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Abstract

We apply the auxiliary particle filter algorithm of Pitt
and Shephard (1999) to the problem of robot localiza-
tion. To deal with the high-dimensional sensor obser-
vations (images) and an unknown observation model, we
propose the use of an inverted nonparametric observation
model computed by nearest neighbor conditional density
estimation. We show that the proposed model can lead to
a fully adapted optimal filter, and is able to successfully
handle image occlusion and robot kidnap. The proposed
algorithm is very simple to implement and exhibits a high
degree of robustness in practice. We report experiments
involving robot localization from omnidirectional vision
in an indoor environment.

1 Introduction

In mobile robotics, a topic that has received considerable
attention is that of robot localization, a term that refers
to the ability of a robot to predict and maintain its po-
sition and orientation within its environment. From a
statistical point of view, robot localization is an on-line
filtering problem: estimate the current state of the robot,
given an initial state estimate and a sequence of obser-
vations. Many existing approaches rely on Kalman fil-
ters for robot state estimation [1]. Although the Kalman
filter constitutes a powerful framework, its applicability
is restricted by the assumption that the state vector is
Gaussian distributed.

A popular algorithm which is able to deal with non-
Gaussian distributions is the particle filter (see [2] for
a review). The distribution of the state vector is repre-
sented as a set of ‘particles’ in state space. After a novel
observation, this set of particles is updated by sampling
techniques, using an observation model which describes
the likelihood of an observation given the robot state.
The filter has been successfully used in robotics (see [3]
and references therein). However some of its problems,
in particular those related to optimal sampling from the
distribution, choice of an observation model, outlier han-
dling, and efficiency of implementation, still remain.

1http://www.science.uva.nl/research/ias/

For efficient sampling, the auxiliary particle filter of Pitt
and Shephard [4] provides an elegant solution when the
observation model is known. However, when the latter
is unavailable, nonparametric density estimation meth-
ods must be employed. In this paper we discuss some
traditional ways for doing this and then propose a com-
putationally attractive method that is based on nearest
neighbor conditional density estimation [5]. We show how
the auxiliary particle filter, which has a built-in capacity
to properly handle outliers, can be fully adapted to the
proposed observation model, leading to an optimal filter.

The proposed algorithm is very simple to implement and
exhibits a high degree of robustness in practice, as it can
handle aberrant situations like outliers or robot ‘kidnap’.
We demonstrate it on a Nomad scout robot equipped
with omnidirectional vision, localizing itself in a realistic
environment involving large amounts of image occlusion
and kidnapping.

2 The robot localization problem

A convenient way to analyze the robot localization prob-
lem is through a state-space approach.1 The robot is
regarded as a partially observable Markov decision pro-
cess with hidden low-dimensional state xt ∈ X ⊂ IRq that
corresponds to position and orientation of the robot (or
other parameters of interest) for each time step t. We
assume an initial distribution p(x0) at time t = 0, and a
given stochastic transition model p(xt+1|xt, ut) for an ac-
tion (control signal) ut that is issued at time t and brings
the robot stochastically from state xt to state xt+1. In
the following, we will always assume the existence of an
action ut in the transition model and for simplicity write
p(xt+1|xt).

Moreover, we assume that in each time step t the robot
observes a high-dimensional sensor vector yt ∈ Y ⊂ IRd,
which is related to the robot state through a (possibly
unknown) stochastic observation model p(yt|xt). We as-
sume that the observations {yt} are conditionally inde-
pendent given the states {xt}, and that d À q. Robot
localization, or filtering, amounts to estimating in each

1Throughout, xt will denote both a random vector and its real-
ization, and p(xt) its probability density function at time t.



time step t a posterior density p(xt|yt) over the state
space X , that characterizes the belief of the robot about
its current state at time t given its initial belief p(x0)
and the sequence of observations y1, . . . ,yt. Using the
Bayes rule, this posterior density for time t + 1 reads to
proportionality

p(xt+1|yt+1) ∝ p(yt+1|xt+1) p(xt+1) (1)

where the prior density p(xt+1) corresponds to the prop-
agated posterior from the previous time step

p(xt+1) =

∫

p(xt+1|xt) p(xt|yt) dxt (2)

where we used the Markov assumption that the past has
no effect beyond the previous time step. The above two
formulas constitute an efficient iterative scheme for opti-
mal (Bayesian) filtering.

