Learning Behavioral Parameterization Usm
Spatio-Temporal Case-Based Reasoning

Maxim Likhachev, Michael Kaess, Ronald C. Arkin
Mobile Robot Laboratory
College of Computing, Georgia Institute of Technology
maxi m+@cs.cmu.edu, kaess@cc.gatech.edu, arkin@cc.gatech.edu

Abstract

This paper presents an approach to learning an optimal
behavioral parameterization in the framework of a Case-Based
Reasoning methodology for autonomous navigation tasks. It is
based on our previous work on a behavior-based robotic system
that also employed spatio-temporal case-based reasoning [3] in
the selection of behavioral parameters but was not capable of
learning new parameterizations. The present method extends the
case-based reasoning module by making it capable of learning
new and optimizing the existing cases where each case is a set of
behavioral parameters. The learning process can ether be a
separate training process or be part of the mission execution. In
either case, the robot learns an optimal parameterization of its
behavior for different environments it encounters. The goal of this
research is not only to automatically optimize the performance of
the robot but also to avoid the manual configuration of behavioral
parameters and the initial configuration of a case library, both of
which require the user to possess good knowledge of robot
behavior and the performance of numerous experiments. The
presented method was integrated within a hybrid robot
architecture and evaluated in extensive computer simulations,
showing a significant increase in the performance over a non-
adaptive system and a performance comparable to a non-learning
CBR systemthat uses a hand-coded caselibrary.

Index terms. Case-Based Reasoning, Behavior-Based Robotics,
Reactive Robatics.

I. INTRODUCTION

Behavior-based control for robotics is known to
provide good performance in unknown or dynamic
environments. Such robadic systems require little a priori
knowledge and are very fast in response to changes in the
environment, as they advocate a tight coupling o
perceptua datato an action. At any point of time, based on
incoming sensory data, arobad seleds a subset of behaviors
(called a behaviord assemblage) from the set of predefined
behaviors and then exeautes them. One of the problems,
however, of this approach is that as the surrounding
environment gradually changes, the parameterization of the
seleded behaviors should also be adjusted correspondingly.

" Thisresearch is sipported by DARPA/U.S. Army SMDC
contract #DASG60-99-C-008L. Approved for Public
Release; distribution unlimited.

Using a constant, non-adaptive, parameterization for most
of the non-trivia cases results in roba performance far
from being optimal. Also, choosing the "right" set of
parameters even in the case of constant parameterization is
adifficult task requiring bah knowledge of roba behaviors
and a number of preliminary experiments. It is desirable to
avoid thismanua configuration of behavioral parametersin
order to make misgon spedfication as user-friendly and
rapid as possble.

As one of the posgble solutions to these problems,
we previously proposed the use of Case-based Reasoning
methodology for the automatic sdedion of behaviora
parameters [3] for navigational tasks. This approach
resulted in significant robot performance improvement and
aso made the manua configuration of parameters
unnecesssry. This method, however, required manual
creation of a case library, where each case is indexed by
environmental features and defines a set of behaviord
parameters. Even though the credionof the library of cases
needed to be performed only once for a given robot
architedure, it is still very tedious work.

The idea behind this new research is to fully
automate the credion of a library of cases, so that the ase-
based reasoning (CBR) unit automatically creates and
optimizes cases in the library as the result of an automatic
experimental procedure. At the training stage the system
starts off with a completely empty library. As training
proceels new cases are created whenever there ae no close
enoughmatches already present in the library. Whenever a
case is ®eded for the gplication, it goes through an
adaptation step that, based on the previous performance of
the @se, adaptsthe @se in the diredion that resulted in the
performanceimprovement. The @se is then applied and its
performance is re-evaluated and stored for the use by the
adaptation routine the next time the @ase is ©leded. Thus,
in effed, the CBR unit performs a gradient descent search
in the space of behavioral parameters for each of the ases
in the library. Oncethetraining is over and a roba exhibits
a goad performance in the training sesson, the library is
"frozen" and can be used in red misgons. It isimportant to
note, however, that the training does not neel to be
separated from actual misson exeadtion. That is, an
aternative to the above procedure is to have the roba lean
the @ses as it exeautes misgons. In this case, even though

Library o
Cass
=
d Beravior roudly | Adgattion Beheviar
‘ adjugted Rrocess finetured
. totherot's | ofte | totherot's
. curet SHededCoe | curat

envranat enviramat
@
o

Figure 1. Behavioral selection processwith case-based reasoning
unit incorporated.

the performance in the firg roba missons would be far
from optimal, as more and more misgons are exeauted the
robd's performancewould consistently improve.

