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Abstract 

W e  report on the design and analysis of a con- 
troller which can achieve dynamical self-righting of our 
hexapedal robot, RHex. W e  present an empirically de- 
veloped control procedure which works reasonably well 
on indoor surfaces, using a hybrid energy pumping 
strategy to overcome torque lk i ta t ions  of its actua- 
tors. Subsequent modeling and analysis yields a new 
controller with a much wider domain of success as well 
as a preliminary understanding of the necessary hy- 
brid control strategy. Simulation results demonstrate 
the superiority of the improved control strategy to the 
first generation empirically designed controller. 

1 Introduction 

RHex is an autonomous hexapod robot that negotiates 
badly irregular terrain at speeds better than one body 
length per second [8]. In this paper, we report on ef- 
forts to extend RHex’s present capabilities with a self- 
righting controller. Motivated by the successes and 
limitations of an empirically developed “energy pump- 
ing” scheme, we introduce a careful multi-point con- 
tact and collision model so as to derive the maximum 
benefit of our robot’s limited power budget. A com- 
parative simulation study suggests that the new con- 
troller will extend significantly the terrain over which 
the self-righting maneuver succeeds. 
Recovery of correct body orientation is among the sim- 
plest of self-manipulation tasks. In cases where it is 
impossible for a human operator to intervene, the in- 
ability to recover from a simple fall can completely 
render a robot useless. Especially in outdoor environ- 
ments with badly broken terrain and obstacles of var- 
ious shapes and sizes, the debilitating effects of such 
accidents have been observed in the past [2]. 
RHex’s morphology is roughly symmetric with respect 
to the horizontal plane, and allows nearly identical 
upside-down or right-side up operation, a solution 
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adopted by other mobile platforms [7]. However, var- 
ious scenarios such as teleoperation and vision based 
navigation entail a nominal orientation as a result 
of the accompanying instrumentation and algorithms. 
Under these constraints, most existing robotic designs 
with self-righting capabilities incorporate special kine- 
matic structures such as long extension arms or recon- 
figurable wheels [6, lo]. In consequence of weight and 
power limitations, RHex is not equipped with such 
structures and must rely on its existing morphology 
and dynamic maneuvers to perform a flip-over. 
Beyond reporting on the existing behavior and the new 
multiple point collision/contact model, the main con- 
tribution of the paper is a torque control strategy that 
maximizes the energy injected into the system, vali- 
dated for now by a comparative simulation study and 
a second empirical study, presently in progress. 

2 Flipping RHex 

Our first generation flipping controller consists of a 
state machine, illustrated in Figure 1. Starting from a 
stationary position on the floor, the robot very quickly 
(in 0.2s) goes through two configurations (poses I and 
I1 in Figure l), with front and middle legs successively 
leaving the ground. Depending on the frictional prop- 
erties of the ground, these motions result in some ini- 
tial kinetic energy of the body that may in some cases 
be sufficient to allow “escape” from the gravitational 
potential well of the initial configuration and fall into 
the other desired configuration. However, on most sur- 
faces - gravel, grass and asphalt, but even some in- 
door settings such as carpet - this is not sufficient to 
flip the body over. Instead, the robot reaches some 
maximum pitch lying within the basin of the original 
configuration, and the robot falls back toward its ini- 
tial state. Under these circumstances, the controller 
brings the legs back to Pose I of Figure 1 and waits for 
the impact of the front legs with the ground, avoiding 
negative work - a waste of battery energy given the 
familiar power-torque limitations of RHex’s conven- 
tional DC motors. The impact of the front legs with 
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concrete I linoleum I carpet I asphalt I grass I gravel 
90% I 100% I 90% I 100% I 0% I 0% 

Table 1: Success rates of the first generation controller 
for 10 experiments each on different surfaces. 

the ground in their kinematically singular configura- 
tion recovers some of the body's kinetic energy, fol- 
lowed by additional thrust from the middle and back 
legs, during the period of decompression and flight of 
the front leg - i.e., during a phase interval when it 
is possible for the legs in contact to perform positive 
work on the robot's mass center. Thrusting is achieved 
by running a high gain proportional derivative control 
(PD) law around a judiciously selected constant veloc- 
ity leg sweep motion. The maximum pitch attained by 
the body increases with each bounce up until the point 
where collision losses are exceeded by the energy that 
can be be imparted by the PD controller during the 
leg sweep phase interval. As Table 1 suggests, this 
pumping strategy works very reliably on a number of 
common surfaces such as linoleum, smooth concrete, 
carpet and asphalt. 

