Selection of Behavioral Parameters: Integration of Discontinuous Switching via
Case-Based Reasoning with Continuous Adaptation via L ear ning M omentum

J. Brian Lee Maxim Likhachev, Ronald C. Arkin

Mobhil e Robot Laboratory
Coll ege of Computing
Georgia Ingtitute of Tedhnology
Atlanta, GA 30332-0280

Email: bleg@cc.gatedch.edu, maxim@cs.cmu.edu, arkin@cc.gatech.edu

Abstract

This paper studies the dfeds of the integration of
two learning algorithms, Case-Based Reasoning (CBR)
and Leaning Momentum (LM), for the sdledion of
behavioral parameters in real-time for robdic
navigational tasks. Use of CBR methodology in the
sdledion of behavioral parameters has already shown
significant improvement in roba performance [3, 6, 7,
14] as measured by misson completion time and success
rate. It has dso made unnecessry the manud
configuration of behavioral parameters from a user.
However, the choice of the library of CBR cases does
affed the roba's performance and choosing the right
library sometimes is a difficult task espedally when
working with a red robot. In contrast, Leaning
Momentum does not depend on any prior information
such as cases and seaches for the "right" parameters in
red-time. This results in high misgon success rates and
requires no manual configuration of parameters, but it
shows no improvement in misgon completion time [2].
This work combines the two approaches © that CBR
discontinuoudly switches behavioral parameters based on
given cases whereas LM uses these parameters as a
gtarting point for the red-time search for the "right"
parameters. The integrated system was extensively
evaluated on bath smulated and physical robads. The tests
showed that on smulated robas the integrated system
performed as well as the CBR only system and
outperformed the LM only system, whereas on real robots
it sgnificantly outperformed bath CBR only and LM only
systems.

Index terms. Learning Momentum, Case-Based
Reasoning, Behavior-Based Robotics, Reactive Robatics.

1. Introduction

This research is being conducted as part of a larger
roba learning effort funded under DARPA's Mohile
Autonomous Robotic Software (MARS) program. In our
projed, five different variations of learning, including
leaning momentum, case-based reasoning, and
reinforcement leaning, are being integrated into a well -
established software achitedure, MissionLab [4]. These
leaning medhanisms are not only studied in isolation, but

1

the interplay between these methods is also being
investigated.

This paper focuses on the interaction between two
such leaning methods. case-based reasoning (CBR) and
leaning momentum (LM). Both methodologies were
successfully used in robdic systems in dfferent contexts
[2,3,8,9 1011, 12, 13, 14]. Inthiswork these methods
are used to change behavioral parameters of a behavior-
based robotic system at run-time. Both algorithms have
already been shown, in isolation, to increase performance
in a robdic system in relaion to navigating unknown
obstacle fields whil e trying to reach a goal position [2, 3,
6, 7, 14]. Leaning momentum was shown to increase the
probability that aroba would successfully reach the goal,
while @se-based reasoning was shown to improve both
the robot’ s probabili ty of reaching the goal as well as the
average time it takes for the robot to do so. Both
algorithms, however, have their drawbacks, and the
hypothesis of this research is that bath algorithms could
complement each other and reduce these drawbacks by
running simultaneously and interacting with each other.

Learning momentum as a stand-alone algorithm is
capable of exeauting anly one strategy, and it therefore
has a problem when usng a strategy in stuations for
which a different strategy is better suited (seesedion 2.2
for an explanation on drategies.) Also, seaching for the
"right" behavioral parameters usualy takes too long. Both
of these problems result in long misson completion times
even though LM misdon successrate is very high. CBR
can solve both of these problems by changing these
leaning momentum strategies and by setting the
behavioral parameters in the right ballpark using the
library of casesin red-time

CBR by itsdf also has its own drawbacks. Fird, it
alows for parameter changes only when the environment
has changed enough to warrant a case switch. Thus, in
between the case dhanges, the parameters gay constant
even though the environment may change to some extent.
Second, and more importantly, the behavioral parameters
as defined by each casein the CBR library may not be the
best parameters for a particular environment the roba
operates in. This may happen ether becuse the
environment sufficiently differs from the dosest match in
the library or because the library itself is not particularly
well optimized for the robot architedure it targets. In
order to avoid such a situation, the library size should be

Thisresearch is supported by DARPA/U.S. Army SMDC contract #DASG60-99-C-008L. Approved for Public Release;
distribution unlimited.

large, and a large number of experiments should be
conducted to establish an optimal set of parameters for
each case in the library. Even though this neals to ke
done only once this lution gill may be infeasible and is
almost always impossble when working with a red roba
since onducting such experiments is costly and time-
consuming. As an aternative, learning momentum cen
provide the mntinuous seach for the best set of
parameters in-between case switches. Thus, the
hypothesis is that by integrating the leaning momentum
and case-based reasoning methodologies together for the
seledion of behavioral parameters, the best of both
algorithms can be achieved.

