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Abstract

In this paper, we propose a novel approach to reac-
tive obstacle avoidance for nonholonomic systems. The
method is based on the deformation of an initial trajec-
tory computed by a motion planner. The deformation
we perform keeps the nonholonomic constraints of the
system satisfied. The deformation algorithm is based
on a potential field generated by obstacles. We ap-
plied this approach to the mobile robot Hilare 2 towing
a trailer and we carried out some experiments.

1 Introduction

Executing a motion computed by a motion planner
for a mobile robot is a difficult task, mainly for two
reasons. The first one is that the environment is
almost never static and exactly modeled. Thus the
path computed by the planner might be in collision
and impossible to follow. Moreover, moving obstacles,
like people walking around, may interfere with the
robot path. The second reason is that the imprecision
of localization must be smaller than the distance
between the planned path and the obstacles. Such a
precise localization is not always possible. For simple
mobile robots, some approaches have been proposed
to overcome these difficulties. The first works in
this direction [6, 4] use potential fields attracting the
robot toward the goal and applying repulsive forces
in the neiborhood of obstacles. The main drawback
of these methods is the existence of local minima of
the potential field that attract the robot. [7] then
propose to deform online the path to be followed in
order to avoid unexpected obstacles. This approach
is commonly named the elastic band algorithm. It
was extended to the case of a simple nonholonomic
mobile robot [5]. The dynamic window approach
[3, 1] chooses in the space of reachable velocities

Figure 1: A nonholonomic systems of dimension 4: Hilare
and its trailer.

those that enable the robot to move toward the goal
without colliding obstacles. Most of these methods
make the asumption (reasonable for cylinder-shaped
robots) that the configuration space of the robot is of
dimension 2 and that the system is subjected to at
most one simple nonholonomic constraint. For more
complicated systems like the robot towing a trailer
shown in Figure 1, the previous approaches cannot
be applied. The full dimension of the configuration
space has to be considered. The goal of this paper
is to propose a reactive method to deform a feasible
path for a nonholonomic system in such a way that,
first this path gets away from unexpected obstacles
and second the deformed path remains feasible. Our
method is generic and inspired by the elastic band
approach. It is based on a force fields applied by
obstacles that produce a deformation in such a way
that the nonholonomic constraints are always satisfied.

The paper is organized as follows. In section 2, we



define the set of deformations of a path that does not
affect the nonholonomic constraints of a system. Then
we show how to choose among this set a deformation
that makes the path get away from obstacles. Our de-
formation process is numerical and iterative. For this
reason, after a few steps, the nonholonomic constraints
of the path are not satisfied anymore. We explain how
to correct this nonholonomic deviation. In section 3,
we apply our method to the mobile robot Hilare tow-
ing a trailer. In section 4, we give some experimental
results. paper is concluded by some comments in Sec-
tion 5.

2 Nonholonomic Systems and Path De-
formation

The elastic band algorithm in [7] is based on an po-
tential function over the set of possible paths. This
potential function is the sum of a term that increases
when the path gets closer to obstacles and a term that
increases with the length of the path. The path is then
deformed incrementally. A deformation of the path is
defined by a function η that maps to each configuration
of the path a direction of deformation η(s) (Figure 2).
At each step the direction of deformation that makes
decrease the potential value faster is chosen. This di-
rection is given by the potential gradient. If the sys-
tem is nonholonomic, however, this method does not
work, since following the gradient of the potential does
not guarantee that the nonholonomic constraints will
still be satisfied after deformation. The main point of
our method is to choose deformations that keep the
nonholonomic constraints satisfied. In the rest of this
section, we describe the different computations of one
step of our iterative algorithm.
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Figure 2: Current path q(s) (in bold) and a deformation
η(s) along this path.

