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Abstract 
We develop a method for generating smooth trajectories 
for a set of mobile mbots. Given two end con$gurations, 
by tuning one parametet; the user can choose an inter- 
polating trajectory from a continuum of curves varying 
from that corresponding to maintaining a rigid f oma-  
tion to motion of the robots toward each othel: The idea 
behind our method is to change the original constant ki- 
netic energy metric in the Configuration space and can be 
summarized into three steps. First, the energy of the mo- 
tion as a rigid structure is decoupledfrom the energy of 
motion along directions that violate the rigid constraints. 
Second, the metric is “shaped” by assigning different 
weights to each term, and, third, geodesic flow is con- 
structed for the modiJied metric. The optimal motions 
generated on the manifolds of rigid body displacements 
in 3-0  space (SE(3) )  or in plane (SE(2) )  and the uni- 
form rectilinear motion of each robot corresponding to a 
totally uncorrelated approach are particular cases of our 
general treatment. 

1 Introduction 
Multi-robotic systems are versatile and efficient in ex- 
ploration missions, surveillance, and cooperative manip- 
ulation tasks. Recent research on such systems includes 
work on cooperative manipulation [9], multi-robot mo- 
tion planning, mapping and exploration [8], behavior- 
based formation control [l], and software architectures 
for multi-robotic systems [lo]. We are concerned with 
the problem of generating optimal trajectories for a team 
of multiple robots. Most related to our work are the con- 
cepts of virtual structures [ 113, motion planning, and con- 
trol of space-crafts [2]. 
This paper builds on our previous work [13, 3, 41. In 
[13], minimum energy interpolating trajectories for a 
rigid body are generated by solving two point boundary 
value problems on a system of differential equations writ- 
ten in the Lie algebra of SE(3). A computationally effi- 
cient approach was suggested in [3]. Geodesics generated 
in an ambient space GA(3) equipped with an appropriate 
metric are projected back on SE(3) to generate motion 
for rigid bodies. This approach leads to a closed form 

algorithm for robot trajectories, but the solution is only 
close to the optimal solution. These ideas were extended 
to robots required to maintain a fixed formation in 141. 
The rigid formation constraint is too restrictive in many 
applications. We would like robots to be able to break for- 
mation, cluster together or string themselves out to avoid 
obstacles, and to regroup to achieve a desired goal for- 
mation at the destination. This paper develops a family 
of trajectories ranging from the trajectories that are opti- 
mal for a rigid formation on one extreme to independent 
trajectories that are optimal for each robot on the other. 
We build the geodesic flow of a new metric in the 
whole configuration space given by collecting the con- 
figuration spaces of all robots. This new metric is ob- 
tained from the naturally induced (constant) kinetic en- 
ergy metric dependent on the inertial properties of the 
robots by first decomposing each tangent space into two 
metric-orthogonal subspaces and then assigning differ- 
ent weights to the terms corresponding to rigid and non- 
rigid instantaneous motions. This idea of a “decomposi- 
tion” and a subsequent “modification” is closely related 
to the methodology of controlled Lagrangians described 
in [5 ,  121. The optimal motions generated on the mani- 
folds of rigid body displacements in 3-D space (SE(3))  
or in plane (SE(2) )  and the uniform rectilinear motion 
of each robot corresponding to a completely independent 
approach are also particular cases of our general treat- 
ment. 

2 Background and problem statement 
2.1 Problem formulation 
Consider N point-like robots with masses mi, i = 
1,. . . , N moving in 3-D space with respect to an iner- 
tial frame { F } .  The configuration space Q is R3N and 
a generic configuration q = (q1,42, . . . , q N ) ,  where qi is 
the position vector of robot i in frame {F} .  Given two 
configurations qo and q1 at times t = 0 and t = 1 re- 
spectively, the goal is to .generate smooth interpolating 
motion for each robot so that the total kinetic energy is 
minimized while certain constraints on the positions are 
satisfied. Even though more general problems can be ap- 
proached, in this paper the focus is on maintaining a rigid 
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formation (virtual structure) and relaxing the constraint 
as necessary. This is done by appropriately shaping the 
kinetic energy metric in the configuration space as de- 
scribed in Section 3. The mathematical tools that we use 
are outlined in the next section. 