Figure 1: Sequence of states for the flipping controller 

However, on many surfaces - the outdoor environ- 
ments most relevant to RHex's presumed mission [l, 81 
such as loose gravel, grass and soft ground - it does 
not perform nearly as well. To permit a reasonable 
degree of autonomous operation, we would like to im- 
prove on the range of conditions flipping can func- 
tion. This requires a more aggressive torque genera- 
tion strategy for the middle and rear legs. However, 
empirically, we find that driving all available legs with 
the maximum torque allowed by the hip motors results 
in the body lifting off the ground into stance mode, 
still in the wrong configuration. We require a strat- 
egy that can be tuned carefully enough to produce 
larger torques aimed specifically at pitching the body 
over. This requires a detailed model of the manner 
in which the robot can elicit ground reaction forces in 
consequence of hip torques operating at different body 
states and leg contact configurations. 

3 The Planar Flipping Model 

3.1 A Generic Planar Model 

In this section, we describe a three degree of freedom 
planar model. Section 3.3 then presents the much 
simpler, single degree of freedom model that will be 
used in our algorithm design and subsequent analysis 
(presently in progress). Both models assume that the 
flipping behavior is primarily planar. 

Figure 2: Simple rigid planar model of RHex 

Figure 2 illustrates our unconstrained planar model. 
Three rigid legs with point masses m on the toes are 
attached to a rigid body with mass M and inertia 
Ib .  The toe masses are only effective when the leg is 
touching the ground and are neglected when the leg is 
in flight. The attachment points of the legs are fixed, 
along a straight line through the center of mass. This 
line also defines the orientation of the body, 0, with 
respect to the horizontal. The body extends between 
the points N(nose) and ??(tail), which are equidistant 
from the center of mass, yielding a body length of 2d. 
The nose, the tail and the toes cannot penetrate the 
ground. We assume that the body-ground friction is 
infinite thereby precluding any possibility of horizon- 
tal slip of the tail and the nose. In contrast, horizontal 
motion of the toes along the ground is central to  the 
behavior of interest. We model the toe ground inter- 
action as characterized by Coulomb friction with dy- 
namic coefficient p and viscous friction with damping 
constant kd. Table 2 summarizes the notation used 
throughout the paper. 

3.2 Contact States and Constraints 

Five binary flags, - a pair for the body end points, 
and a triple for the legs, denoted, respectively, as 
sn, st, SI, s2, s3 - are sufficient to encode the contact 
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q = [e, 81 E T Q  I System state vector 
4i I Leg angle wrt the body vertical 

X i  

T E R3 
7(q, P )  
Fi 

I l̂i I Lea anale wrt the horizontal (cw) I 
Horizontal pos. of the toe mass 
Hip torque control vector 
Set of allowable torque vectors 
Vert. arnd. reaction force on toe i 

d, di, 1 
M ,  I h ,  m 

I Kinematic parameters 
I Bods mass and inertia, toe mass . _ .  

"/C 

k ,  
1 Toe angle at leg-ground collision 
I Leg-ground coeff. of restitution 

Table 2: Notation used throughout the paper. 

