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Abstract

Geometric reconstruction of the environment from im-
ages is critical in autonomous mapping and robot navi-
gation. Geometric reconstruction involves feature track-
ing, i.e., locating corresponding image features in consec-
utive images, and structure from motion (SFM), i.e., re-
covering the 3-D structure of the environment from a set
of correspondences between images. Although algorithms
for feature tracking and structure from motion are well-
established, their use in practical robot mobile applications
is still difficult because of occluded features, non-smooth
motion between frames, and ambiguous patterns in images.
In this paper, we show how a sampling-based representation
can be used in place of the traditional Gaussian representa-
tion of uncertainty. We show how sampling can be used for
both feature tracking and SFM and we show how they are
combined in this framework. The approach is exercised in
the context of a mobile robot navigating through an outdoor
environment with an omnidirectional camera.

1 Introduction

Geometric reconstruction of the environment from im-
ages is critical in mobile robot navigation. Geometric re-
construction involves feature tracking, i.e., locating corre-
sponding image features in consecutive images, and struc-
ture from motion (SFM), i.e., recovering the 3-D structure
of the environment from a set of correspondences between
images. Although the basic algorithms for tracking and
SFM are well understood, their operational use in the con-
text of mobile robots in challenging conditions, including
rough motion and complex 3-D shapes, remains difficult. In
particular, occlusions, large change in motion of the robot,
and noise in the images, all contribute to uncertainty in both
the feature locations in the images and the 3-D structure. It
is essential that the uncertainty be correctly modeled for the
structure to be usable.

In this paper, we describe a sampling-based approach
to represent the uncertainty in both tracking and SFM and

integrate them into a single uncertainty maintenance algo-
rithm. Our aim is to be able to apply standard tracking and
SFM methods to situations in which Gaussian model would
likely fail. These situations include complex environments
in which features may be frequently occluded, robots oper-
ating in rough terrain, in which the smooth motion assump-
tions are not applicable.

2 Background
2.1 Problem Description and Notations

We assume that we are initially given a set of M features
in a reference image I,,. We denote the position of feature j
in I, by zJ, j = 1,..., M and the vector containing the
positions of all the features by z,. As the robot moves,
new images are acquired, which we denote by I, ..., I.
The initial features are located in the images using a feature
tracker so that the location of feature j in image Iy, is z;, and
the vector of all the M feature locations is denoted by z.

At time k, given z, and zg, both the 3-D structure of
the scene and the motion of the robot up to time & can be
recovered. We denote by s, the 3-D position of feature j re-
constructed from z;, and by sy, the set of the 3-D coordinates
of all M features. We denote by m,, the motion recovered
attime k. Finally, we denote by x; the pair (s, my) recon-
structed by SFM at time k.

The uncertainty on the locations ], of the features in im-
age k determines the uncertainty on the reconstructed struc-
ture and motion x;. Since z; depends on the data in I
and the positions predicted by the reconstruction x;,_1, its
uncertainty is described by the distribution P(zy|xx—1, I%).
By maintaining this probability at each cycle, the tracking
and SFM are integrated probabilistically. It can be shown
that this uncertainty can be decomposed into a product of
three terms, assuming x;_; and I are conditionally inde-
pendent given zg:

P(zp|xg—1,1) = K1 P(zi| 1) P(xp—1]zk), (1)



Equation 1 can be further converted to
P(Zk|Xk_1,Ik) = KQP(Zkuk)P(Zk‘Xk_l), (2)
where:

e P(z;|I}) is the uncertainty of the feature tracker
alone;

e P(zj|x;—1) is the uncertainty obtained by transform-
ing the structure computed at time k& — 1 with the
predicted motion and then projecting the transformed
structure into I 1;

e and K5 is a normalizing constant involving only the
priors. We will see that, because we use a sampled
representation rather than a direct representation of the
distribution, the normalization becomes unnecessary.