In sedion I, we demonstrate how a simulated robot
leans new cases during training and compare its
performancewith bath non-adgtive and narleaning CBR
systems. The results sow that the leaning system
significantly outperforms a non-adaptive system while it is
comparable to a non-leaning CBR system for which the
library of cases was manually created as a result of
extensive experimentation. Moreover, if the library of cases
for the non-learning CBR system was not well optimized
for actual environments that are similar to the test
environments then the leaning CBR system outperforms
even thenon-leaning CBR aswell.

A case-based reasoning methodology is not new to
the field of robotics. It was successfully used to help in
solving such problems as path planning based on past
routes, high-level action-seledion based on environment
similarities, place leaning, and accderation of complex
problem solving based on past problem solutions [4, 5, 6, 7,
8, 14]. Previous work has aso been performed on the
incorporation of case-based reasoning in the sdledion of
behavior parameters by our group [1, 2, 3] (upon which this
present reseach is partially based) as well as a few other
groups [eg., 13]. The approach described in this paper
extends our previous work by learning new cases from
scratch either during a training step or while exeauting a
misson. The method has also been incorporated within a
complete hybrid robot architedure ad extensively
evaluated in computer simulations. Extensive research has
also been conducted on leaning robot behaviors using other
methods such as neural networks, genetic dgorithms, Q-
leaning, and others [15, 16, 17]. In contrast to some of
these methods, this reseach concentrates on the automatic
leaning of an optimal parameterization of the behaviors
rather than the behaviors themselves. It also incorporates
some prior knowledge using the @se-based reasoning
methodology during leaning and thus decreases the
number of experiments required for ohbtaining a good
behavioral parameterization function as defined by alibrary
of cases.

Behavioral Control Module

M oveToGoal behavior
@voidObstacles behavioN

)@) M otor
\% | Vector
_)
Wander behavior Ws
vV, Wy
BiasM ove behavior

A

Set of |behavioral
pafameters

Sensor
Data

CBRModule
ase

Figure 2. Interaction between behaviora control module

running a GOTO behavioral assemblage and CBR unit.

Il. METHODOLOGY

A. Framework

The CBR unit operates within the MissionLab
system [9], which is a version of AuRA (Autonomous
Robot Architedure) [10]. It is a hybrid architecure that
consists of a schema-based reactive system coupled with a
high-level ddliberative planning system. The reactive
component conssts of primitive behaviors called motor
schemas [11] grouped into sets caled behaviord
assemblages. Each individud primitive behavior is driven
by its perceptua input (perceptual schema) producing its
own motor response. The vedorial responses from each of
the active schemas are added together resulting in an
overall behavior output. The weighted sum of the vedors,
after normalization, defines the final vedor that is sent to
the motor actuators. Hence, each motor schema affeds the
overall behavior of therobd.

It isthereactive levd that the CBR unit operates at.
In particular, it seleds the set of parameters for a currently
chosen behavioral assmblage that is best suited to the
current environment. As the roba exeautes its misson, the
CBR unit controls the switching between different sets of
behavioral parameters in response to changes in the
environmental type. Each such set of parameters congtitutes
a case in the CBR system and is indexed by environmental
features. The adaptation step in the @se-based reasoning
subsequently fine-tunes the parameters to a spedfic type of
environment, allowing the library of cases to be small. The
overall control flow isshown inFigure 1.