Table 3: RHex's kinematic and dynamic parameters. 

configurations of the system, 

For any s E 3-11, we use si to denote the corresponding 
contact state for the ith leg for i = 1,2,3.  We will also 
find it useful to introduce a partial order on 3-11,l 

Definition 1 Let p, T E 3-1~1. We denote by the symbol 
2, the following relation 

3.3 The lDOF Planar Model 

Our subsequent analysis mainly concerns configura- 
tions where the tail of the body is in contact with the 
ground maximizing the duration of thrust from the 
front legs. This also decreases the magnitude of the 
potential barrier or the vertical orientation and avoids 
losses arising from the body-ground collisions. Our 
controller design in Section 4 respects this constraint 
by proper choice of control inputs, reducing the sys- 
tem to only one degree of freedom: the body angle 
8. By convention, we coincide the tail with the ori- 
gin. The foot position and leg orientation can then be 

lSee [9] for a proof that  (1) indeed defines a partial order. 

expressed as functions of 8, 

asin [T di + d sin e ] . 
7i = 

We will also find it convenient to write the leg contact 
constraints in functional form, s, : Q 4 3-11, with the 
ith leg component specified as 

1 
"( li = { 0 otherwise 

if sin 8 5 l / ( d  + di) 

In the sequel, we will refer to the dynamical state of 
the system, q, as the body state and the discrete leg 
touchdown configuration as the contact state. 

3.4 Continuous Dynamics 

In this section, we derive the contact constraint forces 
and the vector field for the constrained model of Sec- 
tion 3.3, for a particular choice of contact state, as- 
suming that the legs that are touching the ground as 
well as the tail of the body are vertically constrained 
in both directions (i.e. th? ground reaction force can 
be negative as well as positive). We then present the 
final form of the equations of motion using the actual 
contact state sm(q, T) 5 sc(8), defined in Section 3.5 
to yield the continuous dynamics for our model. 
Free body analysis of the body link and one of the legs 
in contact with the ground yields, 

(1 cos -yi + l&i sin 7i)Fi 

= lma: sinyi - 1mb;Bsinyi - ~i + kdxi (3) 

where pi := -/A sign(&), kd is the frictional damping 
constant and xi = a? - bT8 is obtained from (2). 
Combined with the moment balance for the body link 
around the tail, instances of (3) for each leg that can 
reach the ground result in a linear set of equations 
whose solution yields the dynamics. 
The number of these equations, however, varies based 
on the value of sc(8). The following presentation as- 
sumes that all the legs can reach the ground, i.e. 
sc(0) = [l, 1,1], but the readers should note that there 
are 23 different cases for different contact states. Ac- 
cording to the free body diagram, we may write 

Ap(q) v = b(q,7) (4) 
where q E TQ,  p = [Pl,p~,p3] E 3-11 is an arbitrary 
contact state such that p 5 sc(8) and the arrays are 
specified as follows: 

r f1 0 0 lmbfsinyl 1 
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1 lm a: sin71 + kdxl - TI 

lm a; sin72 + k d x 2  - TZ 

lm a: sin73 + kdx3 - 73 

Mgd cos 0 

b(q,s) := 

v:=  [ F1 FZ F3 1’ 
.fZ := 1 cos yi + lpi sin . 

The matrix Ap(q) is always invertible in the range 
of operation for our controller [9]. Consequently, the 
solution to (4) yields the ground reaction forces on 
the legs as well as the vector field for the particular 
contact state choice p ,  

v,(q, 7 )  := Ap(4-l b(q, 7 )  - (6) 

The equations of motion use the actual contact state, 
p = S m ( q , T ) ,  defined in Section 3.5, 

and only depends on the current body state and the 
torque input vector, the value of the contact state al- 
ready being determined. 

3.5 Hybrid Leg Contacts 

Given the current state q, we can “read off” from 
sc(e) the number of kinematically possible leg con- 
tacts so as to determine the dimension of the square 
array A,(q) in (4). However, only when a specific set 
of torques, T E R3, is also imposed, can we determine 
the actual leg contact state according to  the function, 
s, : TQ x R3 -+ 7 i 1 ,  and complete the specification of 
the dynamics in (7). We now introduce maximality, 
which has a key role in our determination of s,. 