However, in order to compute the posterior (1) analyti-
cally, we must be able to compute the integral in (2), then
multiply with the likelihood p(yt+1|xt+1), and finally nor-
malize the resulting density p(xt+1|yt+1) to unit integral.
It turns out that, unless the transition and observation
models are linear-Gaussian (Kalman filter solutions), the
above posterior cannot be analytically computed, and one
has to resort to approximations or simulation.

3 The particle filter

The particle filter is an attractive simulation-based ap-
proach to the problem of computing intractable poste-
rior distributions in Bayesian filtering [2]. The idea is to
approximate the continuous posterior density p(xt|yt) in
each time step t by a random sample of i = 1, . . . , I parti-
cles xi

t with corresponding probability masses, or weights,
πi

t. The posterior is then given by the empirical estimate

p(xt|yt) =
I
∑

i=1

πi
t δ(xt − xi

t) (3)

where δ(xt−xi
t) is a delta function centered on the parti-

cle xi
t. Using (3), the integration for computing the prior

in (2) is now replaced by the much easier summation

p(xt+1) =

I
∑

i=1

πi
t p(xt+1|xi

t) (4)

while, since all integrals are replaced by sums and the
continuous densities by discrete ones, the required nor-
malization step of the filtered posterior

p(xt+1|yt+1) ∝ p(yt+1|xt+1)

I
∑

i=1

πi
t p(xt+1|xi

t) (5)

is trivial, namely, a normalization of the discrete masses
to unit sum.

Assuming a set of particles that approximate the pos-
terior density p(xt|yt) at time t sufficiently good, the
problem is how to sample a set of particles from the new
posterior p(xt+1|yt+1) in (5). Efficiently sampling from
the posterior is the central theme of most methods in the
particle filters literature [2].

A key observation on the functionality of the filter is that
the prior (4) can be regarded as a mixture density from
which sampling is easy: select the i-th mixture compo-
nent p(xt+1|xi

t) with probability πi
t, and then draw a sam-

ple from it.2 The frequently used Sampling/Importance
Resampling (SIR) [6, 7, 8] involves first sampling from
the above mixture prior, then assigning to each sam-
pled particle j weight πj

t+1 proportional to the likelihood

p(yt+1|xj
t+1), and finally resampling in order to make all

particle weights equal.
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prior p(x) 
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p(y|x) 
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Figure 1: Sampling only from the prior fails to produce

enough particles in the overlapping region be-

tween the prior and the likelihood function. This

is exactly the region where the posterior is non-

trivial.

The main problem with the standard SIR particle filter is
that it requires very many particles to converge when the
likelihood function p(y|x) is too peaked or is situated in
one of the prior’s tails [4] (see Fig. 1). The latter is much
more severe in case of outliers, model-implausible obser-
vations that occur when there is image occlusion or other
unexpected effects in the environment. A second impor-
tant problem in practice is that the observation model
p(yt|xt) may involve high-dimensional vectors yt (e.g.,
images) and it is in most cases unavailable.

2Typically the transition model p(xt+1|xt) is assumed known
and easy to sample from. In the robot application it is often
Gaussian, with mean computed from the translation-rotation of the
robot, and standard deviation given by the odometry noise charac-
teristics. Sampling from this model is trivial.



4 The auxiliary particle filter

An elegant solution to the problem of optimally sampling
from the posterior has been given by Pitt and Shephard
[4] under the name ‘auxiliary particle filter’. Their algo-
rithm comes down to the following: in order to sample
from the posterior p(xt+1|yt+1) in (5), just insert the like-
lihood inside the mixture

p(xt+1|yt+1) ∝
I
∑

i=1

πi
t p(yt+1|xt+1) p(xt+1|xi

t) (6)

and treat the products πi
t p(yt+1|xt+1) as component

probabilities in order to sample from the respective mix-
ture. Because the likelihood p(yt+1|xt+1) in the above
product involves the unobserved state vector xt+1, an ap-
proximation of the mixture (6) has been suggested in [4]
as

p̂(xt+1|yt+1) ∝
I
∑

i=1

πi
t p(yt+1|µi

t+1) p(xt+1|xi
t) (7)