2.1 Nonholonomic Systems

A nonholonomic system of dimension n is charac-
terized by a set of k < n vector fields X1(q),...,Xk(q),
where q ∈ C = Rn is the configuration of the sys-
tem. For each configuration q, the admissible veloci-
ties of the system is the set of linear combinations of

the Xi(q)’s. Let us define n−k additional vector fields
Xk+1(q),...,Xn(q) in such a way that (X1, ..., Xn) is a
basis of Rn at each configuration. Equivalently, a path
q(s) defined over an interval [0, S] is a feasible path if
and only if

∀s ∈ [0, S] q′(s) =

n∑
i=1

ui(s)Xi(q) and (1)

ui(s) = 0 for k + 1 ≤ i ≤ n (2)

where q′(s) is the derivative of q(s). We will explain in
Section 2.5 why we introduced these additional vector
fields. Up to this point, we invite the reader to forget
these vector fields eventhough they appear in the fol-
lowing equations multiplied by zero functions uk+1(s),
..., un(s).

2.2 Path Deformation

To deform a given path we only need to deform the
input functions u1(s), ..., uk(s) of the initial path q(s).
For that, we define n real functions v1(s),...,vn(s), a
real number h and we denote by q(s, h) the path ob-
tained by plugging ui(s)+hvi(s) as input to system (1).
(Again, we consider that vi(s)=0 for k + 1 ≤ i ≤ n).
As a result,

∂q

∂s
(s, h) =

n∑
i=1

(ui(s) + h vi(s))Xi(q(s, h))

Let us differentiate this equation w.r.t. h:

∂2q

∂s∂h
(s, h) =

n∑
i=1

vi(s)Xi(q(s, h))

+(ui(s) + hvi(s))
∂Xi
∂q

(q(s, h))
∂q

∂h
(s, h)

If we denote now by η(s) = ∂q
∂h (s, 0) and by η′(s) =

∂η
∂s (s), the above equation becomes for h = 0:

η′(s) =

n∑
i=1

vi(s)Xi(q(s)) + ui(s)
∂Xi
∂q

(q(s))η(s) (3)

= A(s)η(s) +B(s)v(s) (4)

where A(s) =
∑n
i=1 ui(s)

∂Xi
∂q (q(s)), B(s) is the n× n

matrix the columns of which are the Xi(q(s)) and v(s)
is the n dimensional vector composed of the vi(s). Let
us notice that A(s) and B(s) depend only on the cur-
rent path q(s). (4) is a linear differential system, the
state and input of which are respectively η(s) and v(s).
This system gives the relation between the first order
variation of the inputs ui(s)’s and the first order varia-
tion η(s) of the path q(s). We can integrate System (4)
to get the following expression:

η(s) = H(s)

∫ s

0

H−1(τ)B(τ)v(τ)dτ (5)



where H(s) is the n × n-matrix-valued function that
satisfies:

H(0) = In (6)

H ′(s) = A(s)H(s) (7)

In is the identity matrix of order n. Given the current
path q(s) and obstacles, we need to choose at each
step, functions v1(s),...,vk(s) and a deformation step h
in order to make the new path q(s, h) get away from
obstacles. This is the topic of the next section.

2.3 Obstacles and Path Deformation

Given a set of obstacles detected while following the
current path, we define a potential field U(q) in the
configuration space in such a way that the value of the
potential increases when the robot gets closer to obsta-
cles. There are different ways to design such a potential
field. We will give details about this construction later
in the paper.

From the potential field in the configuration space,
we define the potential of a path by summing U(q)
along the path:

V (h) =

∫ S

0

U(q(s, h))ds

To make the path go away from obstacles, we choose
the function v(s) = (v1(s), ..., vk(s), 0, ..., 0) that mini-
mizes the first-order variation of the path potential:

∂V

∂h
(0) =

∫ S

0

∂U

∂q
(q(s))T η(s)ds (8)

v belongs to an infinite-dimensional space of smooth
vector-valued functions defined over [0, S]. We restrict
our choice to the finite dimensional subspace of trun-
cated Fourier series of order p:

v(s) = v0 +

p∑
l=1

vl cos(
2lπ

S
s) + wl sin(

2lπ

S
s) (9)

where the vl’s and wl’s are vectors of dimension n
with n− k 0’s as last components. The choice of trun-
cated Fourier series is a common and practical way of
discretizing the space of continuous functions defined
over an interval. It has been used for instance in [2]
to solve the optimal control problem of the falling cat.
Plugging this expression into (5), we get an expression
of η(s) w.r.t. the coefficients vl and wl:

η(s) = F0(s)v0 +

p∑
l=1

Fl(s)vl +Gl(s)wl (10)

where

Fl(s) = H(s)

∫ s

0

cos(
2lπ

S
s)H−1(τ)B(τ)dτ (11)

Gl(s) = H(s)

∫ s

0

sin(
2lπ

S
s)H−1(τ)B(τ)dτ (12)

are n× n matrix-valued functions over [0, S].
To choose a deformation η(s) of the current path,

we now only need to choose the coefficients vl’s and
wl’s. For that, we express the variation of the path
potential V w.r.t. these coefficients. We replace η(s)
by expression (10) in (8) and we get:

∂V

∂h
=

p∑
l=0

∫ S

0

∂U

∂q
(q(s))TFl(s)ds vl

+

p∑
l=1

∫ S

0

∂U

∂q
(q(s))TGl(s)ds wl

Let us notice that the first order variation of the path
potential V is linear w.r.t. the vl’s and wl’s. The
coefficients of the vl’s and wl’s in this latter expression
can be seen as the components of the path potential
gradient in the space of Fourier coefficients. To make
the potential decrease, we choose the vl’s and wl’s as
the opposite of this gradient:

vl = −
∫ S

0

Fl(s)
T ∂U

∂q
(q(s))ds (13)

wl = −
∫ S

0

Gl(s)
T ∂U

∂q
(q(s))ds (14)

Thus ∂V
∂h (0) = −‖v0‖2 −

∑p
l=1 ‖vl‖2 + ‖wl‖2 < 0.

2.4 Boundary conditions

In the deformation process, we constrain the ini-
tial and final configurations of the path to remain
unchanged. This implies the following equalities:
q(0, h) = q(0, 0) and q(S, h) = q(S, 0). If we com-
pute q(s, h) by integrating system (1), replacing ui by
ui + hvi, the above constraints are non-linear and dif-
ficult to express w.r.t. the vl’s and wl’s. To overcome
this problem, we approximate q(s, h) by q(s) + hη(s).
With this approximation, the boundary conditions can
be expressed by:

η(0) = F0(0)v0 +

p∑
l=1

Fl(0)vl +Gl(0)wl = 0

η(S) = F0(S)v0 +

p∑
l=1

Fl(S)vl +Gl(S)wl = 0

As Fl(0) = Gl(0) = 0 for any 0 ≤ l ≤ p, the first
constraint is always satisfied. The second one is linear
in the coefficients vl’s and wl’s:

Cz = 0

where z = (v0v1w1...vpwp) is the vector of all the
Fourier coefficients and

C =
(
F0(S) F1(S) G1(S) · · · Fp(S) Gp(S)

)
is a matrix. To get Fourier coefficients that satisfy the

constraint Cz = 0 from the one computed above (13-
14), we need to project z over the subspace defined



by this constraint. The following formula gives the
orthogonal projection z̄:

z̄ = (I − C+C)z (15)

where C+ = CT (CCT )−1 is the pseudo-inverse of C.
The deformation η(s) we apply to the path is obtained
by (10), where the vl’s and wl’s are the coefficients
extracted from z̄.

2.5 Correction of nonholonomic deviation

The approximation of the deformed path

q(s, h) ≈ q(s) + hη(s) (16)

implies a nonholonomic deviation, i.e. in equation (1),
constraints (2) are not satisfied anymore after a few
iterations. The velocity q′(s) along the path has
non zero components uk+1(s), ..., un(s) along vectors
Xk+1(q(s)), ..., Xn(q(s)). We need to keep these com-
ponents close to 0 in order the path to stay feasible.