2.2 Velocity decomposition 
Let Q be the n + T - dimensional configuration space of 
a system and G a n - dimensional Lie group that acts on 
Q so that the Lagrangean defined on T Q  is invariant un- 
der this action. The state of the system can be described 
by a pair (9, s) ,  where g E 6 and s is an element in the 
complementary space Q / S ,  which we will call the shape 
space. At any point q E Q, a tangent vector V, E T,Q 
can be decomposed into a component which is tangent to 
Orb, (the orbit of q under actions of G), and a compo- 
nent which is orthogonal (in some metric <, >) to this 
first component (see Figure 1). Following the notation in 

Figure 1: Pointwise decomposition of the tangent space in the 
vertical and horizontal subspaces 
[5,  121, the space T,Orb, is called the vertical space at 
q, Ver,, and its orthogonal complement is the horizontal 
space at q E Q,  Hor,. The decomposition of the tangent 
vector V, into VerV, (projection onto Ver,) and HorV, 
(projection onto Hor,) is uniquely defined by requiring 
that metric <, > satisfies 

< Vt  , V ,  >=< HorV; , HorV, > + 
< VerVt,VerV: >, Vt, V: E T,Q (1) 

2.3 The geometry of rigid body motion 
Since the rigid bodies (robots) move in three dimensions, 
the Lie group G that we are interested in is the special 
Euclidean group SE(3) ,  the set of  all rigid displacements 
in I R ~ :  

R E W 3 x 3 ,  RRT = I ,  detR = 1, d E R3}.  

The Lie algebra of SE(3),  denoted by se(3), is given by: 

(2 E I R 3 x 3 ,  LjT = 4, U E R3} 

where CI is the skew-symmetric matrix form of the vector 
w E IR3. Given a curve g ( t )  = (R( t ) ,  d ( t ) )  E SE(3) an 

element C(t) of the Lie algebra se(3) can be associated to 
the tangent vector g ( t )  at an arbitrary point t by: 

whereCI(t) = RTR. 
Even though the general results in this paper are formu- 
lated for SE(3), the examples are given for SE(2) ,  the 
Lie group of rigid motions in plane. 
Consider a rigid body moving in free space. Assume any 
inertial reference frame { F} fixed in space and a frame 
{ M }  fixed to the body at point 0' as shown in Figure 2. 
A curve on SE(3)  physically represents a motion of the 

Figure 2 The inertial frame and the moving frame 
rigid body. If { w ( t ) ,  u ( t ) }  is the vector pair correspond- 
ing to C(t), then w corresponds to the angular velocity of 
the rigid body while U is the linear velocity of 0', both ex- 
pressed in the frame {M} .  In kinematics, elements of this 
form are called twists and se(3) thus corresponds to the 
space of twists. The twist C(t) computed from Equation 
( 2 )  does not depend on the choice of the inertial frame 

If P is an arbitrary point on the rigid body with position 
vector T in frame { M }  (Figure 2), then the velocity of P 
in frame { M }  is given by 

{PI. 

u p = [  -? 1 3  J C  (3) 

where 5 is the twist of the rigid body. 

