1 The Affine Model 
In the affine camera model, the projection is not 
performed through a fixed point but along a direction. In 
fact, it corresponds to the case when the focal point is 
set at infinity. This is equivalent to say that the model 
does not take into account the depth of the scene. 
Whether the direction is orthogonal to the image plane, 
the projection is said orthographic. It leads to a very 
simple formulation: 

( 5 )  

where ( U ,  v )  are pixel co-ordinates and ( X ,  Y, Z) are 
object point co-ordinates. This model preserves 
parallelism and relative distances. 
Fixing the focal point at infinity imposes an important 
constraint: the depth ratio, seen as the ratio between the 
length of the scene along the optical axis and the scene- 
camera distance has to be small enough (more or less 
1/20). The next sub-section presents a method to test the 
validity of the affine model from image analysis. 

4.2 Test of Validity 
This section describes a method to compute a 
confidence rating for the validity of the affine model. 
An affine transformation change a square into a 
parallelogram, in the worst case. Hence, a square 
projected onto a planar surface and captured by a 
camera will form a parellelogram onto the image plane 
whether the sensor follows the affine model. 
Let us consider the four vertices of a square of the 
pattem and let us assume that they are projected onto a 
planar surface. Their corresponding points within the 
image plane form a quadrilateral. If it appears to be a 
perfect parallelogram, the affine model can be assumed; 
otherwise, the hypothesis has to be discussed or gave 
up. What about intermediate forms? And how to 
correlate the square deformation with the validity of the 
affine model? 
In concrete terms, let us imagine a parallelogram whose 
vertices are the points m, n ,  n' and m', succesively and 
clockwise. Lengths of opposite edges of a 
parallelogram are equal. By measuring the difference 
between these edges length with equation (6) ,  
knowledge of parallelogram-like forms can be retrieved: 

lJ(tI", -U. Y + (vm - v, P - J G i F G X  
6 =  + 

( 6 )  icu",-u"P+(.,"-vnY 

lJ(% -It,#? + (v,, - v. P - i(% - Il",.P + (V" - v,, .P/  

where (U, , v ~ ) , = ~ , ~ , ~ , , ~ ,  are the pixel co-ordinates of 

each point. We assume that the affine model is valid if $J 

is near to zero. 

5 Uncalibrated Reconstruction - 
Let us consider the co-ordinates vector M of a point 
projectively reconstructed (from a structured light 
sensor, it has been shown that the reconstruction method 
has to be performed from a single pattern projection and 
a single image capture [5] ) .  Since Euclidean 
transformations form a sub-group of projective 
transformations, it is obtained: 

where M is the vector of co-ordinates of the same point 
expressed in an Euclidean frame. W is a collineation, 
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i.e. an invertible 4x4 matrix defined up to a scale factor. 
The Euclidean constraints method [3] consist of 
translating geometrical knowledge of the 3-D points 
into mathematical constraints on the entries of W. In the 
following, we present a method which permits to 
recovcr constraints by the analysis of coded images. The 
sensor behaviour is assumed to be affine; the test of the 
fourth section can be used to verify the validity of this 
assumption. Moreover, the tools presented in section 
thrce can be used as well as Euclidean constraints or as 
means to choose projective basis (five points, no four of 
them being coplanar and no three of them being 
colincar) rcquired by some projective reconstruction 
methods. 

Figure 6. Some of the geometrical constraints used in 
Euclidean Reconstruction 

5.1 Parallelogram Constraints 
Projecting a square onto a planar surface, the more 
generic quadrilateral formed onto the surface is a 
parallelogram whether an affine model is assumed. 
Furthermore, a parallelogram captured by an affine 
camera forms a parallelogram onto the retina. Hence, a 
parallelogram within the image corresponds to the 
image of a parallelogram on a 3-D plane; the test of 
coplanarity is used to verify that the points are 
effectively coplanar. 
Relative positioning of the four points A, B, C and D in 
space (Figure 6a) is such as: 

(8) 

(9 )  

- _ _  - 
AB = CD, AC = BD 

(AB)  // (CO), (A C )  //(BD) 

It leads to a redundant set of constraints on W. As 
projective geometry keep unchanged alignment and 
coplanarity, equations (8) and (9) determine the same 
configuration of points. It has to be said that, likewise, a 
parallelogram completely determines a 3-D plane. 
Therefore, for each plane composing the scene, a unique 
set of parallelogram constraints is sufficient. 

