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Abstract 

A new type of stability of leader follower forma- 
tions is defined, based on input-to-state stability (ISS) 
properties of cascade interconnections. Formation ISS 
links leader input to internal state of the formation and 
characterizes the way this input affects performance. 
The effect of feedforward and feedback inter-agent 
communication is then investigated in this framework 
and it is indicated how the structure of interconnec- 
tions and the amount of available information can af- 
fect stability performance. 

1 Introduction 

Recent advances on communication and compu- 
tation have enabled the development of multi-agent 
robotic systems. Methods for analyzing interconnected 
systems are therefore necessary. Such methods find 
applications in automated highway systems [l, 2, 31, 
mobile robot reconnaissance [4], formation flight con- 
trol [5, 61 and sattelite clustering [7]. 

Existing methods are based mainly on three differ- 
ent approaches to interconnection architecture. In the 
behavior based approach [4 ,8,9]  each agent is thought 
of being able to exhibit a number of primary behav- 
iors. The group behavior emerges as a weighted sum 
of the independent behaviors of its agents. In [4] be- 
havior - based schemes are implemented on formations 
of unmanned ground vehicles and different formation 
types are tested. In [9] elementary behavior strate- 
gies for maintaining a circular formation are developed 
with the use of potential field methods. Another ap- 
proach focuses on maintaining a certain group config- 
uration and forces each agent to behave as a particle 
in a rigid virtual structure [lo, 111. In [ll] the agents 
try to maintain a virtual structure defined around an 
artificial reference agent called the virtual leader, us- 
ing a centralized potential-field control scheme. The 
leader-follower approach [6, 12, 13, 141 distinguishes a 
designated leader which the other agents follow either 

directly or indirectly. In [14) feedback linearizing con- 
trollers are developed for the control of mobile robot 
formations in which each agent is required to follow one 
or two leaders. Reference [13] investigates the condi- 
tions under which a set of formation constraints can be 
satisfied given the dynamics of the agents and consider 
the problem of obtaining a consistent group abstrac- 
tion for the whole formation. 

Stability properties of interconnected systems is in- 
vestigated using the notion of string stability [2, 31. 
String stability actually requires that internal errors 
attenuate as they propagate through the interconnec- 
tions. For this to be possible, inter-agent communica- 
tion and (exponential) stability of the unforced system 
of each agent is typically required. 

The approach presented in this paper is based 
on input-to-state stability [15]. We define formation 
input-to-state stability (ISS), that relates the leader in- 
put to the internal state of the formation. Formation 
ISS stability requires only state feedback information 
from the preceeding agent. By exploiting the fact that 
ISS is preserved in cascade interconnections [16, 171, 
it is possible to propagate ISS properties from a pair 
of leader-follower to the whole formation and obtain 
gain functions that constraint internal errors based on 
the formation leader input. In this framework, differ- 
ent formation types can be characterized according to 
their stability properties. Then, the influence of addi- 
tional feedback and feedforward information on stabil- 
ity performance is investigated. 

The outline of the paper is as follows: section 2 
introduces the formation dynamics considered in this 
paper and defines formally the notion of input-to-state 
stability for formations. In section 3 the ISS properties 
of a leader-follower interconnection within the consid- 
ered formation are investigated. Section 4 describes 
how the leader-follower ISS gains can be used to cal- 
culate the gains of the whole formation. Section 5 ex- 
amins the effect of additional feedforward information 
on formation stability. Example cases are presented in 
section 7 and section 8 summarizes the results. 
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2 Format ion Input-tu-State Stability 

Consider a collection of n agents, the kinematics of 
which are represented by an equation of the form: 

(1) 2 .  - - ui, i E N { 1, .  . . , n} 

where xi E I[$" denotes the state of agent i in absolute 
coordinates and U ;  its input. 

A formation is constructed by defining feedback 
control laws for the agents: 

where Ki is positive definite, implying that agent i 
follows agent j. One agent, L E N ,  is assigned to be 
the leader of the formation. The leader does not follow 
any agent so that no law is defined for UL. 

The formation errors are defined as: 

By plugging (2) into (l), in view of (3) one obtains: 

(4) 2 . .  - -K. . .  a3 - zzy + xj 
Our aim is to investigate the stability properties of 

the formation error kinematics with respect to the in- 
put of the formation leader, U L .  We thus need to define 
the kind of stability in terms of which the formation 
will be analyzed: 

Definition 2.1 (Formation ISS). A formation is 
called input-to-state stable ifl there is a class KL: func- 
tion /3 and a class K: function y such that for any initial 
formation error z (0 )  and for any bounded inputs of the 
formation leader UL(.) the evolution of the formation 
error satisfies: 

Ilz(t)lI 5 P(llz(0)II , t) +Y (SUP ll.Lll) (5) 
s<t 

Input to state stability thus establishes a relation- 
ship between the amplitudes of the formation leader 
input and the formation errors. The relationship pro- 
vides ways to compare formation interconnections in 
terms of internal stability. 