2.4 The left invariant kinetic energy metric 
For a rigid system of N particles with masses 
ml ,  . . . , mN and position vectors q, . . . , TN in the body 
fixed frame { M } ,  the matrix of the (left invariant) kinetic 
energy metric on SE(3)  is [4]: 

and the kinetic energy is given by 1/2CTM<, where < E se(3) is the (left invariant) twist. The upper left 
3 x 3 submatrix of M is the inertia matrix of the system 
of particles with respect to { M } .  If frame { M }  is placed 
at the center of mass and aligned with the principal axes 
of the structure, then M becomes diagonal. 
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3 Shaping the kinetic energy 
The metric < , > that we define in the configuration space 
is the same at all points q E Q: 

< V:,Vp” >=V:TM%2, (5)  

1 
2 

Metric ( 5 )  is called the kinetic energy metric because 
its induced norm (Vi = V: = q)  assumes the famil- 
iar expression of the total lunetic energy of the system 
1/2 xgl miqTqi. 
The geodesic for metric ( 5 )  is obviously a straight line 
uniformly parameterized in time interpolating between qo 
and q1 in Q. By shaping the metric, we mean smoothly 
changing the metric at T,Q so that motion along some 
specific directions is allowed while motion along some 
other directions is penalized. The new metric will no 
longer be constant - the Christoffel symbols of the cor- 
responding symmetric connection will be non-zero. The 
associated geodesic flow gives optimal motion. 

3.1 Motion decomposition: rigid vs. non-rigid 
In this paper, the Lie group 0 as defined in Section 2.2 
is SE(3) .  The left action of Q on Q is the rigid body 
displacement applied to each qi written in homogeneous 
form. The 6-orbit at q is the set of all poses that the struc- 
ture (q1, qz, . . . , qN) can reach if it was assumed rigid at 
some instant with { M }  = {F} .  At each point in the 
configuration space, in the corresponding tangent space, 
the velocity corresponding to infinitesimal rigid motion is 
given by VerV,. Therefore, Ver, locally describe the set 
of all rigid body motion directions. The orthogonal com- 
plement to Ver,, Hor, will be the set of all directions 
violating the rigid body constraints. 
Using (3), it is easy to see that Ver, is the range of the 
following 3N x 6 matrix: 

V, = q E T,Q, M = -diag{mlI3,. . . , m ~ I 3 }  

- tl 
-Qk 1 3  

Ver, = Range(A(q)), A(q) = [ . . . ‘3. ] (6) 

The coordinates of the expansion of VerV, E Ver, along 
the columns of A(q) are exactly the components of the 
left invariant twist 5 E se(3) of the virtual structure 
formed by (41, . . . , qN) and { M }  z { F }  at that instant: 
VerVq = A(.  Using metric (5 ) ,  the orthogonal comple- 
ment of Ver, is 

Hor, = Null(A(q)TM) (7) 

Let B(q) denote a matrix whose columns are a basis of 
Hor,. Let $ denote the components of HorV, in this 
basis: HorV, = B(q)$. Therefore, the velocity at point 
q can be written as: 

V, = VerV, + HorV, = A(q)c + B(q)$ (8) 

Then, requirement (1) is satisfied. Indeed, 

< vi, v; >= v i T ~ v ;  = C ~ ~ A ~ M A C ~  + 
+ c ~ ~ A T M B $ ~  + ~ I ~ B T M A C ~  + G ~ ~ B T M B + ~  = 

= C ~ ~ A T M A C ~  + G ~ ~ B T M B ~ ~ ~ ~  = 
=< B $ ~ , B $ ~  > + < A C ~ , A C ~  >= 

=< Her<', HorV,2 > + < VerK’, Verv,“ > 

because both ATMB and BTMA are zero from (7). 
Also, note that 

c = ( A ~ M A ) - ~ A ~ M V ,  
(9) 

$ = (BTMB)-’BTMV 

Therefore, the kinetic energy (which is the square of the 
norm induced by metric (5)) becomes: 

qq, 4) = Q . ~ M ~  = C ~ A ~ M A C  + $ T ~ T ~ ~ $  (io) 

Straightforward calculation shows that ATMA is the 
same as (4), (when ri = qi,  {M} = {F}). i.e., the matrix 
of the left invariant kinetic energy metric if the system of 
particles is assumed rigid. 