Additionally, this work is meant to be a foundation
for future work. Currently, the CBR algorithm uses a
gtatic library of cases. In the future, CBR and LM will
interact together to bah lean new cases and optimize
existing casesfor the CBR library.

2. Overview of CBR and LM Algorithms
2.1. Framework

Both CBR and LM work as parameter adjusters to a
behavior-based system. The adjustment happens by
changing the parameters of individual behaviors that
contribute to the overall roba behavior. Sincethe system
is developed within a schema-based control architedure,
each individual behavior is called a motor schema. Each
active motor schema produces a velocity vedor. A set of
active motor schemas is cdled a behavioral assemblage.
At any point in time, the robd exeautes a particular
behavioral assmblage by summing together weighted
vectors from dl of the active schemas in the assemblage
and uses the resulting vedor to provide the desired speed
and diredionof the robot. The mmhined learning system
was tested on the behavioral assmblage that contains
four motor schemas MoveToGoal, Wander,
AvoidObstacles and BiasMove schemas. The
MoveT oGoal schema produces avedor direded toward a
goal location from the robot's current position. The
Wander schema generates a random diredion vedor,
adding an exploration component to the robot's behavior.
The AvoidObstacles schema produces a vedor repelling
the robot from all of the obstacles that lie within some
given distance from the robd. The BiasMove schema
producesavedor in a cetain diredion in order to biasthe
motion behavior of theroba.

For this asemblage the following parameters are
changed by CBR module:
<Noise_Gain,

Obstacle Sphere
MoveToGoal _Gain, Bias Vector_Gain,

Bias Vector_X, Bias Vector_Y>

The gain parameters are the multipli cative weights of the
corresponding schemas. The Noise_Persistence parameter
controls the frequency with which the random noise
vector changes its diredion. Obgtacle Sphere controls the
distance within which the robot reacts to olstacles with
the AvoidObstacles schema. Bias Vector X and
Bias Vector_Y spedfy the diredion of the vedor
produced by BiasM ove schema.

Noise Persigence,
Obstacle Gain,

Learning Momentum has control over the same
parameters except for the parameters related to the
BiasMove schema: Bias Vector_Gain, Bias Vector X
and Bias Vector_Y .

2.2. Overview of Case-Based Reasoning

The detail ed description of the CBR module used for
behavioral seledion can be found in [3]. In this sedion,
only a high level overview of the module is given. The
overall structure of the CBR unit is $milar to atraditional
non-leaning case-based reasoning system [5] (figure 1).
The sensor data and goal information is supplied to the
Feature Identification sub-module of the CBR unit. This
sub-module @mputes a gpatial features vedor
representing the relevant spatial characterigics of the
environment and a temporal features vedor representing
relevant temporal characteristics. Both vedors are passed
forward for a best matching case ledion.

Setof
s . | Spatial FeaturesVector Temporal FeaturesVector
Curet Festure | Spetial Festures & Matching Spetially, Matching

environmert | | dentification [Temparal Fedures _ [Maching] .
vedors (1<t sage of Case Sdection) cas (2nd stage of Case Sdection)
Sefof
Q‘L;ﬁgf:s Spwaly;? Tenporally
Matching cases
[P 1
| CaseLibrary |
CBR Module (Caeibrary | P C—
Process
(3rd stage of Case Sdection)
BestMatching
case
Case Output Praneters| Case Casere: Case BestMaching @ | Casesnitching
(Behaviord Assblage| Application | for oplication| Adaptation | * curenly used ca | pegisiontree
Paameters)