2.2 Gaussian Distributionsvs. Sampled Distribu-
tions

Intuitively, Equation 2 provides a natural way to com-
bine uncertainty in tracking and uncertainty in prediction
from a noisy reconstruction from SFM. In principle, the un-
certainty on the SFM at time &, described by the posterior
distribution P(x|I}), can be computed, given the uncer-
tainty on z,

In summary, we need to compute three crucial distribu-
tions, P(zg|I;), P(zg|xkx—1), and P(xg|I}), in order to
correctly represent the quality of the reconstruction at time
k. Traditionally, these probabilities can be represented as
Gaussian distributions. This is the approach taken in the
approaches based on the Extended Kalman Filter (EKF) [1]
[3] [4] [14] [15] [20]. However, given the fact that covari-
ance representation is only a linear approximation to the un-
certainty in the highly nonlinear SFM problem, the covari-
ance representation is not a valid uncertainty representation
for SFM in situations when (1) the correspondence noise is
relatively large w.r.t. camera baseline, (2) correspondence
noise can not be well approximated by a Gaussian distribu-
tion, or (3) the SFM result where the covariance is evalu-
ated is not at the true minimum. Unfortunately these situ-
ations do occur in real navigation tasks respectively, when
(1) some tracked features are far away from the robot, (2)
there is ambiguity or several possible matches in tracking,
i.e. the correspondence uncertainty has multiple modes, or
(3) the SFM solution is a sub-optimal local minimum due
to poor initialization.

To illustrate these issues, consider a robot equipped with
an omnidirectional camera moving along a specified path.
Fifty features are tracked a two-frame SFM algorithm is
used for recovering structure and motion. Details of the

INote that, to simplify the presentation, we use a simple constant mo-
tion model to compute P(z|x_1) but a more general dynamic model
can be included in this framework

omnidirectional SFM algorithm can be found in [6]. The
features are located at a range of up to 100m in front of the
robot and 20m on the side. Figure 1 shows the observed
optic flow on the omnidirectional image and the simulated
environment.

We consider first a configuration in which the baseline
between images is 19 meters and the uncertainty of the im-
age locations of the features is Gaussian with variance 0.01
pixel. In that case, the uncertainty in the structure recov-
ered by SFM is indeed well-approximated by a Gaussian
distribution. Figure 2 shows the Monte Carlo runs of recon-
struction for feature No.1, compared with the covariance
representations at the true reconstructions for them.

(@) (b)
Figure 1: (a) Optic flow observed from an omnidirectional
camera (b) The simulated environment and robot motion
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Figure 2: (a) Samples of reconstruction of feature No.1
from Monte Carlo runs (b) Covariance approximation at
true minimum
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Figure 3: (a) Samples of reconstruction of feature No.1
from Monte Carlo runs (b) Covariance approximation at
true minimum

Since the covariance matrix is only a first order approxi-
mation of the true uncertainty, it cannot fully capture the un-
certainty when the noise is large, however, as illustrated by



increasing the variance of the Gaussian noise to 1 pixel. Fig-
ure 3 shows that for the distant point (feature No.1) which
has relatively small flow magnitude, the distribution be-
comes long-tailed, which cannot be approximated by Gaus-
sian distributions. We further demonstrate the effect by pro-
jecting the reconstructions onto the main axis. We expect
the distribution to be a Gaussian if the reconstruction can
be approximated by covariance matrix. In fact we observe
in Figure 4 a distribution with long tail for distant points,
which is an indication that the underlying uncertainty can-
not be captured by a Gaussian.
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Figure 4: Histogram of the projections of the reconstruc-
tions for feature No.1

The tracker may return several possible correspondences
for one feature. In such cases, the uncertainty becomes a
multi-modal distribution. Figure 5(a) shows that the distri-
bution of the reconstruction becomes multi-modal as well.
In these situations, the simple covariance representation cer-
tainly would fail. Figure 5(b) shows that the covariance ap-
proximation can only capture one of the multiple modes.
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Figure 5: (a) Samples of reconstruction of feature No.22
from Monte Carlo runs (b) Covariance approximation at
true minimum of feature No.22

To capture the uncertainty in situations in which the
Gaussian model is insufficient, we propose to use a sam-
pling method to represent the SFM uncertainty. Sampling
methods provide a general framework to estimate the distri-
bution of an estimator. Let us denote by § = g(t1,...,t,)
the estimator of an unknown p-dimensional value 6. If
we know the distribution P(ti,...,t,), we can sample
from them and form a set 7" of samples (t1(;), ..., tp))s
i = 1,..,N? The estimator is applied to each sample,

2In an attempt to keep the flurry of indices under control, we always
denote the sample number as a subscript in parentheses.