The CBR unit was evaluated on the behavioral
asemblage of type GOTO that is used for goal-direced
navigation (Figure 2). The asemblage contains the
following four primitive motor schemas: MoveT oGoal,
Wander, AvoidObstacles and BiasMove. The
MoveToGoal schema produces a vedor direded towards a
spedfied goal location from the robot's current position.
The Wander schema generates a random diredion vedor,
adding an exploration component to the robot's behavior.
The AvoidObstacles schema produces a vedor repelling
the robot from al of the obstacles that lie within some
given distance from the robd. The BiasMove schema
produces a vedor in a cetain diredion in order to hias the
motion behavior of theroba. The CBR module mntrolsthe
following parameters:

<Noise_Gain, Noise Persistence,
Obstacle Sphere Obstacle Gain,
MoveToGoal_Gain, Bias Vector_Gain,
Bias Vector_X, Bias Vector_Y>

The gain parameters are the multipli cative weights of the
corresponding schemas. The Noise Persistence parameter
contrals the frequency with which the random noise vedor
changesitsdiredion. Obstacle Sphere controlsthe distance
within which the robot reacts to olstacles with the
AvoidObstacles schema. Bias Vector X and
Bias Vector_Y spedfy the diredion of the vedor produced
by BiasMove schema. Thus, a ase in a library is a set of
valuesfor the above parameters.

B. Overview of non-learning CBR module

This sedion gives a high-level overview of the non-
leaning CBR module. Thetechnical detail s can be found in
[3]. The following sedion then provides the details of the
extensions that were made to the CBR module that make it
capable of bath leaning new and optimizing dd cases (the
leaning CBR module).

The overall structure of the non-learning CBR unit is
similar to a traditional non-leaning case-based reasoning
system [5] (Figue 3). First, the sensor data aad gpal
information are supdied to the Feature Identification sub-
module of the CBR unit. This sib-modue mmputes a
gpatial features vedor representing the relevant spatial
characteristics of the environment and a tempora features
vector representing relevant tempora characteristics. The
gpatial feature vedor is used to compute a traversability
vector F of sizek. A space aound theroba is broken into k
equal angular regions and each element of the vedor F
represents the degreeto which the corresponding region can
be traversed. The number of anguar regions is configurable
and depends on the type of sensors used (i.e, it is
resolution-limited) and the alowed computational
overhead. For all the experiments reported here, there were
four angular regions used. The details of how the
traversability vedor is computed appea in [3]. In short, the
traversability of a particular region deaeases as the size of
the largest cluster of sensor readings (readings appeaing
sufficiently close to each other) in thisregion increases, and
increases as the distance between the roba and this cluster
increases. The temporal features vedor consists of just two
elements. short-term and long-term robot velocities
normalized by the robot maximum velocity. Both spatial

Setof

Spatial FeaturesVedtor Temporal FeaturesVector

Curent Spawa Features & Spatialy
Matching Matching
environment | | dentification [Temparal Fedures . [Matching] .
vedors (1t sage of Case Sdection) (2nd stage of Case Sdection)
Sefof
‘Ar;"“: ﬁgf:s Spwaly;: Temporally
Matching cases
[CossLibrary |
CBRModule | Cetibray| F———————
Process
(3rd stage of Case Sdection)
BestMatching
case
CaeQuput Paramete's| Case |, Caserealy | Case BestMatching @ [Casesnitching
(Behaviordl Asermblage| Application | for application| Adaptation | curenly ussd G® | perigiontree
Paameters)

Figure 3. High-leve structure of the CBR Module

and temporal vedors are pased forward for a best
matching case seledion.

Case sdledion is done in three steps. During the
first dage of case sdledion, al the ases from the library
are seached, and the weighted Euclidean distances between
their traversability vedors (derived from their spatia
feature vedors) and the environmental traversability vedor
are omputed. These distances define spatial similarities of
cases with the environment. The @se with the highest
gpatial similarity is the best gspatially matching case.
However, all the ases with a spatia similarity within some
ddlta from the similarity of the best spatially matching case
are ds0 sdleded for the next stage sdledion process The
resulting set consists of the spatially matching cases. At the
second stage of seledion, dl of the spatially matching cases
are seached, and the weighted Euclidean distances between
their temporal feature vedors and the ewvironmental
temporal feature vedor are computed. These distances
define temporal similarities of cases with the environment.
The @se with the highest tempora similarity is deened the
best temporally matching case. Again, al the cases with a
temporal similarity within some delta from the similarity
value of the best temporally matching case ae seleded for
the next stage in the seledion process These @ses are
gpatially and temporally matching cases, and they are all
the @ses with close spatial and temporal similarity to the
current environment. This st usualy consists of only a
few cases and is often just one @se, but it is never empty.
At the last sdedion stage, a @se from the set of spatially
and temporally matching cases is sdeded at random.
Randomness in case sdledion is introduced in order to
exercise the exploration of cases with similar features but
different output parameters.