Figure 1. High-leve structure of the CBR Module

Case sdledion is done in three steps. During the first
stage of case sdledion, al the cases from the library are
searched, and weighted Euclidean dstances between their
spatial feature vedors and the environmental spatial
feature vedor are wmputed. These digances define
gpatial similarities of cases with the environment. The
case with the highest spatia similarity is the best spatially
matching case. However, al the @ases with a spatia
similarity within some delta from the similarity of the best
gpatially matching case ae sdeded for the next stage
sdedion process These @ses are alled gpatially
matching cases. At the second stage of seledion all the
spatially matching cases are seached, and weighted
Euclidean distances between their tempora feature
vectors and the environmental tempora feature vedor are
computed. These distances define tempora similarities of
cases with the environment. The @se with the highest
temporal similarity is the best temporally matching case.
Again, al the @ses with a temporal similarity within
some delta from the similarity of the best temporally
matching case ae sdeded for the next stage seledion
process These @ses are gpatially and temporally
matching cases, and they are dl the @ses with close
gpatial and temporal similarity to the current environment.
This set usualy consists of only a few cases and is often
just one @se, but it is never empty. At the last seledion
stage a @se from the set of gpatialy and temporally
matching cases is sleded on random. Randomness in
case sdedion is introduced in order to exercise the

exploration of cases with similar features but different
output parameters.

The @se switching dedsion tree is then used to
dedde whether the arrently applied case should till be
applied or should be switched to the @se sdleded as the
best matching one. This proteds againg thrashing and
overuse of cases. If anew case is to be applied, then it
goes through the ase adaptation and application steps.
At the adaptation step, a @se is fine-tuned by dlightly
readjusting the behavioral asemblage parameters
contained in the case to better fit the current environment.
At the applicaion step these parameters are passed on to
the behavioral control module, which uses these
parameters in the evaluation of the arrent behavioral
assmblage.

2.3. Overview of Learning Momentum

The detailed description of the leaning momentum
module used for behavioral parameter adjustment can be
foundin [2]. In this dion, only a high-level overview of
the module is given. LM is basically a crude form of
reinforcement leaning. Currently, LM is used in
behavior-based systems as a means to alter a robot’s
behavioral parameters at run time instead of keeping hard-
coded values throughout the duration of its misson.
Different values for these parameters are appropriate for
different environments; LM provides a way for the values
to change in response to what the roba senses and the
progressit makes.

To work, a LM-enabled system first kegps a short
history of pertinent information, such as the number of
obstacles encountered and the distance to the goal. This
information is used to determine which one of four pre-
defined situations the roba is in: no movement, progress,
no progress with obstacles, or no progress without
obstacles. Therobot has a two-dimensional table, where
one dimension’s size is equal to the number of possible
stuations, and the other is equal to the number of
changeable behavioral parameters. For each parameter,
the parameter type and situation is used to index into the
table to get a value, or deta, that is added to that
particular parameter. In this way, the roba may alter its
controller to more appropriately deal with the current
situation. For example, if the roba were making progress
then the move-to-goal behavior would be weighted more
heavily. If, however, obstacles were impeding the robot,
then the wander and avoid-obstacles behaviors would be
weighted more heavil y.

There ae arrently two LM strategies: ballooning
and squeezing. These strategies, which did not change
dynamically in the previous work, define how the roba
dealswith obstacles. When a ball ooning roba is impeded
by obstacles, it increases the obstacle€s gphere of
influence (the radius around the robot inside of which
obstacles affed the roba's behavior). This pushes the
roba out of and around box canyon situations. A
squeezing roba, on the other hand, deaeases the sphere
of influence allowing itself to move between closdly
spaced obstacles.

Learning momentum was shown to increase arobd’s
probability of successfully navigating an obstacle field,
but there was an acoompanying increase in the time it
took to do so. Mogt of this time increase cane from the
usage of one drategy (ballooning or squeezing) in
situations better suited for another Strategy.

3. Implementation

The CBR and LM agorithms themsealves were not
changed for the integration. Rather they remain the ecact
same dgorithms as reported previoudy [2, 3]. Since this
previous work was adready performed within the
Missionlab misgon spedfication system developed at the
Georgia Tech Mohle Robot Lab, the process of
integrating bath agorithms to work together in the
context of Missionlab was relatively smple. Existing
versions that already had these stand-alone dgorithms
incorporated into them were esily merged to create a
single system with bath algorithms incorporated into it.