yielding estimates é(i),i = 1,...,N. The sample set
(0(1),- - -,0n)) is the representation of the uncertainty of

6. Monte Carlo (MC) stochastic algorithms have received
much attention and sampling based non-parametric uncer-
tainty representation have become popular, owing in large
part to the increase in computational power. For example,
successful systems have been demonstrated in the context of
robot localization [7] and object tracking [11] [19]. Forsyth
etc. [8] applied MC to SFM. Recently Qian and Chellapa
[17] applied sequential MC methods to SFM problem to
account for the non-Gaussian distributions in SFM results.
But so far all the proposed MC based SFM algorithms can
not account for the non-Gaussian distributions in tracking
results (correspondences), therefore would not deal with the
difficulties in real navigation tasks. In this paper, the uncer-
tainties in both tracking and SFM are represented with sam-
pling methods, and the proposed algorithm seamlessly inte-
grates the tracking and SFM together to cope with the diffi-
culties in real situations mentioned above. We explain how
sampling techniques can be appled to represent the three
probability distributions introduced above and to derive an
estimator of xy.
2.3 Integrating Tracking and SFM

Feature tracking and SFM are often treated as separate
problems with some notable exceptions. Direct approaches
[2] [9] recover the camera motion without explicit feature
correspondences. However direct methods assume small
camera motion between frames which is not always true in
robot navigation tasks. Torr [21] estimates the fundamental
matrix with RANSAC and uses the recovered fundamental
matrix to guide the feature matching. RANSAC implicitly
builds an uncertainty model for the fundamental matrix, but
it is only used for outliers rejection and the uncertainty is not
propagated through time. In contrast, we build a complete
uncertainty model for both tracking and SFM and interleave
them together, e.g., through Equation 2, in a probabilistic
way. Data association methods such as JPDAF can be ef-
fective in multiple feature tracking [18]. It has the advan-
tage of holding multiple hypothesis, but how to incorporate
geometric constraint from SFM is not immediately clear.
Within our sampling-based probabilistic framework, multi-
ple hypothesis are being tracked in a natural and principled
way.

3 Sampling-Based Uncertainty Representa-
tion

3.1 Tracking Uncertainty

We use a standard feature tracker based on affine tem-
plate matching [10]. This tracker computes the image lo-
cation z at which the SSD error between the current image
and an affine-warped version of a template from the pre-
vious image reaches a minimum. To simplify notations,
we denote the difference between reference template and



warped template at location z by SSD(z). Assuming that
the difference between the template and the image is caused
by Gaussian noise, the distribution of the location z can be
defined as [16]:

P(z) = exp(—kSSD(z)) (3)

where k is a normalizing scale chosen such that P(z) in-
tegrates to 1. To represent the uncertainty in the tracker, a
set of N sample locations is drawn according to the dis-
tribution of Equation 3. Given a set of M features, we
denote by Z a set of samples drawn from the distribution,
with z;) denoting the i-th sample, and z7,, denoting the po-
sition of the j-th feature from the i-th sample. More pre-
cisely, z(;) = (z(li),...,zg‘f)), i=1,...,N is drawn from
the combined distribution P(z?, ..., 2M) = [[/Z}" P(29),
where P(27),j = 1,..., M is the distribution of Equa-
tion 3 for feature 5.

Figure 6 shows a typical feature with the matched image
region. It also shows the SSD surface and the samples from
the distribution described by Equation 3.

@ (b) (c)

70 80 90 100

(d) (e)
Figure 6: (a) one selected feature (corner) (b) the search
region (c) SSD surface of the matching (The negative of the
SSD surface is shown here to make the peaks more visible)
(d) the density of the distribution according to Equation 3
(e) actual samples

Figure 7 shows a situation in which the location of the
feature is ambiguous. In such cases, the uncertainty dis-
tribution 3 is multi-modal and cannot be represented by a
Gaussian distribution.

