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Abstract 

A n  adapt ive  p a t h  planning algori thm i s  presented 
for cooperating U n m a n n e d  Air  Vehicles (UAVs)  
tha t  are used t o  deploy a n d  operate land-based 
sensor  ne tworks .  T h e  algori thm employs  a global 
cost f u n c t i o n  t o  generate path,s f o r  t he  UAVs,  and 
adapts  t he  paths  t o  except ions tha t  might  OCCUT. 
Examples  are provided of t he  paths  and adapta- 
tzon. 

1 Introduction 

Large networks of land-based sensors are becoming in- 
creasingly important for sensing signals produced by 
natural and man-made phenomena. The deployment 
and operation of large land-based sensor networks can 
pose difficult problems, particularly in time critical sit- 
uations or in rugged terrains. An example of such 
a scenario is monitoring ground conditions in a for- 
est to model and predict the advance of a forest fire. 
Autonomous deployment and operation of land-based 
sensor networks in such a scenario is highly desirable 
for maximizing sensing efficiency, while minimizing hu- 
man risk. 

An attractive approach to  the deployment and o p  
eration of a land-based sensor network is to use co- 
operating Unmanned Air Vehicles (UAVs) to deploy 
the sensors and then serve as communication hubs for 
the sensors. In this approach, a group of cooperating 
UAVs deploy sensors over a region of interest. After 
the sensors have been deployed, the sensor network is 
logically partitioned into sub-networks (subnets), with 
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one UAV assigned per subnet. Partitioning the net- 
work into subnets allow the UAVs to service sensors 
in parallel while minimizing interference or duplication 
of effort. A UAV services sensors in its subnet by fly- 
ing a route (path) through the subnet, uplinking data 
collected by the sensors, and forwarding the data to a 
central point. 

In the sensing architecture described above, the 
UAVs form a loosely cooperative system. Deployment 
of sensors requires cooperative behavior such as fly- 
ing in formation, coordinated release of sensors, and 
so on. After sensor deployment, cooperation is main- 
tained through the exchange of state information be- 
tween UAVs. State information includes not only the 
status of UAVs but also the status of sensors in the 
network. Exchange of state information is necessary so 
that exceptional events can be detected and properly 
managed by the UAVs. As an example, consider that 
a UAV is required to  leave the network for replenish- 
ment of fuel. The sensors in its subnet still require ser- 
vicing, so UAVs in neighboring subnets must address 
this requirement. In order t o  balance service times for 
other subnets in the network, the subnet structure of 
the network adapts t o  the loss of a UAV. 

In this paper, we focus on an important aspect of 
the architecture, namely the adaptive path planning 
algorithm. A key requirement of the algorithm is that  
it adapts the subnets (and paths through the subnets) 
in response to one of four basic exceptions. The four 
basic exceptions are: 1) one UAV leaves the network, 
2) one UAV enters the network, 3) several sensors leave 
the network and 4) several sensors enter the network. 
More complex situations can be derived as combina- 
tions of these basic exceptions. In the algorithm pre- 
sented here, subnet and path adaptation is driven by a 
global cost function that essentially shifts sensors into 
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and out of subnets to reach a minimum cost. 

In developing the path planning algorithm, several 
assumptions were applied to the sensor network. First, 
the distance between sensors is considered to be large 
compared to  the distance required to  maneuver (i.e., 
turn, climb and descend)a UAV. As a result, flight 
dynamics of UAVs are not considered in the the al- 
gorithm. Indeed, paths with sharp turns are not pre- 
cluded. Operationally, a UAV would overfly a sensor, 
and would have a finite amount of time (depending on 
the speed and altitude of the UAV, and the beamwidth 
of the antenna on the sensor) t o  exchange data. Ma- 
neuvering to  the next sensor is performed after data 
exchange. With this assumption and operational ap- 
proach, very sharp turns are permissible. Next, it is 
assumed that the distances between sensors, the beam 
pattern of their antennas, the radiated power of the 
sensors and the altitude of a UAV combines in such 
a way that the UAV is required to visit each sensor, 
one at  a time. Finally, it is assumed that the locations 
of all sensors in the network are known to the path 
planner. As sensors leave and enter the network, this 
information is shared among the UAVs. Thus, any one 
of them has the information required t o  plan a new set 
of paths. 