The parameters that are controlled by LM remain the
same as described in Sedion 21. CBR, on the other hand,
now controls not only the parameters described in Sedion
2.1 hut also some of the values (i.e, seach detas and
bounds) used by the LM algorithm. Thisin effectcontrols
LM strategies such asballooning versus gjueezing in run-
time (a @pability LM did not have on its own). For
example, if the roba finds itsaf in a dtuation where the
front is totally blocked, the CBR module may change the
ddtas in the LM module so that a ball ooning strategy is
used instead. Conversdly, if the robot finds itsef in a
Stuation where the environment is traversable but the
obstacle density is high, the CBR module may change the
ddtas in the LM module so that a squeezing strategy is
used.

Actuators
,I Core Behavior-Based Controller I——>

CBR Module
Behavioral
Parameters

LM Module

I
Updated Parameters
Updated Deltas

and Parameter Bounds
Figure 2. A high level diagram of Core/CBR/LM contralle
interaction.

Both algorithms utilize the roba’s globd
“blackboard” spaceto store the behavioral parameters that
they control. Thus every time CBR deddes to switch a
case, it overwrites the parameters dored in the
"blackboard" space with the behavioral parameters
sugeested by the seleded and adapted case and spedfies
what strategy the LM should use to finetune those
parameters. Afterwards, every few robat cycles, learning
momentum retrieves the behavioral parameters from the
"blackboard" space, adapts them based on the sensor data
and roba progressand stores the parameters back. At the
same time, the behaviora control module (Core

Behavior-Based Controller) aso reads the behavioral
parameters from the "blackboard" space and usesthem for
the evaluation of the behavioral assemblage every robot
cycle. Figure 2 depictsthis architedure.

4. Smulation Tests

The system was first evaluated in simulated
environments. MissionLab provides a smulator aswell as
data logging capahilities, alowing an easy colledion of
therequired statistical data

The system was evaluated on two different types of
environments, First, the tests were nducted on
heterogeneous environments such as the one shown in
Figure 3, which shows a screenshot of the MissionLab
simulator after the roba completed its misson. Black
dots of various szes represent obstacles and the airved
line across the picture depicts the trajedory of the roba
after it completed its misson. In these ewvironments the
obstacle pattern and density changes asthe robot traverses
the test course toward its goal. The size of the misson
areais 350 by 350meters. The tests were dso conducted
on a set of homogeneous environments guch as the one
shown in figure 4. In these environments the obstacle
density is constant throughout the whole aea. The size of
the misson areashown is 150 by 150 meters.

WissionLab v4.00 () Georgia Insitte of Techrology [.104]
telp |

Refes o 1003 7] 4
1}

File Configure Comand [ptions Comfass

=]

5] (R
Figure 3. Robot run with CBR integrated with LM algorithmin
a heterogeneous simulated environment. Point A is magnified
at the top of the figure.

Point A in Figure 3 is magnified to show the robot's
behavior in arather large and rerrow box canyon created
by obstacles. Here the CBR module reagnizes that the
roba is stuck for some period of time and the aea aound
the robot is fully obstructed by obstacles. Therefore, it
sdeds a case @lled FULLOBSTRUCTION _LONG
TERM_BALLOONING. The @se sets the Noise_Gain
and Noise Persistence to large values. It also sets the
leaning momentum module to use the ballooning
strategy. Astherobot gets out, the CBR module switches
the @se to SEMICLEARGOAL, for which the
Noise Gain is st to a vey smal value The

Refresh| Zoo:
C
.

0 . Endy g !
o ® o™
® o

(] . . o
.
startriflg _® @ ‘
TUoe o, ® o. * o
[]

o @ .
® ‘o0 O .- M.0 . °.

Figure 4. Robot run with CBRintegrated with LM algorithm in/a
homogeneous simulated environment.

Obstacle Sphereisreduced aswell. Asa result, onceit is
out of the box canyon, the robot proceeds along a
relatively straight line toward its goal, as can be seen on
the top picture of point A in Figure 3.