Definition 2 p E 3-11 is called consistent at a partic- 
ular state q and for a given control input vector T ,  

denoted cons[,,,](p), if and only if 

(pi  = 1) -+ Fi(q,T,p) > 0 

Definition 3 Let p E 3-11 be a contact state. p is max- 
imal at [q, 71, denoted maximal[,,,] ( p ) ,  if and only if 

(8) cons[q,,](P) + (Vr E 3-11 cons[q,,](r) -+ 03 2 

Lemma 1 If p E 3-11 i s  the maximal contact state at 
q for a given T ,  then 

vr E 3-11? ( r  I P )  -+ (&(q,T) I &(q,T)) 

Detailed proofs for the existence and uniqueness of 
the maximal contact state as well as Lemma 1 can be 
found in [9]. Based on these properties, the following 
assumption is the basis of our hybrid contact model. 

A 1 The contact state of the system is the maximal 
contact state for its current body state q and a specified 
control torque vector T .  

The following algorithm hence computes the maximal 
and hence the actual contact state. 

Algorithm 1 (Definition of s, : TQ x R3 4 El) 

For 
this 
tact 

1. 

2. 

3. 

4. 

5. 

a given state q E TQ and control inputs I- E Et3, 
iterative algorithm determines a consistent con- 
state assignment which is also maximal. 

Start with an initial leg contact state based on  the 
kinematic constraints, po = sc(e). 

Using (4), compute ground reaction forces Fi (pk)  
arising from the leg contact state p k .  

If V i ,  Fi(pk) > 0, p k  is the actual touchdown 
state, stop the iterations. Otherwise, proceed with 
the next step. 

Choose the next leg touchdown states to be con- 
sidered as follows. 

Go to step 2 with k 4- k + 1 

3.6 Leg-Ground Collisions 

The flipping behavior described in Section 2 involves 
collisions of the front legs with the ground. In order to 
recover as much of the impact kinetic energy as pos- 
sible, our controllers position the front leg vertically 
prior to impact, resulting in the radial compliance of 
the leg to do most of the work. 
In order to derive an accurate model of the collision, it 
would be possible to extend the continuous dynamics 
to construct a “stance phase” model that might then 
be integrated to obtain a more accurate prediction of 
the body kinetic energy returned at the next leg liftoff 
event. Examples of such predictive impulse models 
can be found in the literature [5]. However, the ac- 
curacy of such models is still hostage to the difficulty 
of determining the dynamic properties of materials as 
well as other unmodeled effects [3, 41. 
In consequence, we have chosen to incorporate a 
purely algebraic collision law in our model, where a 
single coefficient of restitution summarizes the incre- 
mental effects of leg compression/decompression. The 
following assumptions underlie the construction of our 
collision law2. 

2See [9] for details of these assumptions. 
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A 2 If a leg is in flight, it! angular velocity relative to 
the body is  always zem (+$ = 0) ,  but its position can 
be arbitrarily specified. 

Accurate modeling of multiple simultaneous collisions 
is a very fragile and somewhat ill-posed problem [4]. 
Our flipping controller, due to the very particular se- 
quence of leg placements that it enforces, never en- 
counters multiple simultaneous collisions. 

A 3 Multiple simultaneous collisions are not allowed. 

A 4 During the collision, we assume that ri = 0 and 
the impulsive foot contact force acts along the leg. 

In situations where our algebraic model violates basic 
constraints of such collision laws [3], we augment our 
model to use an incremental approach. 

A 5 If the leg touches the ground outside the f i c t i o n  
cone (i.e. I tan(@ + + i ) l  > p), then the leg immedi- 
ately starts slipping and transitions into stance without 
any impulsive collisions. The system velocities remain 
continuous (e+ = e-). 
Under these assumptions, our collision law models the 
damping losses arising from the compression and de- 
compression of the front leg as well as the additional 
thrust provided by the middle and back legs. We as- 
sume that these losses can be lumped into a single 
coefficient of restitution -1 5 k,.(Tc) as a function of 
the toe angle at the onset of collision, T ~ .  