3.2 SFM Uncertainty

The uncertainty on structure and motion is represented

by a set of samples X = (x(,...,X(n)), in which

m RARA

(@ (b) ()

130
120 * & .
110

60 100

180 190 200 210

(d) (©)
Figure 7: (a) selected feature (b) the search region (c) SSD
surface of the matching (The negative of the SSD surface is
shown here for same reason as before) (d) the density of the
distribution accordina to Eauation 3 (e) actual samples
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Figure 8: Reconstruction at true minimum

each sample contains the structure and motion, x;) =
(s(1), m(;)) computed from a sample of image feature loca-
tions z(;) defined as in the previous section. Operationally,
the SFM algorithms is executed N times, one for each sam-
pled set of image locations, z(;), I = 1,..., N.

Figure 8 shows the structure samples of SFM, that is, for,
each structure and motion pair x(;) = (s(;), m(;)) generated
from a sample z;), we display the M 3-D points in s;).
3.3 SampleSize

We have left the size NV of the sample set unspecified so
far. In fact, for the approach to be computationally tractable,
it is important to verify that a modest sample size is suffi-
cient. In the case of SFM with M features, the dimension
of the space being sampled is 3M + 5 (three coordinates
per feature plus a rigid transformation up to a global scale
factor.) Clearly, the sample size would be prohibitive if
near-uniform coverage of the space were needed. In fact,
a classical result due to D. McKay [13] shows that the ac-



curacy of a Monte Carlo estimate depends on the variance
of the estimated function but not directly on the dimension-
ality of the space sampled. In our case, it can be shown that
a small number of samples is sufficient despite the high di-
mensionality of the space. As is common practice [11] [12]
[19], we evaluate the sample size from training data. With
the synthetic structure and given noise level similar to real
situations, we determine the sample size required for the
sampled estimate to reach a set level of accuracy. Since we
are most interested in using the reconstructed 3D point dis-
tribution to guide the tracking, we compute the variance of
the mean prediction for different sample sizes. As predicted
by the theory, the variance decreases as the sample size in-
creases. In practice, we choose a threshold of 2 pixels for
the variance, which corresponds to a sample size N = 200.
Figure 9 shows the variances decrease with increased sam-
ple size for distant features (Figure 9(a)) and nearby features
(Figure 9(b)).
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Figure 9: (a) Variance of the mean reprojection v.s. sample
size for feature No.1 (b) Variance of the mean reprojection
v.s. sample size for feature No.22

4 Uncertainty Propagation

The basic issue issue in uncertainty propagation is: given
an uncertainty representation of the structure and motion
xp_1 at time k — 1, and a new image I, compute the
uncertainty on the new estimate of structure and motion,
P(xg|xg—1,1r). A crucial aspect of the problem is that
we need to explicitly combine the uncertainty on tracking
and the uncertainty on SFM reconstruction. This is in con-
trast with most prior approaches in which the two sources
of uncertainty are treated separately. The problem is further
complicated by the fact that features may become occluded.

We describe first the core uncertainty propagation algo-
rithm. Practical implementation issues and occlusion detec-
tion strategy are described in Sections 4.2 to 4.4.
4.1 Propagation Algorithm

0. Initialization: M features z, = z.,...,zM are se-
lected in a reference image I, and the corresponding fea-
tures z; = 2{,...,2 are located in the second image
I, using the affine feature tracker. A set Z; of N sam-
ples is drawn using the algorithm of Section 3.1. For

each sample z;(;),7 = 1,..., N, the corresponding struc-
ture/motion pair x, ;) is computed. The sample set X; =
(X1(1), - - - » X1(avy) is the representation of the initial uncer-
tainty in scene structure and robot position.

Step 1. Estimate tracker uncertainty at time k
(P(zx|Ir)): Aset Z' = (2'(1),...,2 () of samples of
image locations is generated by using the result of the fea-
ture tracker in image & as shown in Section 3.1. Z’ is a
sampled representation of P(z|I}).

Step 2. Propagate SFM uncertainty from time & — 1
to time k (P(zr|xx—1)): Let x;_1 be the structure recon-
structed at time & — 1. We assume that we have a sample
set X1 representing the uncertainty on structure and mo-
tionattime k£ — 1, P(xy_1|Ix—1). For each sample x;,_1;),
i =1,..., N, the corresponding set of 3-D points is trans-
formed to image I; using a motion model (a constant mo-
tion model in the simplest case), yielding a set of image
locations Z" = (2" (1y,...,2" (n)). Z" is a sampled repre-
sentation of P(zy|x;_1).