where µi
t+1 is any likely value associated with the i-th

component transition density p(xt+1|xi
t), for example its

mean.3 After a set of j = 1, . . . , I particles have been
sampled4 from the mixture (7), with locations xj

t+1, their
weights are set proportional to

πj
t+1 ∝

p(yt+1|xj
t+1)

p(yt+1|µij

t+1)
(8)

where µ
ij

t+1 is the associated likely value of the mixture

component p(xt+1|xij

t ) in (7) from which the particle j
was sampled. Setting the weights of the particles as in (8)
has the additional benefit of creating particles with much
less variable weights than for the original SIR method, a
very important issue especially in the case of outliers [4].

The auxiliary particle filter can be regarded as a one-
step look-ahead procedure, where a particle xi

t is prop-
agated to µi

t+1 in the next time step in order to assist
the sampling from the posterior. The resulting method is
particularly efficient since it requires only the ability to
sample from the transition model and evaluate the like-
lihood function p(yt|xt). This makes it very attractive
compared to alternative methods that require specialized
data structures for sampling from the posterior.

5 Nonparametric observation models

The auxiliary particle filter provides an attractive solu-
tion to the problem of efficient sampling from the poste-
rior, and moreover it can handle outliers in a principled
manner, however in many practical cases the observation

3In our model, such an approximation can be replaced by an
exact step, as we show in Section 6.

4This involves a multinomial sampling on the weights, and there
is an O(I) procedure for doing this [4].

model p(y|x) required by the filter is unavailable. The
estimation of a good model for p(y|x) from data is often
a difficult task, especially when the sensor observations y
of the robot are very high-dimensional (e.g., image data).
In the following we first describe a ‘classical’ method for
estimating conditional densities from a set of data, and
then propose our model.

5.1 Kernel smoothing

When the observation model p(y|x) in the particle fil-
ter is unavailable, one possibility—hinted in [4, Sec. 7]—
is to estimate it nonparametrically, that is, using a su-
pervised training set of robot states {xk} and respec-
tive observations {yk}, for k = 1, . . . ,K. A classical
method is through kernel smoothing [9], an approach we
have used in the past for similar modeling problems [10].
This method places multivariate kernels on each state-
observation pair, and then estimates the unknown condi-
tional density by

p(y|x) = p(y,x)

p(x)
=

∑K
k=1 φ(x|xk) ψ(y|yk)
∑K

k=1 φ(x|xk)
(9)

where φ(x|xk) and ψ(y|yk) are appropriate density ker-
nels in the X and Y spaces, respectively.

However, the high dimensionality of the observations y
causes each neighborhood of interest in the Y space to
look sparse of data, the notorious ‘curse of dimensional-
ity’. To adequately model p(y|x) through (9) one would
need a kernel ψ(y|yk) with very large bandwidth (stan-
dard deviation in case of a Gaussian kernel), smoothing
away any useful information in the training data. This
fact renders the direct application of kernel smoothing in
the Y space impossible.

One solution would be to project first the data {yk} to a
subspace of lower dimension, for example by using prin-
cipal component analysis (PCA) or some other feature
extraction method [11, 12]. However, kernel smoothing
is known to work effectively only in low dimensions (e.g.,
up to five), implying that we would need a compression
of the Y space that would throw away valuable location
discrimination information: the resulting data manifold
in the feature space would exhibit self-intersections that
would enter the localization algorithm as perceptual alias-
ing [12].

Moreover, kernel smoothing is slow, with cost O(K): for
each evaluation of the observation model (9), a complete
summation over the training data is required, making the
method inefficient for practical applications.

5.2 A nearest neighbor-based model

The above limitations of kernel smoothing motivate a dif-
ferent approach to deal with high-dimensional sensor ob-
servations. First, we linearly project the training obser-
vations with PCA to a subspace of moderately low dimen-



sion, e.g., 10-D.5 Then, instead of modeling the density
p(y|x), we ‘invert’ it using the Bayes rule

p(y|x) = f(x|y)f(y)
f(x)

(10)

and then model the density f(x|y) nonparametrically us-
ing nearest neighbor conditional density estimation [5].
This is feasible because the dimensionality of the state
space is low (e.g., q = 3, if the state combines position
and orientation of a robot on the plane).