Figure 4 shows a test run of a simulated roba that
employs both CBR and LM modules within a
homogeneous environment. The obstacle density in this
environment is twenty percent. As before, point B shows
the place where the roba becomes guck and seaches for
a set of behavioral parameters that would alow it to
proceed. The increase in Obstacle_Gain,
Obstacle Sphere, Noise Gain and Noise Persistence
alows therobot to escape the local minimum. Otherwise,
the rest of the robot trgjedory is a smoath curve with a
very good travel distance

Figures 5 through 8 show the results of tests
conducted on the integrated CBR with LM, CBR only,
LM only and a system without any adaptation a gorithms
(non-adaptive). Figures 5 and 6 show the performance of
a simulated robot on a navigational task in heterogeneous
environments. Overall, the results for 37 misdons in
heterogeneous environments were gathered. The
performance of a roba is represented by the time steps
that it takes for arobot to complete its misgon as well as
the percent of completed misgons. Thus, in Figure 5 the
least amount of time on average for misgon completion is
required for systems that use @ther CBR module or CBR
and LM modules together to adapt the behavioral
parameters. These systems also have a very high
probability of misson completion as $iown in Figure 6,
and therefore present the best performance A roba that
employs only the LM agorithm, on the other hand, has
the longest average time of misson completion but is aso
very good in terms of misgon completion rate. It
corrdlates with the results reported in [2] on the
performance of a system with LM adaptation only.
Finally, the non-adaptive system takes longer to complete
its misson than the system with bah LM and CBR
together and also fails to complete more missons than
any of the adaptive systems.

Figures 7 and 8 report the results of tests in
homogeneous environments guch as the one shown in

4000.07

3500.07

3000.0

2500.07

2000.0y

1500.01

1000.01

500.07

0.0
CBR & LM
integrated

CBR only LM only None

Adaptation algorithm

Figure5. Average number of steps of a simulated robot i

heterogeneous environments

100.0%

90.0%-

80.0%-

70.0%-

60.0%-7

50.0%-

40.0%-

30.0%-

20.0%-

10.0%

0.0%+

CBR & LM CBR only LM only None
integrated

Adaptation algorithm

Figure 6. Mission completion rate of a simulated rohot i
heterogeneous environments

Figure 4. In each of the figures, the firgt row is for an
environment with a 15% obstacle density and the second
(farther) row is for an environment with 20% obstacle
density. For each environment, fifty runs were conducted
for each algorithm to establish statigticd significance of
the results. In these tests, a system that employs both
CBR and LM on average cmmpletes its missons in the
shortest time (Fig. 7) as well as having an aimost 100
percent completion rate (Fig. 8). As before, a system with
only the LM algorithm has the best completion rate but on
average takes a very long time to complete amisson. A
non-adaptive system takes longer to complete its misson
than either the integrated LM-CBR or CBR-only systems.
More importantly, a non-adaptive system exhibits only 46
percent misson completion rate for denser environments
(Fig. 8).

According to these results, a robad that uses bath
CBR and LM dgorithms shows a significant
improvement over non-adaptive or the LM-only
approach. However, it shows just a dight improvement
over a system that uses the CBR-only approach for the
seledion of behavioral parameters. The reason for thisis
that in amulated environmentsit is relatively easy to find
the best set of parameters for each casein thelibrary asin
these tests. What LM provides, on the other hand, is a

20% Obstacle density

CBR & LM 15% Obstacle density
integrated CBR only LM only

None

Adaptation algorithm

Figure 7. Average number of steps of asmulated robot in
homogeneous environments

000 20% Obstacle density
CBR & LM 5 })
CBR only 15% Obstacle density
integrated LMonly
None

Adaptation algorithm

Figure 8. Mission completion rate of a simulated rohot i
homogeneous environments

search for a best set of parameters for a particular
environment in red-time, and therefore is most beneficial
when manually establishing an optimal library of casesis
difficult. Such is the case when one works with real
robas. Conducting experimentson ared roba in order to
establish a best library of cases is usually unreasonable
due to the number of experiments required. Instead, cases
are chosen based on a limited number of experiments
coupled with the knowledge derived from extensive
simulation studies. Then the redl-time adaptation of
parameters as provided by the LM agorithm can be
beneficial. Thispoint is e inthe next sedion where the
red roba experiments are presented.

5. Robotic Tests
This sedion describes the methods and results of
experimentation on a physical robot.

5.1. Experiment Setup

After concluding experiments on a simulated robot,
the system was moved to an ATRV-X roba for
experimentation on a physical robot. Some behavioral
parameters on the non-integrated systems (non-adaptive,
LM only, and CBR only) were hand-adjusted to improve
the robot performance so that the CBR-LM integrated
system could be tested againg systems that were beli eved

to ke nea-optimd for their respedive agorithms.
Because the ballooning strategy of LM performed so
poorly in preliminary runs, only the squeezing strategy
was used on LM-only system. Also, for the systems with
CBR enabled (bath stand-alone and integrated with LM),
a different case library was used for the real robot than
was used in simulation. Since there ae important
differences in size and movement capabilities of
simulation and physical robas, the library of cases had to
be danged. Therefore, whereas the library of cases used
for simulation robot was well optimized as a result of
numerous experiments, the library of cases for the red
roba was only based on a few robot experiments and the
simulated robot experiments. As a result, the library of
cases was not necessarily optimal, stressng the advantage
of having Leaning Momentum to @ptimize the
parameters online.