3.2 Metric shaping 
III (IO), C ~ A ~ M A ~  captures the energy of the motion 
of the system of particles as a rigid body, while the re- 
maining part $ J ~ B ~ M B $  is the energy of the motion 
that violates the rigid body restrictions. For example, in 
the obvious case of a system of N = 2 particles, the 
first part corresponds to the motion of the two particles 
connected by a rigid massless rod, while the second part 
would correspond to motion along the line connecting the 
two bodies. In this paper, we “shape” the original metric 
(5)) by putting different weights on the terms correspond- 
ing to the rigid and non-rigid motions: 

< ql, V: >== a < HorVi, HorVf > + 
(I - a )  < VerV,l,VerV,2 > (11) 

Using (9) to go back to the original coordinates, we get 
the modified metric in the form: 

(12) < Vi,Vp” >ff=  V: Mff(q)V:, 

where the new matrix of the metric is now dependent on 
the artificially introduced parameter a and the point on 
the manifold q E Q: 

T 

M,(q) = ~ M A ( A ~ M A ) - ~ A ~ M  + 
(1 - a)MB(BTMB)-TBTM (13) 

The influence of the parameter CY can be best seen by ex- 
amining the significance of a taking on the values of 0, 
0.5 and 1. The two extreme values of a, 0 and 1, cause 
the metric (12) to become singular. (I! = 1 reduces to the 
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rigid formation metric (4) on G, while Q = 0 yields a 
metric for motions along the fiber Q/B. The intermedi- 
ate case, Q = 0.5, yields the kinetic energy of a system 
of independent robots. 
As Q tends to 0, the preferred motions will be ones where 
robots cluster together through much of the duration of 
the trajectory, thus minimizing the rigid body energy con- 
sumption. As Q approaches 0.5, the motions degenerate 
toward uncoordinated, independent motions. As Q tends 
to 1, the preferred motions are ones where the robots stay 
in rigid formation through most of the trajectory, thus 
minimizing the energy associated with deforming the for- 
mation. 

4 Trajectory generation 
We use the geodesic flow of metric (12) to produce 
smooth interpolating motion between two given config- 
urations: 

(14) 

To simplify the notation, let xi, i = 1,. . . , 3 N  denote 
the coordinates q i  E IR3, i = 1,. . . , N on the configura- 
tion manifold Q. In this coordinates, the geodesic flow is 
described by the following differential equations [6]: 

qo = q(O), q1 = q(1) E IR3N 

X i  + r ; k * j ? k  = 0, i = 1,. . . , 3 N  (15) 
j , k  

where 
metric connection associated to metric (12): 

are the Christoffel symbols of the unique sym- 

mij and mij are elements of Ma and M;', respectively. 
Because a = 0 and Q = 1 make the metric singular, (16) 
can only be used for 0 < Q < 1. 

5 Example: two bodies in the plane 
Consider two bodies of masses ml and m2 moving in the 
z - y plane. The configuration space is Q = R4 with 
coordinates q = [XI, yl ,  x 2 ,  y2IT. The symmetry group 
B is the three-dimensional SE(2) .  The A and B matrices 
describing Ver, and Hor, as in (6) and (7) are: 

The 64 Christoffel symbols rk = of the connec- 
tion associated with the modified metric at q E Q be- 
come: 

r1 = 2(1-2a)  m2 dx r' 
a m1+mn(dL,+d32 

d~ r 
Q ml +m2 (d", +62,)2 

d~ r 
Q m1+mz(d2,+3)2 

r2 = 2(1-2a) m2 

r3 = - -- 2(1 -2a)  ml 

d~ r 2(1 - 2a) ml 
r4 = - 

Q m1 +m2 (d", 
where 

1 
and dx = 1 1  -22, dy = y1 -y2. It can be easily seen that, 
as expected, all Christoffel symbols are zero if (Y = 0.5. 
Also, the actual masses of the robots are not relevant, it's 
only the ratio ml /m2 which is important. 
In this example, we assume m2 = 2ml and the boundary 
conditions: 