The @se switching dedsion treeis then used to
dedde whether the arrently applied case should still be
applied or the case sdleded as the best matching one
shoould be used instead. This proteds against thrashing
and overuse of cases. If the seleded case is to be applied,
then it goes through the adaptation and applicaion steps.
At the adaptation step, a @se is finetuned by dlightly
readjusting the behavioral assemblage parameters contained
in the @se to better fit the arrent environment. At the
application sep these parameters are passd to the
behavioral control module, which uses these parameters in
the evaluation of the aurrent behavioral assamblage.

C. Learning CBR module

This sedion provides an overview of the leaning
CBR module (Figure 4), emphasizing the extensions that
were made to the non-leaning CBR algorithm described
previoudy. First, as before the sensor data and goal
information are provided to the Feature Identification sub-
module that operates identicaly to the Feature
| dentification sub-module in the non-leaning CBR module.
The resulting spatial and temporal feature vedors are then
pasxd to the best matching case seledion process

Behavioral

Aszmblage | Application
parameters

for
applicatior]

Case

Case
realy

Current Spatial & Tempord

Learning
CBR Module

Vedor Matching

Spatiad Fedures |Set of Spatialy, | Tempora Fedures
Maching Vedor Matching

All the caesin the library

Last

K cases Last
with adjusted
performence|

history

Setf of

spatially & Temporally
Matchif

atching cases

A

Randam Seledion
biased by case success

and
spatial and temporal
similarities

Old Case

New or
Case Best New case creation Begt Perf
}4—{ ’4‘ amance
Adaptation | Maching if needed Matching i
apt case case Evauation

Best Matching
case

Best|Matching
lcase:

A 4

Case Switching
< hing | -
DedsionTree

Figure 4. High-level structure of the Learning CBR Module.

1) Case Slection

As before, at the spatia case sdedion step the
spatial similarity between each case in the library and the
current environment is computed as the weighted Euclidean
distance between the case and environmental traversability
vectors. Now, however, instead o sdeding all the ases
that have a spatial similarity within some delta from the
similarity of the best spatially matching case, the @ases are
seleded at random, with their probability of being seleded
proportional (according to a Gausdan function) to the
difference between their spatial similarity and the spatial
similarity of the best spatially matching case. Figure 5
ill ustrates this case seledion process. Case C; is the best
spatially matching case and hasa 100 percent probability of
being seleded to the set of spatialy matching cases. Cases
C; and C, are dso sdeded as a result of random case
sdledion biased by their spatial similarities. The idea
behind adding such randomness to the @se sdedion
process is to hias the eploration of cases by their
similarities with the environment. Simil arly, at the temporal
case seledion stage, the cases that were seleded as spatially
matching cases go through the random seledion with the
probability of being sdeded biased by the differences
between their temporal similarity and the tempord
similarity of the best temporally mathing case. Thus, in the
examplein Figure 5 case C, isthe best temporally matching
case ad therefore is sleded for the next seledion step.
Case C, is dso sdleded at random for the next sdledion
step whereas C, is not. The @ses that pass these two
seledion stages are also called spatially and temporally
matching cases and are forwarded to the last case seledion
stage.

At thelast seledion step just one @seissdeded at
random with a probability of being seleded proportional to
the weighted sum of case gspatia sSmilarity, temporal
similarity and case success The @se success is a scalar

P(selection) P(selection) P(selection)

1.0 1.0 1.0
i |
1 Spatialy 1 Spatialy & B;(_
| matching | temporally matching
=, | _matching e
GGGy ! cases: C,
| | CandC,
| L

/€{3C4‘3C S GG Gy Gy G
00 Spatial 10 0o Tempod 10 00T weighted sum of
Simil arity Similarity Spatia, temporal

Figure5. Case selection process

Simil arities and success

value that refleds the performance of the @se, and is
described below. Thus, for the example shown in Figure 5,
C, has a higher weighted sum of spatial and temporal
similarities and success and therefore has a higher chance
of being sdeded than C,. In this particular example, C; is
indeal seleded as the best matching case.