For that, we use functions vi(s)’s, k+1 ≤ i ≤ n that
were 0 in Section 2.2 to design a proportional closed-
loop regulation:

vi(s) = −λui(s) k + 1 ≤ i ≤ n

where λ < 1 is a positive constant. Let us recall that
between two steps, the input functions ui(s) become
ui(s) + hvi(s) = (1− λ)ui(s). This regulation corrects
the noise introduced by approximation (16). The de-
formation is then computed according to the following
steps.

1. We project the velocity of the current path q′(s)
over vector fields Xi’s (1 ≤ i ≤ n) to get input
functions ui(s)’s.

2. we compute η1(s) from Equation (5) with v(s) =
(0, ..., 0,−λuk+1(s), ...,−λun(s)) and

3. we compute η2(s) using the obstacle potential field
as described in Section 2.3 and we set η(s) =
η1(s) + η2(s).

4. The boundary condition η(S) = 0 becomes
η2(S) = −η1(S). This constraint is affine over
Fourier coefficients vl’s and wl’s:

Cz = −η1(S)

As previously, we project the set of Fourier coef-
ficient obtained from (13-14) over the affine set of
coefficients satisfying the above equation:

z̄ = −C+η1(L) + (I − C+C)z

3 Application to the Mobile Robot Hi-
lare Towing a Trailer

In this section, we give some details about the im-
plementation of our method applied to the case of the
LAAS mobile robot Hilare 2 towing a trailer (Figure 1).
For this system, a configuration is represented by the
vector q = (x, y, θ, ϕ) where (x, y) and θ are the po-
sition and orientation of the robot and ϕ is the angle
of the trailer w.r.t. the robot. The control vectors for
this system are

X1 =


cos θ
sin θ

0
− 1
lt

sinϕ

X2 =


0
0
1

−1− lr
lt

cosϕ


where lr (resp. lt) is the distance between the center of
the robot (resp. the trailer) and the trailer connection.
The inputs of the system are u1 and u2 the linear and
angular velocities of the robot. We define two addi-
tional vector fields to get bases at each configurations:

X3 =


− sin θ
cos θ

0
0

X4 =


− sin(θ + ϕ)
cos(θ + ϕ)
−lt − lr cosϕ

−lt


We assume that a first path has been computed by

a path planner using a map of the environment. This
path is sampled at a sample step δs. Then two tasks
are executed at the same time: first, the robot starts
following the path, detecting obstacles using a laser
scanner and second the current path is deformed on
parts where collisions are detected. The velocity of the
robot along the path decreases when the first collision
along the current path is close. If s0 is the abscissa
of the first collision, an interval [s0 − h0, s0 + h1] is
defined on which the current path is deformed. At each
step, this interval corresponds to the interval [0, S] of
the previous section. Along each sample position of
this interval, the deformation task computes A(s) and
B(s):

A(s) =


0 0 −u1sθ − u3cθ − u4cψ −u4cψ

0 0 u1cθ − u3sθ − u4sψ −u4sψ

0 0 0 u4lrsϕ

0 0 0 −u1cϕ+u2lrsϕ
lt



B(s) =


cθ 0 −sθ −sψ
sθ 0 cθ cψ
0 1 0 −lt − lrcϕ

− 1
lt
sϕ −1− lr

lt
cϕ 0 −lt


where to make matrices fit in the column, cθ = cos θ,
sθ = sin θ, cϕ = cosϕ, sϕ = sinϕ, cψ = cos(θ +
ϕ), sψ = sin(θ + ϕ). Then H(s) is computed using
expressions (6-7). For each sample position along the
path,

H(s+ δs) = H(s) +A(s)H(s)δs



Once the matrices H(s)’s and their inverses have been
computed, we compute the Fl(s) and Gl(s) using (11-
12). The integrals are approximated by summing the
value of the integrand for each sample.

The last step of the deformation computation re-
quires the expression of the configuration space poten-
tial field. We describe this potential field in the next
section.