The robot states {xk} in the training set are assumed
uniformly sampled over the state space and therefore the
denominator in the above formula can be assumed con-
stant and thus can be dropped. For the conditional den-
sity f(x|y) the proposed model reads

f(x|y) =
J
∑

j=1

λj(y) φ(x|xj), (11)

i.e., a mixture of J components φ(x|xj), each weighted
by λj(y), which is computed as follows:

1. We first find the J nearest neighbors yj of y

among the {yk} training data. This can be done
efficiently—with average cost O(J logK)—using
methods from computational geometry, e.g., kd-
trees [13].

2. We sort these neighbors yj by increasing distance
to y, so j = 1 for the nearest, j = 2 for the second
nearest, and so on. This costs O(J log J).

3. For each nearest neighbor yj we extract from the
training set the corresponding state xj . This has
cost O(J).

4. Each xj defines a respective component φ(x|xj) in
the mixture (11). The function φ(x|xj) is a Gaus-
sian kernel centered on xj with bandwidth equal to
half the bin size of the grid of the {xk} points.

5. Finally, the mixing weights λj(y) are positive and
sum to one, and decrease linearly with j

λj(y) =
2(J − j + 1)

J(J + 1)
. (12)

Note that they are independent of the actual dis-
tance of y to its neighbors j.6

Finally, the density f(y) in (10) is considered only against
the presence of outliers (e.g., occlusion in the image),
but otherwise is assumed uniform.7 The outlier detection

5The choice of projection dimension is guided by the dimension-
ality of X , but space precludes further discussion.

6More sophisticated weights can also be defined, see [5].
7Note that, for large dimensions, it is difficult to make reasonable

assumptions about the true shape of f(y) using reasonably sized
training sets. The theoretically crude assumption of uniform f(y)
has, in practice, no serious consequences.

mechanism is a simple threshold test of the distance of an
observation y to its first nearest neighbor yj=1, with the
threshold parameter computed by collecting statistics of
all pairwise distances between the training observations
(a detailed description is omitted due to lack of space). If
occlusion is detected, the auxiliary particle filter sampling
is not used and the filter just propagates the particles
from the previous time step according to the transition
model.

The whole procedure has time complexity at most
O(J logK) which is a significant improvement over the
O(K) cost of kernel smoothing (typically J ¿ K),
and moreover it can be successfully applied to high-
dimensional observations.8

6 Filter adaption

We show here that the proposed choice of nonparametric
model for the observation density, through nearest neigh-
bor conditional density estimation, can lead to a fully
adapted particle filter. The term refers to the case where
we can exploit the structure of the problem and sample
exactly (without approximation) from the unknown pos-
terior [4].

Assuming uniform f(x) and f(y) in (10), and the
proposed model of f(x|y) as in (11), the posterior
p(xt+1|yt+1) in (6) reads to proportionality

∝
I
∑

i=1

πi
t p(xt+1|xi

t)

J
∑

j=1

λj(yt+1) φ(xt+1|xj)

=

I
∑

i=1

J
∑

j=1

πi
t λj(yt+1) p(xt+1|xi

t) φ(xt+1|xj). (13)

From the last equation we see that the posterior can be
written as a mixture of I × J components, with each
component being a product of the transition density
p(xt+1|xi

t) and the local Gaussian kernel φ(xt+1|xj). In
the common case of a Gaussian transition density, this
product can be written in terms of a Gaussian density
over xt+1 and another quantity which is not a func-
tion of xt+1. For example, in the simple case of a two-
dimensional state space and equal odometry noise stan-
dard deviation and bandwidth of φ(·), say σ, straightfor-
ward algebra shows that the product reads

p(xt+1|xi
t) φ(xt+1|xj) = g(xt+1|xi

t,xj , σ) h(x
i
t,xj , σ)

(14)
where g(xt+1|xi

t,xj , σ) is a bivariate Gaussian with mean
(xi

t + xj)/2 and standard deviation σ/
√
2, and

h(xi
t,xj , σ) =

1

4πσ2
exp

(

−||x
i
t − xj ||2
2σ2

)

. (15)

8One should note, however, that the cost of finding nearest
neighbors typically increases with the dimension [13].