Definition 2.2 (Formation ISS Measure). Con- 
sider a formation that is input-to-state stable with gain 
functions P(r, t )  and y(r) .  Assume y ( r )  E C1 and let 
U C W" be a compact neighborhood of the origin con- 
taining all U L  E U that are of interest. Then 

Prss 7 - v )  

will be called the ISS measure of the formation. 

In that sense, if the norms are taken as Euclidean, 
the ISS measure is the upper bound for the leader in- 
put that guarantees that the formation error vector 
remains within a unit ball. 

In the following sections we will show how the for- 
mation ISS gain functions /3 and y can be computed 
from those of the individual agent interconnections. 

Formation ISS does not require any inter-agent com- 
munication: the feedback laws (2) can be constructed 
by means of position sensing. Furthermore, each agent 
is required to have information only for its immediate 
leader. Contrary to string stability which investigates 
the behavior of errors as they propagate in the forma- 
tion chain, formation ISS focuses in characterizing the 
dependence of formation stability to leader input. 

3 ISS of Agent Interconnection 

Agent interconnections are represented in graph no- 
tation form. Agents are denoted by vertices. A di- 
rected edge from vertice j to vertice i implies that 
agent i follows agent j using feedback information. By 
abuse of notation we denote the exchange of additional 
feedforward information by a dashed directed edge. 

Consider the agent interconnection error (4): 

A Lyapunov function candidate could be V,j = 
'ZTzij- 2 23 Then for c1 = c2 = f it holds that c1 ( ( z i j ( (  5 
Kj 5 c2 (Izij((, and the derivative of V, satisfies: 

I -2~k 11zijll~ + 11zij11 * JJkijII 

where A$ is the minimum eigenvalue of Ki. By taking 
any 8 E (0,l)  and defining c3 2 X k ( 1 -  e),  

Moreover, for c4 = 2Ah, where 
value of Ki, it holds that: 

is the largest eigen- 

From stability of perturbed systems [lemma 5.2, [16]]: 

showing that the interconnection kinematics are input- 
to-state stable with respect to the leader's velocity. 
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4 Propagation of ISS 

4.1 Cascade interconnection 

Consider the leader-follower configuration of section 
3 and assume that in addition, agent j is assigned to 
follow agent k (Figure 1): 

'jk 

Figure 1: Cascade interconnection of agents. Solid 
arrows denote feedback information flow 

Based on the assummed available feedback informa- 
tion, the agent control laws are formed as follows: 

U1 = Ki(Zj - Xi) 

uj = K j ( Q  - Zj) 

The results of section 3 establish the ISS of each pair: 

where 

ai(e) A 2 x k ( i  - e) cuj(e) 4 2&(1 - e )  
However, since kj = K j z j k ,  from (7) we get: 

The gains for the leader k- follower j pair are defined 
accordingly. 

Based on the ISS property of the cascade intercon- 
nection of two ISS systems [16, 171, the stability prop 
erty of the agent interconnection can be propagated to 
the new construction. Define the composite error: 

It has been shown [16, 171 that the cascade inter- 
connection of two input-to-state stable systems: 

51 = fl(t,Z1,Z2,U) 
i 2  = f2(t, 2 2 ,  U) 

4.2 Parallel Interconnection 

The parallel interconnection is the configuration 
where both agents i and j are assigned to follow agent 
k based on feedback information about the state of k 
(Figure 2): 

Figure 2: Parallel interconnection of agents. Solid ar- 
rows denote feedback information flow 

It can easily be shown that the ISS gains for the 
parallel interconnection: 

kl =f1(t, Z1, U )  

5 2  =f2(t, 2 2 ,  U )  

P(l^, t )  =P1 (T, t )  + Pz(r, t )  
r(l.) =?,I(.:) + Y 2 ( 4  

are formed as 

and for the linear case after defining: 

the gain function become: 
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Using (9)-(10) recursively, the ISS gains of a group 
of agents can be calculated. This procedure finally 
yields the ISS gain functions of the whole formation. 

The advantage of the linear structure of (4) is that 
one has constructive ways of obtaining the original ISS 
gains (8) for each individual pair of leader-follower. 
Note that the linear character of the input gain y is 
preserved through each propagation. The transient 
term p becomes a sum of decaying exponentials, where 
each of them has a different rate of decrease; all of them 
though can be ultimately bounded by the slowest term. 

5 The Effect of Feedforward 

Suppose that for a specific pair of leader-follower, 
feedforward information from the leader to the follower 
is also available. The control law can be formed as: 

and since Ki is assumed positive definite, the closed 
loop dynamics oft he pair become exponentially stable: 

(12) 2 . .  - -K.  . .  a3 - zZ23 

meaning that Ilzij(t)ll 5 llzij(0)II Thus, 
when feedforward information from the leader to the 
follower can be used, the input gain vanishes. In all 
cases examined the ISS bounds on both transient and 
steady state components are relaxed, a fact that re- 
veals the stabilizing effect of using additional feedfor- 
ward information in inter-agent control laws. 