3.1 Potential field in C

Each obstacle point Pi detected by the on-board sen-
sors ot the robot produces a potential field in the plane
defined as follows. If M is a point in the plane at dis-
tance d from Pi,

ui(M) = 1
(d+d0)2

− 1
(d1+d0)2

if 0 ≤ d ≤ d1

ui(M) = 0 if d > d1

d0 < d1 are constant distances. Let fi(M) =
−∇ui(M) be the force in the plane deriving from this
potential. Let R and T be the closest points to Pi on
the robot and on the trailer. The configuration space
potential field implied by Pi is defined by evaluating
the plane potential field at R and T (Figure 3):

Ui(q) = ui(R) + ui(T ) (17)

If Pi is inside the robot or inside the trailer the cor-
responding term in Ui is set to 0. The configuration

d r
d t

f r

PiT

Rf t

Figure 3: Configuration space potential field generated by
each obstacle point Pi.

space potential field is defined as the sum of the po-
tential fields relative to each obstacle point:

U(q) =
∑
i

U(Pi,q)

The gradient of the potential field is obtained by
differentiating (17) w.r.t. the configuration variables
(x, y, θ, ϕ).

∂Ui
∂q

(q) = ∇ui(R)
∂R

∂q
+∇ui(T )

∂T

∂q

= −fr
∂R

∂q
− ft

∂T

∂q

where fr = fi(R) and ft = fi(T ) are the values of the
plane force field induced by ui at R and at T . We do

Figure 4: A first trajectory computed by the motion plan-
ning platform Move3D. Blue vertical planes are obstacles
of the map.

Figure 5: An obstacle lies in the way of the robot. Red dots
represent obstacle points detected by the laser telemeter.

Figure 6: The trajectory after deformation.

not expand further here the expression of the configu-
ration space gradient in order to save space but they
can be easily established from the above definitions.



4 Experimental Results

Figure 7: Trajectory in a corridor

We applied our trajectory deformation algorithm to
the robot Hilare 2 towing a trailer (Figure 1). This
system is of dimension 4 and is subjected to 2 non-
holonomic constraints. The first step in the experi-
ment consists in planning a collision-free motion using
Move3D, the generic motion planning platform devel-
oped at LAAS [8]. Figure 4 shows a trajectory com-
puted by Move3D. The deformation algorithm is then
applied to this trajectory. Figure 5 shows the point
obstacles detected by a laser range scanner: we put an
obstacle in the way of the robot so that the initial tra-
jectory is in collision. Figure 6 displays the trajectory
after deformation. In this example, the deformation
took approximately 10 seconds on an on-board Mo-
torola PowerPC-750 (350Mhz).

4.1 Static and moving obstacles

The example shown previously shows that our
method can avoid in reasonable time static obstacles
that lie in the robot way. If the obstacle is detected
soon enough, the robot can deform the path without
slowing down. Of Course, the computation cost is still
too high to make a robot with trailer reactive to mov-
ing obstacles like people walking around.

4.2 trajectory deformation and localiza-
tion uncertainties

In fact, the situation in which our algorithm is the
most helpful and the least spectacular is when the
planned trajectory turns into a corridor as shown in
Figure 7. In this case, when if the corridor is narrow
w.r.t. the robot, as it is the case for our robot, a small
error of localization or a small inaccuracy in the map

of the environment can cause the robot to collide a
wall. The deformation procedure makes this type of
maneuver secure and most of the time, the deforma-
tion required is very small. The motion of Figure 7
was formerly impossible to execute without collision.

5 Concluding Comments

Our method has the same shortcomings as other
variational methods based on a potential fields. It
can be trapped in local minima and fail to deform the
trajectory until all collisions have disappeared. These
situations have to be identified automatically and the
deformation process has to be stopped in order to re-
plan a new trajectory. For instance, if a door initially
opened happens to be closed, replanning is necessary.
We will address these problems in future work.

The main advantage of our approach is that it can
be applied to any driftless nonholonomic system, even
those very complicated for which path planning is still
an open problem. As soon as we know the control
vector fields of the system, the method can be applied.
Moreover, let us notice that the method is completely
symmetric. Backward motions can be deformed as well
as forward motion. We plan to put a laser telemeter
on the trailer in order to illustrate this point.
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