The robot’s misgon during the outdoor experiments

43 o -

Figure 9. ATRV-Jr duri ng ane of itstest runs

was to navigate first a small areafill ed with trees (some
artificial obstacles were also used to increase difficulty),
and then to traverse arelatively clear areato finally reach
agoal. The graight-line distance from the start position to
the goal was about 47 meters.

Data was gathered from ten runs for each of the four
types of systems. non-adaptive, LM enabled, CBR
enabled, and bah LM and CBR-enabled. An individud
run was considered a failure if the robot ran for ten
minutes without reaching its goal. Runs where the robot
became disoriented (i.e., the roba thought it was facing a
different diredion than it redly was) were discarded and
redone, isolating and removing data points resulting from
hardware fail ures.

5.2. Robotic Results

The results summarized in figure 10 show that there
isan increase in the performance of the integrated system
over bath the non-integrated and non-adaptive ones. In
particular, the non-adaptive system took the longest to
complete the misson. These results are inconsistent with
the simulation results in that, in simulations, LM-only
took the longest time.

1400

1200 1

1000

800]

400 +— —

200 T—]

CBR-LM CBR LM non-adaptive

Figure 10. Average steps to completion of a real robotgusin
different learning strategies.

One of the probable explanationsis that usualy non-
adaptive systems would either find a good path to the
goal, or they would not reach the goal at all. This meant
that the average number of steps to completion for the
successful runs is relatively low, but so is the @se for
successrates. In these experiments, however, there were
no failures. All valid runs got to the goal. That fact,
coupled with the fact that the non-adaptive robds usually
got stuck for short periods of time in box-canyon areas,
would drive up the average time to completion for the
series of non-adaptive runs. On the other hand, the
average time to completion for the LM-only runs was
driven down because only the squeezing strategy was
used in an environment where ballooning really wasn't
neaded. (Using one LM dtrategy in places where the
other was more appropriate was found to be amajor cause
of delay in a leaning momentum system [2].) The test
environment was not large enough to significantly suffer
from not being able to switch strategies for the LM-only
system.

Another observation isthat theroba using bah CBR
and LM performed significantly better than the roba
using only CBR. This observation again differs from the
simulation results, which showed that the addition of LM
to CBR provided only small performance increase over
CBR-only systems. As mentioned previously, in
simulation experiments the CBR library for simulations
was well optimized manually before the experiments,
whereas for the physical robot experiments the library
was not as optimal snce @se optimization isa very costly
and time-consuming operation. Ingead, whenever the
CBR module set up the behavioral parameters after
seleding a new case, the LM module fine-tunes them in
run-time until the set of "right" parametersis found.

6. Conclusion

Both case-based reasoning and leaning momentum
have separately been shown to increase performance
when applied to behavior-based systems [2,3]. Those
algorithms have now been shown aso to further improve
performance when used in tandem in a behavior-based
control system. Still while the integration of CBR and

LM improves the peformance over that of either
algorithm when used alone a significant performance
increaseis by no means guaranteed. While physical robot
experiments indeed show a significant improvement, the
simulation results must not be overlooked. Simulation
results seam to indicate that if a roba isusing CBR with a
case library that is well tuned for the roba characteristics,
the addition of LM does not necessrily result in
improvement. Instead one of the mnclusionsisthat LM is
most beneficial when the CBR case library is not nea
optimal. Thus the main benefit from having LM
integrated with CBR is that the library no longer requires
careful optimization. As the manual optimization requires
numerous experiments and therefore is very often
impossble when dealing with real robds, the addition of
the LM agorithm provesto be important.