Using the above assumptions, the sensor network 
can be modelled a.s a set of directed graphs. In this 
model, the sensors in a subnet are nodes of a graph, 
and the UAV path through the subnet are directed 
links between the nodes. Over the years, several ap- 
proaches have been proposed t o  find paths through 
a graph. In the robotics literature, finding a path 
through a graph has tended to  focus on the problem 
of finding an open path through a graph, see for ex- 
ample [l], [2] and [7]. Algorithms for such path plan- 
ning include Dijkstra’s algorithm [3], [5], and the A* 
algorithm [SI. However, these algorithms are not ap- 
plicable to this problem as they find the shortest path 
between two nodes, not a closed path. 

For a single UAV, this path planning problem is the 
well-known Travelling Salesman Problem (cf. [ 5 ] ,  [8] 
and [9]). Our heuristic approach, using good approx- 
imate solutions and making only minor alterations to  
them, is quite different from conventional techniques 
which consider much more general distortions of ex- 
isting paths. For example, we found that our method 
performs significantly better than synthetic annealing 
methods, e.g., that found in [lo]. 

2 Adaptive Path Planning Algo- 
rithm 

Given N sensors and K UAVs, the adaptive path 
planning algorithm generates K non-overlapping, non- 
branching, closed paths to  every sensor in the network. 
The sensor network can be modelled as a family of 
graphs {(Sk, Pk)} ,  k = 1, .  . . , K where s k  = { S , } k , z  = 
1,. . . , N k  is the set of sensors in the k t h  subnet, and 
Pk = {l2,} is the set of weighted, directed links that 
connect sensor s, t o  sensor s3.  Weight d,, associated 
with link l,, is the distance between sensors s, and s3. 
The length of path Pk, denoted as Dk, is the sum of 
the weights of the links in Pk. 

It is evident that an exhaustive search through all 
possible paths is O ( N ! ) .  In order t o  lessen the compu- 
tational burden, a heuristic approach to path planning 
has been developed. The basis for the path planning 
algorithm is the cost function 

K 

k = l  

In equation (l), the individual terms in the summation 
are the costs that each path contributes to  the total 
cost. To illustrate the behavior of path planning with 
this cost function, consider an incremental change of 
paths resulting in changes to  path lengths bDk. For 
small changes, we have 

k 

Thus, Dip’  is the “weight”, or cost per unit length, 
of path k .  Any choice of weights which is monotonic 
increasing in Dk will tend to  equalize the path lengths 
(by penalizing very long paths). Hence, the exponent 
a provides a parametric means to  combine the desires 
for minimum total path length and roughly equivalent 
individual lengths. Values in the range of 3 5 a 5 6 
have been found t o  work well in practice. 

The adaptive path planning algorithm begins with 
an initialization procedure, and then adaptively reacts 
t o  one of the four basic exceptions. We begin by de- 
scribing the initialization procedure. 

2.1 Path Initialization 

The initialization process consists of three steps: 1) K 
subnets of sensors are formed within a network of N 
sensors, 2) non-branching, closed paths to  each sensor 



in each subnet are constructed by minimizing the dis- 
tance between sensors, and 3) paths over all subnets in 
the network are balanced using cost function (1). The 
details of each step are described below. 

The first step of the initialization process is to con- 
struct K subnets of sensors Sk, from the N sensors in 
the network. The procedure is based on the K-means 
algorithm with one notable exception. A K-means al- 
gorithm begins by randomly selecting K vectors from 
a set, and using these vectors as the initial centroids of 
K clusters [4]. Clusters are formed by assigning each 
vector in the set to the nearest centroid. A new cen- 
troid is computed as the average over all vectors in the 
cluster. This process continues until the K centroids 
are fixed. 