which correspond to a rigid body displacement so that 
we can compare our results to the optimal motion cor- 
responding to a rigid body. If the structure was as- 
sumed rigid, then the optimal motion is described by uni- 
form rectilinear translation of the center of mass between 
(0,O) and (3,O) anduniformrotationbetweenOand37r/4 
around --z placed at the center of mass. The correspond- 
ing trajectories of the robots are drawn in solid line in all 
the pictures in Figure 3. It can be easily seen that there 
is no difference between the optimal motion of the vir- 
tual structure solved on SE(2) and the geodesic flow of 
the modified metric with (Y = 0.99 (Figure 3, bottom). If 
a = 0.5, all bodies move in straight line as expected (Fig- 
ure 3, middle). For Q = 0.2, the bodies go toward each 
other first, and then split apart to attain the final positions 
(Figure 3, top). 

6 Example: three bodies in the plane 
The calculation of the trajectories for three bodies mov- 
ing in the plane is simplified by assuming that the robots 
are identical, and, without loss of generality, we assume 
ml = m2 = m3 = 1. The vertical and the horizontal 
spaces at a generic configuration 

q = [xi, YI, 2 2 ,  Y Z ,  53,  y3IT E Q = IR6 
are given by 

-Y1 1 0 
21 0 1 

-Y3 1 0 
1 3  0 1 

Ver, = Range(A), A = 
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Figure 4: Three interpolating motions for a set of three planar 
robots as geodesics of a modified metric defined in the configu- 
ration space. 

Figure 3: Three interpolating motions for a set of two planar 
robots as geodesics of a modified metric defined in the configu- 
ration space. 
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For simplicity, we omit the expressions of the modified 
metric and of the Christoffel symbols. The simulation 
scenario resembles the one in Section 5:  the end poses 
correspond to a rigid structure consisting of a equilat- 
eral triangle with side equal to 1. The optimal trajectory 
solved on SE(2) corresponds to rectilinear uniform mo- 
tion of the center of mass (line between (0,O) and (3 ,O)  
in Figure 4) and uniform rotation from angle 0 to 37r/4 
around axis -2. The resulting motion of each robot 
is shown solid, while the actual trajectory for the cor- 
responding value of a! is shown dashed. First note for 
a = 0.99 the trajectories are basically identical with the 
optimal traces produced by the virtual structure, as ex- 
pected. In the case a = 0.5 the bodies move in straight 
line (corresponding to the unmodified metric). The ten- 
dency to cluster as a decreases is seen for Q: = 0.2. Note 
also that due to our choice ml = m2 = m3, the geom- 
etry of the equilateral triangle is preserved for all values 
of a, it only scales down when Q: decreases from 1. 

7 Conclusion and future work 
We presented a strategy for generating a family of smooth 
interpolating trajectories for a team of mobile robots. The 
family is parameterized by a scalar a. As a becomes 
closer to zero, the robots will tend to cluster together 
while moving between initial and final positions. The 
case a = 0.5 corresponds to a totally uncoordinated strat- 
egy: each robot will move from its initial to its final po- 
sition while minimizing its own energy. Finally, as a 
tends to 1, the robots try to preserve the distances be- 
tween them and minimize the overall energy of the mo- 
tion. This constitutes an alternative to generating motion 
for virtual structures by solving an optimization problem 
on the manifold of rigid body displacements SE(3)  [4]. 
While the paper provides a useful conceptual framework 
for motion planning and generation of trajectories, there 
is a practical limitation to this work. As the number 
of robots, n, increases, the generation of the Christoffel 
symbols and the solution of the two-point boundary value 
problem become more complicated. 
To overcome this difficulty, we plan to develop an alter- 
native description of the shape of the formation, which is 
independent of the exact coordinates of the robots. This 
would allow the designer to focus on the gross motion 
g E G and the shape T E R, while the control of the 
robots to maintain the prescribed shape T can be done at 
a lower level of control. 
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