Once the @se is sdeded, as before, the ase
switching dedsion tree deddes whether to continue to use
the arrently applied case or switch onto the seleded best
matching case. If the switching dedsion tree says that the
currently applied case should remain active, then nothing
else neals to be done in this cycle of the CBR unit.
Otherwise, the CBR unit continues its exeaition with the
evaluation of the aurrrently applied case performance

2) 0Old Case Performance Evaluation
The velocity of the robot relative to the goal (the
speal with which the robot is approaching its goal) is used
as the main criteria for the evaluation of case performance
The pseudocode for the @se (C) performance evaluation is
given below:

Compute velocity V(C) according to Equation (1)
If (V(C) <0 and C was applied last)
/ldelayed reinforcement
Postpone the evaluation of C until another K-1
cases are applied or C is selected for
application (whichever comes first)
else
if (V(C)> UNmax(C) and V(C)>0) //=0.9
I(C) = max(1, I(C) + 1);
else
I(C) = I(C) — 1;
end
I(C)=min(Imax, I(C)); /limit I(C);lmax=100
Update Vmax(C) according to Equation (2)
if(C was applied last)
if(V(C)> ulNmax(C) and V(C)>0)
Increase S(C) by A proportional to 1(C);
else
Decrease S(C) by A;
end
else
if (Robot advanced towards its goal)
Increase S(C) by A proportional to 1(C);
else
Decrease S(C) by A;
end
end
end

Since for some @ses the task is to get the roba
closer to the goal, whil e for other casesthe task isto get the
roba out of local minima such as “box canyons’ created by
obstacles, the roba's velocity relative to the goal may not
aways be the best evaluation function for case
performance Ingead, a ddayed evaluation of the @se
performance may be necessry. For this reason the
information on the last K applied casesis kept. K defines a
leaning horizon and in this work is chosen to be 2. Thus,
when a new case is about to be applied, the performance
evaluation function is called an each of the foll owing cases:

the @ase that was applied last; the ase that was applied K
cases ago and was not yet evaluated (the evaluation was
postponed); and the @se that was applied some time
previoudly, that was not yet evaluated and is the very case
seleded for anew applicdion. At the very beginning d the
performance evaluation a ched isdone: if a ase C was just
applied and the roba did not advance towards its goal as a
result of the ase application (V(C) <0, where V(C) denotes
the average velocity of therobot relativeto itsgoal from the
time just before @ase C was applied up until the arrent
time), then the @se performance evaluation is postponed.
Otherwise, the performance evaluation proceals further.
Each case has a number of variables that represent
the recent performance of the @ase and need to be updated
in the performance evaluation routine. The average velocity
of the robot reative to the goal for case C is computed as
given:
9i,c) 9t

curr

V= tewr 1t ©)

D

where t,(C) is the time before the application of case C, tey
isthe arrent time and g; isthe disancetothe goal at timet.
One of the variables maintained by each case describing
case performance is Vix(C) : the maximum average
velocity of the roba relative to the goal as a result of the
application of case C. This velocity is updated after every
performance evaluation of case C. Equation 2is a form of
“maximum tracker” in which Vio(C) very sowly decreases
whenever it is larger than V(C) and instantaneoudy jumps
to V(C) whenever Viu(C) issmdler than V(C):

Vina(€) =max{((C),nVma(C) +L-mMI(C)) @)

where nisalargetime onstant (0.99 for thiswork).

However, before Vi (C) is updated a dedsion is
made on whether the @se resulted in performance
improvement or not. The performance is considered to
improve if V(C)> ulVmax(C) and V(C)>0, where u is close
to 1. Thus, the @se performance is considered to be an
improvement not only when the velocity is higher than it
has ever been before but aso when the high velocity is
reasonably sustained as a result of the @se's applicaion.
The variable 1(C) maintains the number of the last case
performance improvements and is used in the adaptation
step to search for the adaptation vedor diredion.