Step 3. Combine tracker and propagated SFM un-
certainty (P(zg|xx—1,Ix) < P(zg|xx—1)P(zr|Ix)): The
sample set Z’, representing P(z|I}), is resampled based
on weights computed from the sample set Z”, representing
P(zy|xx—1). The resulting new sample set Z is a fair sam-
ple of P(zy|xx—1, I;). The approach used for resampling -
factored sampling - is described in detail in Section 4.2.

Step 4. Compute new SFM uncertainty at time k
(P(xk|xp—1,Ix)): For each element z;y, i = 1,...,N
of Z, the corresponding structure x;) is computed. The
resulting set X = (x(1),...,X(n)) is a sampled repre-
sentation of the uncertainty on the reconstruction at time k&,
P(Xk|zk,xk,1).

It can be shown that this sampled representation for
P(xg|zk, xr—1) converges to the final uncertainty on recon-
struction P(xy|Ix), where I, represents all the images from
time 0 to k.

4.2 Factored Sampling

Step 3. implements the relation P(zg|xx—1,Ix) o
P(zy|xx—1)P(zx|Ix). Such a combination of sampled dis-
tribution can be achieved through “factored sampling” [11]
for which a standard approach exists.

In factored sampling, if we weigh each sample in the
sample set which represents P(zy, | Ij) by a weight propor-
tional to w = P(z | xx—1), the resulting sample set will
represent the conditional probability P(zy, | xx—1, Ix). The
weights are estimated as follows: For every feature j and
every sample z’{i) from Z’, the weight wgi) is the number

of sample points from Z"” that lie within a fixed radius of



z’{i). In practice, a radius of 2 pixels is used to compute the
weights.

Once the weights are computed, the sample set Z' is re-
sampled by using wy,, as the weight associated with each
sample point. It can be shown that this weighted resampling
procedure generates a fair sample Z of P(z|x;—1, ;) x
P(zg|xk—1)P(zi|I}) - see [11] for a justification of this ap-
proach to factored sampling and for details on the weighted
resampling algorithms.

It is important to note that this procedure makes no as-
sumption on the distribution of samples. In particular, the
distribution is not required to be unimodal. Therefore, if
there is an ambiguity in the tracking, e.g., two parts of the
image are similar and closely spaced, the algorithm will pre-
serve both alternatives in the sample set until such time that
they can be discriminated.

4.3 Occlusion Detection

The algorithm is modified to include occlusions detec-
tion at step 3. When an occlusion does occur, the tracker
would either (1) be unable to find any target within a search
region or (2) find another feature with similar appearance to
the tracked feature. Case (1) is relatively easy to detect by
examining the SSD error or correlation value. Case (2) is
considerably harder if no other information is provided. In
traditional JPDAF-type approaches [18], a gating method
is used, where the feature has to be within some distance
to the predicted location. The actual threshold is decided
by the assumed Gaussian covariance in measurement noise
and system dynamics noise.

Occlusions are detected at Step 3 of the algorithm, that is,
after the resampling step described in the previous section.
A given feature j is classified as occluded if the number of
total number of samples from Z” that fall within a 2-pixel
neighborhood of a sample of Z’ is lower than a threshold,
that is, -7, wgi) < T. Tisathreshold that is currently set
at N/2. It is worth noting that, in practice, the exact value
of T"is not critical to the performance of the algorithm.

It is important for features that are occluded to be al-
lowed to “re-appear” at a later time. To allow this to hap-
pen, all the features currently occluded are examined after
Step 4 for possible re-insertion in the list of visible features.
If feature j is flagged as occluded at time k£ —1, then, at time
k, it is projected to I, using the estimate of the motion my,
(technically, the sample set of points representing feature j
is transformed.) The tracker searches around this predicted
location and a decision is made as to the visibility of the
feature using the algorithm described above.

Figure 10 shows different situations in which occlusions
occur and Figure 11 shows the effect of resampling.

4.4 Sample Ilmpoverishment

Sample impoverishment is a concern for any approach
using sample to represent uncertainty [5]. This happens
when the sample size is not large enough for the uncertainty
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Figure 11: (a) two sample sets before resampling (b) resam-
pled sample set combining information from both tracker
and SFM

in the system. The key difference between the approach
described above and the conventional particle filtering ap-
proaches is that we sample from P(xy, | zj) at every time
step, which means we effectively generate new samples for
state variables at each time. In contrast, the usual particle
filters only resample from current sample set thus no new
samples are generated.