The approach taken here is similar, except that the 
random initialization of the K-means algorithm has 
been abandoned in favor of another approach. (The 
random initialization technique in the K-means algo- 
rithm was found to give poor results.) Instead, we ini- 
tialized the cluster algorithm by finding sensors that 
are widely separated. Begin by selecting K sensors at  
random. Form a set U of the positions of these sensors, 
and find the two position vectors xm,xn E U that are 
closest to one another. Discard one of these position 
vectors, and select a new sensor (i.e., position vector) 
sp $ U .  Continue the process until the minimum sepa- 
ration of position vectors in U is maximized. Once the 
sensors in the network have been grouped into clusters, 
paths through each cluster are constructed. 

Path Pk through the kth subnet is constructed from 
a circumferential path around SI, which is recursively 
expanded to include interior sensors using a greedy 
algorithm. (Recall that  a greedy algorithm selects the 
optimum choice at  each step, with no regard beyond 
a single step.) The circumferential path around s k  is 
the convex hull of Sk. As the convex hull computation 
progresses, an ordered list of sensors is produced that 
when linked form a circumferential path around the 
subnet [Ill. 

The circumferential path P forms the initial path 
for the subnet. Denote the set of sensors that  form 
the convex hull of SI, as H .  Observe that H partitions 
the subnet into two groups of sensors: those on P, and 
those interior to P. Denote the set of sensors in the 
interior of the subnet as Q = s k  - H .  Sensors sq E Q 
are added to  path P in positions that minimize their 
contribution to the global cost (1). The differential 
cost of adding sensor sq to the path between sensors 
s, and s3 is found by breaking link I,, into links l,, and 

l q j ,  and is given by 

Sensors in Q are inserted into path P at the position 
that minimizes (3). The process of adding sensors in Q 
to the path continues in this manner until all sensors in 
the subnet have been assigned a position in the path. 

After paths through all K subnets have been gener- 
ated, the paths are balanced using global cost function 
(1). Path balancing minimizes the global costs of all 
paths in the sensor network. The differential cost of 
delinking sensor sj from sensors si  and sk in path p 
and inserting it into the link between sensors sm and 
s, in path p' is given by (cf. (1)) 

nc = nc, + AC,? (4) 

where 

AC, = (0, - A d i j k ) "  - (D,)" 

ACp, = (Dpr + Adm.jn)" - (Dp()"  

( 5 )  

( 6 )  

and 

If a particular combination of j ,  { i , k } ,  {m,n}, and 
{p ,p ' }  yields a AC < 0, then the global path cost will 
decrease if the move is performed. By testing all sen- 
sors in all links of all paths in the network, and mov- 
ing only those sensors that  decrease the global path 
cost, an optimal path (and subnet) configuration is 
obtained. The computational complexity of this step 
is reduced by only considering links with sensors sm, 
s, which are near test sensor s j .  

The initialization algorithm has been evaluated in 
scenarios using up to 1000 sensors and 100 UAVs. As 
an example of the computational complexity, assign- 
ing 1000 sensors to 10 UAVs requires about 80s on 
a 450 MHz processor. The computational scales as 
O ( N 2 ) ,  where N is the number of sensors, and is dom- 
inated by path balancing. However, for either very 
small or very large numbers of paths, the time asso- 
ciated with forming the initial subnet paths or with 
initializing the K-means algorithm can be significant. 
It appears that the computation time associated with 
these cases can be greatly reduced using simple geo- 
metric considerations. The computational complexity 
of the path balancing step can also be reduced if care is 
exercised to remove redundancies in tests (4) through 
(6). Ultimately, an O ( N )  algorithm is believed to be 
feasible. Examples of paths produced by the initializa- 
tion algorithm for 124 sensors and up to sixteen UAVs 
are presented in a later section. 



2.2 Path Adaptation 

As previously described, one of four exceptions can 
trigger subnet and path adaptation: 1) a UAV leaves 
the network, 2) a UAV enters the network, 3) sensors 
leave the network and 4) sensors enter the network. 
The subnet and path adaptation schemes are detailed 
below for each exception. 