Finally, the @ase success SC), is also updated. If
the performance evaluation is not postponed, then the @ase
successis increased if the case performance improved (the
performance improvement is defined by the same formula
as before) and is deaeased otherwise. If, however, the ase
evaluation was postponed, then the @se success is
increased if the roba advanced sufficiently towards its goal
after the ase was applied and is deaeased if the roba has
not advanced at all. In either case the increase in the @se
success is proportional to the number of times the
application of the @se resulted in its performance
improvement, [(C). This adds momentum to the
convergence of case success The more there ae recent

case improvements, the faster the @se success approaches
its maximum value (1.0) indicating full convergence of the
case. The @se successis used in case seledion to has the
seledion process and in case adaptation to control the
magnitude of the adaptation vedor. It will be discussed
further below.

3) Case Creation Decision

At this gep, a dedsion is made whether to create a
new case or kegp and adapt the @se that was €leded for
the applicaion. This dedsion is made based on the
weighted sum of the tempora and spatial similarities of the
seleded case with the environment and on the success of
the seleded case. If the successof the ®lecedcase is high
then it must be very similar to the environment, mainly
gpatialy, in order for this case to be adapted and applied.
This prevents making the @se success diverge based on
environments that do not correspond to the case. If the case
success is low, then the case similarity may not be very
close to the environment and 4ill the ase is adapted and
applied. In any event, the size of the library is limited (for
this work a limit of 10 cases was used) and therefore if the
library is already full then the seleded case is adapted and
applied.

If it is dedded that a new case should be aeated,
then the new case is initialized with the same output
parameters (behavioral parameters) as the seleded case but
input parameters (spatial and temporal feature vedors) are
initialized to the spatial and temporal feature vedors of the
current environment. The new case is sved to the library
and then passed to the adaptation step. If no new case is
created then the seleded case is passd dredly to the
adaptation step.

4) Case Adaptation

Independent of whether the case to be applied isan
old case or was just created, the ase till goes through the
adaptation process Every case C in the library aso
maintains an adaptation vedor, A(C) that was last used to
adapt the @se output parameters. If the case was just
created then the alaptation vedor is st to a randomly
generated vedor. The adaptation of a case happens in two
steps. First, based on the @se's recent performance, the
adaptation vedor is used to adapt the @se C output
parameter vedor, O(C):

if (I(C) <0)
/lchange the adaptation direction
A(C) = — A[A(C) + V[R;

end

/ladapt

O(C) =0O(C) + A(C);

If the case improvement I(C) does not show
evidence that the @se was improved by the last series of
adaptations, then the alaptation vedor diredion isreversed,
deaeased by a constant A and a randomly generated vedor

Help

Refresh| Resuse| Zoo: 1005 v| 4|
B
.

Help

Refresh Zoon: 1005 | 4|

Refresh Zoon: 1005 | 4|
3]
.

Figure 7. Screenshots of training runsin a homogeneous environment.
Top: initid run that arts off with an empty library; Bottom: arun after
fifty training runs.

Figure 6. Screenshots of training runs in a heterogeneous environment.
Top: initia run that starts off with an empty library; Bottom: a run after
fifty-four training runs.

R scaled by a constant v is added to asaure exploration in
the search for optimal parameters.

At the sewmnd adaptation step, the output
parameters are atered based on the short-term and long-
term relative velocities of the roba (edements of the
temporal features vedor). This adaptation step is similar to
the adaptation step performed in the non-leaning CBR
module [3] and, in short, increases the Noise Gain and
Noise Persigence behavioral parameters inverse
proportionally to the short-term and longterm relative
vel ociti es of therobot. Theideaisthat these two parameters
are increased more and more if the roba is guck longer and
longer at one place (such can be the @ase with difficult “bax
canyons’).

Finally, the behavioral parameters of the ase ae
limted by their corresponding baunds. Also,
Obstacle Gain is limited from below by the sum of
Noise_Gain, MoveToGoal_Gain and Bias Vector_Gain.

This ensures that in any event the robd does not collide
with obstacles.