5 Reaults

To illustrate the approach, we ran the the algorithm over
sequences taken from a robot moving through a typical en-
vironment. To simulate the effect of occlusions, some of
the images were edited to create artificial occlusion over
several frames. As we see in the results, the system can (1)
detect the occlusion when it happens, (2) guide the tracker
to search the occluded target and (3) find the right target
when there are ambiguities. This is difficult to achieved
with EKF-based traditional approaches because (1) the un-
certainty of the SFM involving remote features can not be
captured by covariance representations thus accurate pre-
diction is impossible when there is large motion, (2) when
there is ambiguity (several possible locations) during the re-
covery, it cannot be represented by the covariance represen-
tation which assumes single-mode distributions.

Figure 12 shows the usual tracking result with predic-
tion overlayed in frame No.3. The large quadrangles corre-
spond to the search region used in the affine deformation.
The small rectangles are the located features. Note that we
are mostly interested in tracking feature No.1 (the one on



the top middle view), which is the target the robot needs to
go. The red dots are predicted samples from SFM. With-
out occlusion they are consistent with each other. Figure 13
shows the tracking result in frame No.8 where feature No.1
is occluded. The occlusion is detected (feature No.1 is not
located in the figure) and the search region is enlarged. Fig-
ure 14 shows the tracking result with prediction overlayed in
frame No.8. The search region is selected by the predicted
samples from SFM. Even though the robot is undergoing a
turning motion which causes a large translation of the fea-
ture in the image plane (more than 10 pixels between each
frame), the predicted samples from SFM guide the search
to the correct location of the occluded feature No.1. Fig-
ure 15 shows the tracking result with prediction overlayed
in frame No.11. The search is still guided by the predicted
samples from SFM correctly. Figure 16 shows the tracking
result in frame No.13. The feature No.1 re-appears in the
scene. Even though there are multiple objects similar to the
original target due to the enlarged search region, the sys-
tem is able to pick up the right one within several frames by
combining information from both tracker and SFM proba-
bilistically over time.

Figure 12: frame No.3: multiple feature tracking with pre-
diction overlayed

Figure 13: frame No.16: occlusion happens to feature No.1

To illustrate what the algorithm does, we show the sam-
ple distributions on image plane for feature No.l. Fig-
ures 10(a) to 11(b) show the evolution of the uncertainty

layed

Figure 15: frame No.23: occlusion with prediction over-
layed

distribution for feature 1. Figure 10(a) shows the samples
from the tracker and SFM are consistent when there is no
occlusion. Figure 10(b) shows the samples from the tracker
and SFM are inconsistent when occlusion happens. Fig-
ure 11(a) shows when feature No.1 re-appears in the scene,
the samples from the tracker indicate several possible loca-
tions, but the ambiguity is reduced with the samples from
SFM as shown in Figure 11(b).

Figure 17 shows the distributions of recovered motion
and structure parameters through time (16 frames total).
Limited by space, only the first element of the quater-

Figure 16: frame No.24: feature No.1 recaptured
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Figure 17: (a) Distribution of one motion parameter over
time (b) Distribution of recovered X for feature No.1

nion and X coordinate of the structure for feature No.1 are
shown. The distributions tend to be multi-modal at frame
No.11 when there is confusion in tracking feature No.1, but
they quickly concentrate again as new frames come in.

6 Conclusions

We have presented a sampling based method to charac-
terize the uncertainty of tracking and SFM. It is able to cap-
ture the uncertainty in challenging situations in real robot
navigation tasks in which the commonly used covariance
representation would fail. We have also presented a sam-
pling based filtering algorithm to propagate the uncertainty
through time. Within our system the tracking and SFM are
integrated probabilistically and the occlusions are handled
in a principled way. The approach was validated in the con-
text of a navigation task with an omnidirectional camera.
The system exhibits robustness and improved tracking ac-
curacy against occlusions.

We are currently conducting more careful evaluations for
this algorithm in various navigation scenarios. Future work
includes the combination with odometry sensor to better ac-
commodate more dynamic robot motions, and the improve-
ment on computational efficiency.
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