(9) e+ = -kr(Tc) e- 

4 An Improved Controller 

4.1 Constraints on the Control Inputs 

Given a particular contact state p ,  ground reaction 
forces on the toes can be determined using (3). Simi- 
larly, we can compute the contact force on the tail, 

F,"= [-pT M d c o s O ] v , ( q , ~ ) + M g - M d s i n 8 ~ ~ .  

To preserve consistency with the assumed contact 
state in a physically realistic way, all of these ground 
reaction forces must be positive, limiting the set of in- 
put torque vectors. The following definition captures 
these constraints and the practical torque limits. 

Definition 4 For a particular state q E T Q  and a 
contact state p E F&, we define the set of allowable 

torques, 7(q,p) as the set of all torque input vectors 
T E R3 such that 

4.2 Maximal Thrust Control 

The vector field (7) is a continuous function of the 
state and the input torques. As a consequence, the 
problem of choosing hip controls to maximize the 
thrust becomes a constrained optimization problem 
over the allowable input torque space. However, this 
optimization problem is computationally demanding 
due to the nonlinearity arising from discrete changes 
in the contact states. Fortunately, in each of the dis- 
tinct leg contact states, the optimization problem is 
linear in the control input torques. Hence, the prob- 
lem decomposes into a small number of separate linear 
programming problems, from whose independent so- 
lutions may be derived a single correct torque value 
for the three hips. More formally, given a leg contact 
state vector, p E ' H 1 ,  we pose the corresponding linear 
programming problem for that region of configuration 
state space: 

The set of contact state assignments that we need to 
consider is determined by the kinematic constraints, 
Pq := { p  E ' H l  I sc(0) 2 p} .  The solution to the 
global problem then becomes, 

7 = .r(q,Pm,z) (10) 

Note that p,,, is also maximal at the current body 
state and with the torque solution to the above op- 
timization problem as a result of Lemma 1. Conse- 
quently, the actual contact state determined by the 
algorithm of Section 3.5 will necessarily match p,,,, 
that is 

s m ( q ,  T ( q ,  Pmaz) )  = P,,, 

4.3 Hybrid Energy Pumping 

Depending on the frictional properties of the surface, 
our maximal thrust controller may not be enough to  
complete the flip in one shot. In these cases, our con- 
troller uses the hybrid strategy of Section 2, repeatedly 
applying maximal thrust following each collision. 
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Currently, we have very little analytical understanding 
of the behavior arising from this hybrid controller. As 
a consequence, we only explore in simulation the flip- 
ping behavior and its dependence on various surface 
parameters in the following sections. 

flip. The bottom right case, however, also has another 
unstable fixed point, making a successful flip possible 
for certain initial conditions. 

5.2 Maximal Thrust vs PD Control 

5 Simulations 

5.1 Apex Return Maps 

Following each thrust cycle, the body either flips over, 
or the body angle reaches a highest point and starts 
falling back. In presenting the properties of the hybrid 
pumping strategy, we will find it useful to sample the 
0 trajectory at this apex point during each cycle. This 
results in a one dimensional return map, characteriz- 
ing the behavior of the energy pumping strategy under 
the maximal thrust actuation. This section explores 
this return map on the basis of numerical simulation. 
Formal analysis of this model is presently in progress. 
Figure 3 illustrates different types of return maps re- 
sulting from different choices of the surface parameters 
p, k, and kd. This collection of return maps appears 
to capture all the possible types of phenomena that 
arise from our hybrid controller. 

ke=O 75. pQ8 kd - 10  mi^ 0 5  

0 25 

0. 025  0 5  075  1 125  1 5  

k c - 0 7 2  pQ8 kd-13 

0 025 O S  075 1 125 1 5  
e, 

Figure 3: The predicted range of physical behaviors 
based upon numerical return maps computed for (7) 
with representative surface parameter settings using 
the maximal thrust feedback controller (10). 