Other conclusions that can be drawn from this work
are the potentia benefits of LM in the process of
dynamically updating the CBR case library. Currently we
are working on adding such capabilities to CBR as
leaning new cases, optimizing existing cases, and
forgetting old anes. However, becuse LM arealy
performs the parameter search at run-time, the results of
these searches could be valuable for the optimization of
cases. As LM finds new sets of the "right" parameters,
they could be used to update the eisting cases in the
library for retrieval whenever the robot encounters a
similar environment later. This cooperation would both
optimize the library of cases and speed uwp the seach
performed by LM. This posdbility provides fertil e ground
for future work.

Acknowledgments

This research is supported under DARPA's Mohle
Autonomous Robotic Software Program under contract
#DASG60-99-C-0081. The authors would aso like to
thank Dr. Douglas MacKenzie, Yoichiro Endo, Alex
Stoytchev, William Halli burton, and Dr. Tom Callins for
their role in the development of the MissionLab software
system. In addition, the authors would aso like to thank
Amin Atrash, Jonathan Diaz, Yoichiro Endo, Michael
Kaess Eric Martinson, and Alex Stoytchev for their help
with real robot experiments.

References

[1] Arkin, R.C., Clark, R.J,, and Ram, A., “Learning
Momentum: On-line Performance Enhancement for
ReactiveSystems,” Proceedings of the 1992 IEEE
International Conference on Robotics and
Automation, May 1992 pp. 111-116.

2] Lee J. B., Arkin, R. C., “Learning Momentum:
Integration and Experimentation,” Procealings of the
2001I1EEE Internationa Conference on Robatics and
Automation, May 2001, pp. 1975-1980.

[3] Likhachev, M., Arkin, R.C., “Spatio-Tempora
Case-Based Reasoning for Behaviora Seledion,”
Procealings of the 200L I|EEE Internationa
Conference on Robotics and Automation, May 2001,
pp. 16271634

[4] MacKenzie, D., Arkin, R.C., and Cameon, R,
“Multiagent Misgon Spedfication and Exeaution,”
Autonomous Robots, Val. 4, No. 1, Jan 1997, pp. 29-
52

[5] Kolodner, J, Case-Based Reasoning, Morgan
Kaufmann Publi shers, San Mateo, 1993,

[6] Ram, A., Arkin, R. C., Moarman, K., and Clark,
R. J, “Case-based Reactive Navigation: a Method
for On-line Seledion and Adaptation of Reactive
Robotic Control Parameters,” |IEEE Transactions on
Systems, Man and Cybernetics - B, Vol. 27, No. 30,
1997, pp. 376-3%4.

[7 Ram, A., Santamaria, J. C., Michdski, R. S, and
Teauci, G., “A Multistrategy Case-based and
Reinforcement Leaning Approach to Self-improving
Reactive Control Systems for Autonomous Robotic
Navigation,” Proceedings of the Second International
Workshop on Multigtrategy Learning, 1993, pp. 259
275

(8] Vasudevan, C., Ganesan, K., “Case-based Path
Planning for Autonomous Underwater Vehicles”
Autonomous Robots, Val. 3, No. 2, 1996, pp. 79-89.

[9] Kruusmaa, M., Svenson, B., “A Low-risk
Approach to Mohle Robot Path Planning,”
Procealings of the 11" International Conference on
Industrial and Engineaing Applicdions of Artificia
Intelligence and Expert Systems, Vol. 2, 1998 pp.
132141.

[10] Gugenberger, P., Wendler, J., Schroter, K.,
Burkhard, H. D., Asada M., and Kitano, H., “AT
Humboldt in RoboCup-98 (team description),”
Proceelings of the RoboCup-98, 199, pp. 358-363.

[17] Veloso, M. M., Carbondl, J. G., “Derivationd
Analogy in PRODIGY: Automating Case
Acquisition, Storage, and Utilization,” Machine
Learning, Vol. 10, No. 3, 199, pp. 249-278.

[12] Pandya, S., and Hutchinson, S., “A Case-based
Approach to Robot Motion Planning,” 1992 IEEE
International Conference on Systems, Man and
Cybernetics, Val. 1, 1992 pp. 492-497.

[13] Langley, P., Pfleger, K., Prieditis, A., and Russ,
S., “Case-based Acquisition of Place Knowledge,”
Procealings of the Twelfth International Conference
on Machine Learning, 199, pp. 344-352.

[14] Chamique Chagas N., Hallam, J., “A Leaning
Mobile Robot: Theory, Simulation and Practice”
Procealings of the Sixth Leaning European
Workshop, 1998, pp.142-154.