5.1 Feedforward in Second Cascade Link 

Assume two leader-follower pairs: agent i following 
agent j and agent j following k and that feedforward 
information about agent j is available to agent i (Fig- 
ure 3). This case appears when the link that where 
feedforward information is used is located at the end 
of the formation chain. 

'jk 

Figure 3: Cascade interconnection of agents with feed- 
forward. Solid arrows denote feedback information 
flow; dashed arrows denote feedforward information. 

The control laws can be defined now as: 

5.2 Feedforward in First Cascade Link 

In this case the feedforward information concerns 
agent k and is available to agent j (Figure 4). The link 
that uses feedforward information is an indermediate 
link in the formation chain. 

Figure 4: Cascade interconnection of agents with feed- 
forward. Solid arrows denote feedback information 
flow: dashed arrows denote feedforward information. 

The control laws have the form: 

5.3 Parallel Link with Feedforward 

This is the case where one of the parallel links uses 
feedforward information about the leader (Figure 5). 

Figure 5: Parallel interconnection of agents with feed- 
forward. Solid arrows denote feedback information 
flow; dashed arrows denote feedforward information. 
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The control laws are then given as: 

U i  = K i ( Z k  - Xi) 

U j  = K j ( Z k  - Zj) + X k  

Setting zo Z i j k ( O ) ,  l l k k ( ? - ) / / } ,  the ISS gains 
for this interconnection become: 

6 The Effect of Additional Feedback 

Consider the leader-follower interconnection (3). 
For agent j ,  given (1) and (2) it holds that xj = K j z j k  

and ( 3 )  can be rewritten: 
2 . .  z j  - - - K .  z z i j  + K j Z j k  = - ( K i  + K j ) z i j  + K j ~ k i  

The above implies that additional feedback infor- 
mation from the leader of an agent's leader can have a 
stabilizing effect just as feedforward information from 
the leader itself. The feedback law: 

U .  - K . z . .  
2 - z 23 + K j z k i  

can transform the cascade interconnection to a cascade 
with feedforward (Figure 6: if u j  = K j z k j ,  then 

i i j  = - ( K i  + K j ) z i j  

i k j  = - K j Z k j  -k i k  

and the composite ISS gains are as given by (13) 

_c 

Figure 6: Additional feedback can substitute for feed- 
forward. 

Therefore, the unavailability of feedforward infor- 
mation can be compensated by additional feedback 
from further up the formation hierarchy. 

7 Examples 

Suppose that the objective is to control a one di- 
mensional platoon of vehicles using only feedback in- 
formation, such that each vehicle maintains a certain 

distance d from its neighboring vehicles. For that pur- 
pose, three interconnection options, depicted in Figure 
7 are considered. 

Figure 7: Three formation interconnection options. 

The closed loop kinematics in case (a) is given by: 

il = U  

i 2  = k(t2 + 2 1  - 2 2 )  

x 3  = IC($ + 2 2  - z3) 

where x i ,  i = 1,2,3 is each agent absolute coordinate, 
U is the leader's speed, and IC is a given constant gain 
of the feedback control law. The dynamics of the for- 
mation errors will then be: 

,212 = - k z 2 1  - U 

232 = - k z 3 2  + k.221 

By simple arguments it can be established that 

Application of (9) yields the formation ISS input gain: 
"ya(sup(uI) = 6- sup{lul} and a formation ISS 
measure: P F ~ ~  = 

The closed loop kinematics in case (b) is 

X I  = U  

5 2  = k(d  + z 1  - 2 2 )  

k 3  = k(2d + 2 2  - 2 3 )  

and lead to a formation ISS input gain: "yb(suplul) = 
6 sup{ 1.1) and an formation ISS measure: P!ss = & 

In case (c), with ui := kZ32  + k z 3 1  the formation 
error kinematics become: 

212 = - k z 1 2  + U 

5 2 3  = - 2 k z 2 3  

yielding a formation ISS input gain: rC(sup{ lul}) = 
& sup{ 1.1) and a formation ISS measure: Pfss = & 
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Since 

6 + 6 k e + e  60+6kB+O 
Ice2 Ice2 

Y a  = 
6ke+78 6 k + 7  7 2 =-=- Ice 2 3 2 @ =’Yb 5 ’Yc Ice2 

according to the performance measures it is: PFs, 5 
Pjss 5 Pfss implying that formation (c) outperforms 
(a) and (b). 

8 Conclusion 

The paper presents a new type of stability defined 
for leader-follower formations which is based on input- 
to-state stability of interconnected systems. The new 
stability notion gives rise to a performance measure 
by which different interconnections can be compared 
in terms of stability. 

Preliminary analysis based on this tool indicates 
that the depth of the formation has an adverse effect on 
its internal stability with respect to the leader’s input. 
Furthermore, the fact that additional information can 
in gerenal improve performance can now be formally 
expressed. Also, there seems to be a close link between 
feedforward and feedback links in interconnected sys- 
tems in the sense that under some conditions, feedback 
links can replace feedforward links and vice versa. 
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