5.2 Orthogonality Constraint 
Orthogonality is an important feature for Euclidean 
reconstruction. The detection of orthogonal planes 
permits to define, at least partially, a 3-D Euclidean 
frame of the scene. Let us consider again an affine 
model for the projector. The projection of a line 
produces a light plane in space. The projection of two 
orthogonal lines (AB) and (AC) produces two 
orthogonal light planes (Figure 6c). 
When light planes intersect planar surfaces, they 
produce light stripes on them whose will be imaged by 
the camera. We have thus two lines (A 'B') and (A 'C') in 
space, which belong to orthogonal planes. Since A ' and 
B' belong to the same horizontal plane and A' and C' 
belong to the same vertical plane, whether the world co- 
ordinate system is fixed at the projector, it is obtained: 

Thus: 

(A' B')I(A'c') a zA, = zBt or zAf = zcf (12) 
If the conditions imposed by (12) are satisfied, we 
obtain an orthogonality constraint, otherwise we obtain 
the following reduced orthogonality constraint: 

5.3 Horizontal Plane, Vertical Plane 
Each projected horizontal or vertical line of the pattern 
generates a light plane in space, which can be 
considered as a horizontal or vertical 3-D plane in the 
projector co-ordinate system, respectively (Figure 6b). 
Indeed, what it is imaged by the camera are the 
intersections of light planes with the surfaces 
composing the scene, therefore points belonging to 
horizontal andor vertical planes. If a point P belongs to 
the horizontal plane of the Euclidean frame in which the 
scene will be reconstructed, thenyA = 0. Likewise, the 
homologue constraint xA = 0 can be expressed. Besides, 
two points belonging to the same plane have a 
component in common, which provides a constraint 
between the co-ordinates of both points. 
Furthermore, an arbitrary distance can be set between 
two successive horizontal planes or vertical planes. The 
distance between two points A and B is given by: 

( X A  - XB)2 + ( y A  - y B y  + (ZA - ZB)2 = d2 (14) 
Finally, the cross-point (which appears in the image as 
the intersection of two light stripes) of the planes y = 0 
and x = 0 can be defined as the origin of the Euclidean 
frame by equalling its three components to zero. 
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6 Experimental Results 
6.1 Colinearity and Coplanarity 
The results were obtained from images captured under 
realistic conditions (the coded images shown throughout 
the paper arc negative ones). Beforehand, the test of 
spatial colinearity is evaluated. On Figure 7,  three 
different configurations of points are tested. The first 
one (from up to bottom) represents four aligned points 
on a plane: the measured cross-ratio is very close to the 
theoretical one and the colinearity is detected. In the 
second example, where the pattern is projected onto an 
edge of a cube, the points are classified as not colinear. 
In the third example, where the points are clearly not 
colinear, the projective error even reach infinity. 

Theoretical cross-ratio = 1.3333 
Measured cross-ratio = 1.3287 

Projective error = 6 . 9 ~ 1 0 - ~  

Decision = THE POINTS ARE 
COLINEAR 

Theoretical cross-ratio = 1.3333 
Measured cross-ratio = 1.3782 

Projective error =6.2x 10.’ 