The posterior p(xt+1|yt+1) in (13) becomes then propor-
tional to

∝
I
∑

i=1

J
∑

j=1

πi
t λj(yt+1) h(x

i
t,xj , σ) g(xt+1|xi

t,xj , σ) (16)

from which sampling is easy: first select the ‘joint
component’ (i, j) with probability proportional to
πi

t λj(yt+1) h(x
i
t,xj , σ), and then sample from the corre-

sponding Gaussian g(xt+1|xi
t,xj , σ). The time complex-

ity of this operation is O(IJ) (the cost of multinomial
sampling in the joint space), but typically J ¿ I, (in our
experiments J = 5), while the filter works satisfactorily
even with a small number of particles (we used I = 200).

The above procedure obviates the need for an approxi-
mate look-ahead procedure as in (7), leading to an op-
timal, fully adapted filter. The complete algorithm has
time complexity O(J logK + IJ), i.e., it scales linearly
with the number of particles and logarithmically with the
number of training data.

7 Robot kidnap

Robot kidnap refers to the case where the robot is lifted
and manually repositioned in a different location in the
environment, and has to relocalize itself based on the
new sensor evidence. While outliers refer to model-
implausible observations under model-plausible motion,
kidnap can be regarded as the dual, model-implausible
motion with model-plausible observations. To handle this
case we have followed a standard approach in the liter-
ature [14, 15]: first detect the discrepancy between the
prior and the observation likelihood, and then sample a
subset of particles directly from the likelihood.

However, a more careful treatment is needed in very
degenerate cases, for example when a persistent outlier
‘looks like’ kidnap, or if we allow both motion and ob-
servation models to be violated (combined kidnap and
outliers). We are currently developing a method for han-
dling these degenerate cases by explicitly taking the ‘age’
of a particle into account—i.e., how long the particle has
survived the sampling process—when sampling from the
various distributions. Details of this method will be re-
ported elsewhere.9

8 Experiments

We illustrate the performance of the algorithm applied on
our Nomad Scout robot equipped with an omnidirectional
vision system. First we captured 33 panoramic images by
positioning the robot on a grid of locations in the labora-
tory, corridor, and hall of our building (Fig. 2), while the
orientation of the robot was registered at these locations.
The distance between the locations was about 50 cm. For
each position we created images the robot would see at

9See also http://www.science.uva.nl/~bterwijn
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Figure 2: The path of the robot in our building.
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Figure 3: The localization error of the robot using odometry
only and using the particle filter for a number of

path traversals.

36 orientations by shifting the original panorama image,
thus creating a database of approximately 1000 images.
From these images we took a subset of 300 images to com-
pute the PCA projection. The first 10 components of the
PCA were used to project all training images to 10-D
feature vectors. The environment representation finally
consisted of 1000 10-D vectors.

The robot was programmed to follow the path shown
in Fig. 2 starting in the laboratory (point A), going
through the door to the corridor (point B), reaching the
hall (point C), and then coming back to the laboratory,
for a number of times. In Fig. 3 we plot the localiza-
tion error of the robot (in cm, the robot orientation is
ignored) for a number of path traversals when using only
odometry and when using our particle filter algorithm.
After eight traversals, by using only odometry the robot
is almost one meter far off its true location.

In a second experiment we investigated the capability of
the algorithm to recover from kidnap situations. The
robot was programmed again to follow the path from A
to C, but at point K we kidnapped the robot as shown
in Fig. 4-5. We lifted the robot manually and reposition-
ing it at the same location with a rotation of 180 degrees.



Figure 4: The kidnap!

−300 −200 −100 0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

x coordinate (in cm)

y 
co

or
di

na
te

 (
in

 c
m

)

PF estimate
odometry estimateA 

B C 

K 

Figure 5: The trajectory of the robot from A to C with a

kidnap at point K.

The robot was able to recover and, after some exploration
around K, could find its way back to the planned desti-
nation point C.

We have also successfully demonstrated our localization
method in the three-day final exhibition of the Real World
Computing Project [16]. For more than 30 hours of op-
eration, our robot was able to track its correct position
and orientation, and recover from unexpected situations,
for example when people were occluding the scene or the
robot was kidnapped for demonstration purposes. Our al-
gorithm exhibited a particularly robust behavior in this
realistic experiment involving large amounts of noise and
dynamic real-world characteristics.
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