Exception 1: UAV leaves the network 
When a UAV leaves the network, its sensors must be 
reassigned to other UAVs. Hence, this exception is 
identical t o  adding sensors t o  existing paths. (See Ex- 
ception 4 for the procedure used to add sensors to  the 
network.) 

Exception 2: UAV enters the network 
In this exception, the objective is to  assign a group 
of sensors to  the new UAV in an equitable manner, 
while minimizing disruption t o  other UAVs in the net- 
work. The procedure begins by selecting the path with 
maximum length, and deassigning its sensors from the 
associated UAV. The deassigned sensors are reformed 
into two paths, one for the new UAV and one for the 
deassigned UAV, using the technique described in Sec- 
tion 2.1 (Le., form two clusters of sensors, compute the 
convex hulls of the clusters, and insert interior sensors 
into the paths). Finally, all paths in the network are 
rebalanced. 

Exception 3: Sensors leave the network 
The sensors are deleted from the sets of sensors in 
the subnets, and the paths rebalanced. (It is quite 
likely that deleting too many sensors at once, before 
rebalancing, will lead t o  poor results. This issue has 
not been investigated.) 

Exception 4: Sensors enter the network 
Our initial attempt was to  add sensors in a greedy 
fashion, using cost function (l), and then rebalance 
the paths. It was found that this approach often leads 
to  obviously suboptimal paths, e.g. paths that cross 
each other or themselves. Instead, greedy addition of 
sensors to the nearest path (in a Euclidean sense) was 
found t o  work well. 

and network communications) in more detail. Figure 1 
shows a. sensor network of 124 randomly distributed 
sensors. Figures 2 through 4 illustrate the flight paths 
of one, ten and sixteen UAVs respectively. Note that 
while the number of sensors per path is not constant 
in Figures 3 and 4 (the number of sensors per path 
varies from seven to  eighteen for 10 UAVs, and from 
five t o  eleven for 16 UAVs), the cost per path for a 
given network configuration is roughly equal. 

Figures 4 through 6 illustrate the adaptation of the 
sensor network to  the departure of one UAV. Figure 4 
illustrates a set of paths for a network of 124 sensors 
(the same network as before) and sixteen UAVs. Fig- 
ure 5 shows the network immediately after the depar- 
ture of the tenth UAV. (The subnet for the tenth UAV 
is seen in Figure 4 in the lower group of paths just right 
of center.) Paths 4 and 2 each adjust their paths to  
absorb the sensors in the tenth subnet. In this figure, 
no other subnets have been affected. Figure 6 illus- 
trates the network after the adaptation has stabilized. 
Note that subnets surrounding subnets 2 and 4 have 
absorbed some of the sensors in those subnets to  bal- 
ance the network. Only subnets (1,9) remain as they 
were before UAV number 10 left the network. 

4 Conclusion 

An adaptive path planning algorithm for Unmanned 
Air Vehicles (UAVs) in a land-based sensor network 
has been presented. After initialization, the algorithm 
adapts to several exceptions including the addition or 
loss of a UAV, and the addition or loss of sensors. 
The adaptation is driven by a global cost function that  
seeks to  minimize the cost associated with a given sub- 
net (and path) configuration. Several examples are 
presented that illustrate the path configurations pro- 
duced by the algorithm as well as an example illus- 
trating the adaptation of the algorithm ot the loss of 
a UAV. These results indicate that good approximate 
solutions to  this variant of the NP-complex Travelling 
Salesman Problem can be obtained efficiently com- 
pared t o  conventional techniques. 
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Figure 1: Sensor network of 124 randomly distrib- Figure 2: Path through the sensor network for one 
uted sensors UAV 

Figure 3: Paths and subnets for ten UAVs Figure 4: Paths and subnets for sixteen UAVs. 

Figure 5: Path rearrangement after the departure of 
the UAV for subnet number 10. 

Figure 6: Final path and subnet configuration after 
the departure of the UAV. 