Decision = THE POINTS ARE NOT 
COLINEAR 

Theoretical cross-ratio = 1.3333 
Measured cross-ratio = = 

Projective error = - 
Decision = THE POINTS ARE NOT 

COLINEAR 

Figure 7. Results of the test of colinearity 

Moreover, Figure 8 shows three examples of coplanarity 
test. In the first one, a plane was lighted by the pattern: 
the test detects a planar configuration of points. In the 
second example, it is noted that the pattern is projected 
onto an irregular surface; and the points are classified as 
non-coplanar. Finally, the third example represents an 
edge of a cube where the projective error is important. 

Theoretical cross-ratio = 2 
Measured cross-ratio = 1.96 
Projective error =2.2~10-’ 

Decision = THE POINTS ARE 
COPLANAR 

Theoretical cross-ratio = 2 
Measured cross-ratio = 2.186 

Projective error =5.9xIO” 

Decision = THE POINTS ARE NO1 
COPLANAR 

Theoretical cross-ratio = 2 
Measured cross-ratio = 2.2055 

Projective error =9.9xIO-’ 

Decision = THE POINTS ARE NOT 
COPLANAR 

Figure 8. Results of the test of coplanarity 

6.2 Reconstruction 
Firstly, we have achieved the reconstruction method 
with simulated data, using the parameters estimation 
approach of Mohr et al. [SI to perform the projective 
reconstruction and adding Euclidean constraints from 
structured lighting. The table 1 shows the results we 
obtained for ten points of the scene: mean relative error 
is less than 2% with a uniform noise added on pixel co- 
ordinates. 

Mean relative error (O/O) 

Table 1 : Errors on reconstruction with uniform noise f 1 

Secondly, we have reconstructed 70 points of a real 
scene, which represents a cube (see Figure 9a). We have 
performed the Euclidean reconstruction using the 
constraints defined in the previous section. To illustrate 
the accuracy of the method, a comparison between hard- 
calibrated and uncalibrated reconstruction is presented 
on Figure 9d. As we did not have real 3-D co-ordinates 
but only 3-D co-ordinates computed by hard-calibration, 
a quantitative evaluation of the reconstruction method is 
not possible. However, the comparison with results 
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obtained by hard-calibration shows that uncalibrated 
reconstruction from grid coding obtains good results (in 
a qualitative way). On Figure 10, we present results of 
Euclidean reconstruction performed from an image 
grabbcd under realistic condition. Only the highlighted 
lines have been reconstructed. It can be noted that 
parallelism and orthogonality are well-recovered and 
relative distances are respected. Only a few iterations 
are neccssary to perform a Euclidean reconstruction 
from a projective one. 

(a) Structured light image 

(a) Gray-level image 
20 I 

(b) First Euclidean view 

ItPi, -360 -140 . i o  .,io 4 Qa 

(c) Second Euclidean view 

(b) First Euclidean view 

(d) Comparison with hard- 
calibration (circles) 

Figure 9. Euclidean Reconstruction by geometrical constraints 

(c) Second Euclidean view (d) Third Euclidean view 

Figure 10. Euclidean Reconstruction by geometrical 
constraints 

7 Conclusions 
This paper presents a complete method to perform 
Euclidean reconstruction from an uncalibrated 
structured light sensor. It describes a method to obtain 

such a reconstruction by only analysing the coded 
images. 
It is known that a collineation exists which upgrades 
projective reconstruction to Euclidean one. This 
collineation can be assessed by translating geometrical 
information about the scene into constraints on the 
entries of the collineation matrix. We show that 
geometrical knowledge of the scene as parallelism or 
orthogonality can be retrieved by projecting a known 
pattem of light onto the scene. Moreover, the paper 
provides tools to make the method more efficient and 
automatic. By this way and assuming that the images 
are well-segmented, it is possible to reconstruct the 
scene without any human intervention. 
As no constraints are required on projection matrices, 
the presented approach allows us to reconstruct 
changing the focus, the aperture and the zoom of both 
the camera and the projector. Therefore, the sensor can 
be involved in visual tasks which require self- 
adaptability with numerous applications as autonomous 
navigation, visual exploration, among others. 
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