After the @se is adapted it is applied. The
application is smply extracting the behavioral asssmblage
parameters from the adapted case and passng them to the
behavioral control unit within the MissionLab system.

I1l. EXPERIMENTS

A. Experimental Analysis

The performance of the system was evaluated in a
simulated environment. MissionLab provides a smulator
as well as logging capabilities, allowing the wlledion of
therequired datistical data easily.

Figures 6 and 7 demonstrate the training processof a
roba. In Figure 6 the training is done on heterogeneous
environments (the obstacle density and pattern change
within one robot misgon), whereas in Figure 7 the training
isdone on homogeneous environments (the obstacle density

3500.0-

3000.0-

2500.0-

2000.0-

1500.0-

1000.0-

500.0-

0.0
non-leaming CBR learning CBR Non-adaptive

Adaptation algorithm

Figure8. Average number of steps of a simulated rohot i
heterogeneous environments

100.0%-

90.0%-

80.0%-

70.0%-

60.0%-

50.0%-

40.0%-

30.0%-

20.0%-
10.0%-

0.0%-

non-learning CBR learning CBR Non-adaptive
Adaptation algorithm

Figure9. Mission completion rate of a simulated rohot i
heterogeneous environments

and pettern remain constant throughout a roba misgon).
These were two separate training processes resulting in two
different leaned libraries. Figures 6(top) and 7(top) show
screenshots of MissionLab during the first roba runs. At
the beginning o both runs the libraries do not contain any
cases and are aeated asthe robot proceeds with its misson.
Black dots of various g$zes represent obstacles and the
curved line across the picture depicts the trajedory of the
roba after it completed its misgon. In Figure 6 the misson
areais 350 by 350 meters, whereasin Figure 7 it is 150 by
150 meters. Sincethe library is being created from scratch,
the performance of theroba in these first runsis very poor.
The seach for optimal parameterization has just Sarted in
these runs and thus the roba behavior is very noisy. In
contrast, after about fifty training runs for bath
heterogeneous and homogeneous environments, the robot
successfully leaned more optimal parameterizations and
therefore the roba trajedory in final runs (Figures 6 and 7
bottom) is far better. A good example of leaning an
optimal parameterization is in the last (rightmost) grid o
small obstacles in the heterogeneous environment. In order
for a roba to traverse such a dense but highly ordered
obstacle environment the robot has to apply what is called a
“squeezing” dtrategy. In this strategy Obstacle Sphere is
deaeased to its minimum while MoveToGoal_Gain has to
prevail over Noise Gain. This makes the roba squeeze
between obstacles towards its goal. In the first run, this
strategy is not known to the roba and it takes a long time
for therobot to go through thisarea In contrag, in Figure 6
(bottom) the roba successfully “squeezes’ through this
area along astraight line. The log files ow that the robot

20% Obstacle density

o
non-learning CBR 15% Obstacle density

learning CBR
Non-adaptive
Adaptation algorithm

Figure 10. Average number of steps of asimulated robot in
homogeneous environments

20% Obstacle density

")
non-learning CBR 15% Obstacle density

learning CBR

Non-adaptive
Adaptation algorithm
Figure 8. Mission completion rate of a simulated rohot i
homogeneous environments

trajedory in the fina run in the heterogeneous environment
is 36 percent shorter than in the initial run while in the
homogenous environment the final run is 23 percent shorter
than theinitial run.

B. Experimental Results

Figures 8 through 11 show the datistical data
gathered in the simulations. Three systems were evaluated:
non-adaptive which dd not use aly adaptation of
behavioral parameters, a system that employed the non-
leaning CBR module for the adaptation of behavioral
parameters, and a system with the leaning CBR module.
Cases for the non-leaning CBR module were aeated
manually by running preliminary experiments to configure
them optimally. Three libraries for the leaning CBR
system were aeaed automaticdly by running about 250
training runs. All threelibraries were evaluated and the data
in the graphs contains average values over the three
libraries. For the runs with the non-adaptive system, the
optimal set of parameters was chosen for a given average
obstacle density. This was equivalent to a user spedfying
the optimal parametersfor a given misgon.