The upper left case has low ground friction and hence 
the initial thrust is sufficient to flip the robot body 
over. In contrast, the upper right case has enough 
friction to make flipping in one thrust impossible, but 
still has no fixed point, yielding successful flipping af- 
ter several hops. The remaining cases, unlike the pre- 
vious ones, have stable k e d  points, trapping the robot 
at a small angle. For the bottom left case, there is no 
other fixed point, making it impossible for the robot to 

Maximum Thrust PD Contml _ .  
25 25 

20 20 

15 15 

P 9 

10 10 

5 5 

0 2  0 4  0 6  0 8  1 0 2  0 4  0 6  0 8  1 
B P 

0 
multiple hops single thrust 

= 
e-ed flip 

= 
no nip 

Figure 4: Outcomes for flipping attempts .with lower 
coefficient of restitution, k, = 0.75 

I Maximum T h ~ n t  PD Control 
25 25 

20 20 

15 15 

2 r" 

10 10 

5 5 

0.2 0.4 0.6 0.8 1 " 0.2 0.4 0.6 0.8 1 " 
)I B 

Figure 5: Outcomes for flipping attempts with higher 
coefficient of restitution, k, = 0.9 

Simulation runs for a range of surface friction param- 
eters are illustrated in Figures 4 and 5 ,  for k, = 0.75 
and k, = 0.9, respectively. The simulations were run 
over a range of surface friction properties, until either 
the robot flipped over or at the end of 50 hops. A par- 
ticular attempt was considered a success if the body 
angle reached 7r/2 before termination, (labeled single 
thrust  and multiple hops in the plots), or the sequence 
of apex heights kept increasing even in the last hops ( 
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labeled expected flip in the plots). All other runs were 
considered failures. 
One of the reasons for the choice of such high coef- 
ficients of restitution is the active nature of the col- 
lisions. They reflect the additional thrust exerted by 
the back and middle legs during the decompression 
of the front leg. On RHex, we observed the duration 
of the collision to be significant, increasing the effect 
of this active phase of the collision. The actual co- 
efficients, however, still remain to be experimentally 
verified. 
These results demonstrate that maximal thrust con- 
trol yields considerably better flipping performance 
than the PD control in all cases. For smaller kc, 
where the “active” collision is not properly modeled, 
the PD controller never succeeds with multiple hops 
and only has a chance when the first thrust is suffi- 
cient. When the effects of the active collision are in- 
corporated through the coefficient of restitution, the 
maximal thrust controller is still successful in a very 
large range of surface conditions and yields strictly 
better results than the PD control. 

Conclusion and Future Work 

In robotic locomotion research, autonomy is likely to 
impose some of the most demanding constraints on 
design and limitations on behavior. It is very diffi- 
cult, often impossible to achieve in systems otherwise 
designed for non-autonomous operation. RHex, our 
hexapedal platform, demonstrated that autonomy as 
a design goal can achieve significant advances in real 
world performance and robustness. 
In this paper, we present a new controller to imple- 
ment self-righting behavior on RHex, which is perhaps 
the simplest instance of self-manipulation other than 
locomotion itself. Our modeling and analysis yields 
significant improvements to the simple first genera- 
tion controller, extending its domain of success to a 
wider range of terrain conditions - between three to 
five times the range (in regard to the effective vis- 
cous damping that can be overcome). Although the 
implementation of these improvements on our experi- 
mental platform awaits a more complete sensory suite, 
we believe the actual performance improvement on the 
robot will be comparable to what we have observed in 
simulation. 
More formal analysis of the preliminary model we have 
described in this paper is also of great interest. Ex- 
tensions of the flipping behavior such as uninterrupted 
rolling or handstands will require a much better ana- 
lytical understanding of the model as well as modifi- 
cations such as relaxing the friction constraint on the 

body. We believe that, such extensions to the behav- 
ioral suite of a morphology as limited as RHex, is the 
best way to address the shortcomings of contemporary 
actuation and energy storage technology while contin- 
uing to press ahead in the development of practically 
useful robots. 
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