Figures 8 and 9 show the peformance of a
simulated robot on a navigational task in heterogeneous
environments (such as the one shown in Figure 6). Overall,
the results for 37 misdons in different heterogeneous
environments were gathered. The performance of aroba is
represented by the time steps that it takes a robot to
complete its misgon, as wdl as the percentage of
completed misgons. Thus, the anount of time, on average,
it takes the leaning CBR system to complete a misson is

better than for a non-adaptive system whil e worse than for a
non-leaning one. This result is expeded as the library for
the non-leaning CBR system was manually well optimized
on the set of heterogeneous environments. The misson
completion rate (Figure 9) is about equal for bath non-
leaning and leaning CBR systems. The non-adaptive
system has the lowest misson successrate.

Figures 10 and 11 report the results of tests in
homogeneous environments auch as the one shown in
Figure 7. In each of the figures, the front row is for an
environment with a 15% obstacle density and the back row
is for an environment with 20% obstacle density. For each
environment, fifty runs were mnducted for each agorithm
to establish statisticd significance of the results. In these
tests, a system that employs learning CBR outperforms
even the non-leaning CBR system not to mention the non-
adaptive one. This is true in terms of both criteria: the
average misson exeaution time aad misgon success rate.
The reason for this is that even though the non-leaning
CBR system performs very wel in homogeneous
environments it was manually optimized using a sub-set of
environments used for heterogeneous environment tests. As
aresult, the leaning CBR had an opportunity to learn cases
that were better suited for the homogeneous environments
than the ones that were in the library of the non-leaning
CBR module. Non-adaptive, on the other hand, performs
far from optimally on these environments and even more
importantly exhibits only 46 percent misgon completion
rate for denser environments (Figure 11, 20% density).

V. CONCLUSION

This paper presents a robotic system that
incorporated learning into a previousy developed case-
based reasoning module used for the seledion of behaviora
parameters. Not only does it dgnificantly improve the
performance of the robot in comparison to a non-adaptive
system but it also potentially improves the performance
over anon-leaning CBR module if its library was not well
optimized for test environments, as was shown in the
experiments. Automatic leaning of cases is also favored as
the process of manudlly creating a CBR case library is
tedious and requires knowledge of both roba behavior and
the operation of the CBR module as well as numerous
experiments. The @se library also had to ke manually re-
configured every time anew roba architedure is targeted.
In contrast, with the leaning CBR module the process of
library configuration is fully automatic, namely through
training. This now makes unnecessary any configuration of
behavioral parameters even to crede an initia case-based
reasoning library. Moreover, theroba can lean cases while
exeauting its misgons, even avoiding the automatic training
process if the acocompanying performance deterioration in
the initial first missons is acceptable. As more aad more
misgons ae e&eatted the better and better the
parameterization becomes, resulting in enhanced roba
performance

Future work includes the esaluation of the system on
red robds (Nomad 15G and ATRV-JRs). This presented
reseach is pat of a larger projed involving the

incorporation of a range of different leaning tedhniques
into MissionLab. It is planned to investigate how such
multiple techniques can help in leaning cases more
efficiently.

V. ACKNOWLEDGMENTS

The authors of the paper would like to thank the foll owing
people who were invaluable in the work with MissionLab:
Dr. Douglas MacKenzie, Yoichiro Endo, William Conrad
Halli burton, Mike Cramer, Alexander Stoytchev, and Dr.
Tom Coallins.

REFERENCES

[1] A. Ram, R. C. Arkin, K. Moorman, and R. J. Clark, “Case-based
Reactive Navigation: a Method for On-line Selection and Adaptation
of Reactive Robatic Control Parameters” IEEE Transactions on
Systems, Man and Cybernetics - B, 27(30), pp. 376-394, 1997.

[2] A. Ram, J. C. Santamaria, R. S. Michalski and G. Teaici, “A
Multistrategy Case-based and Reinforcement Learning Approach to
Self-improving Reactive Control Systems for Autonomous Robotic
Navigation,” Proceedings of the Second International Workshop on
Multistrategy Learning, pp. 259275, 1993

[3] M. Likhachev and R. C. Arkin, “ Spatio-Temporal Case-Based
Reasoning for Behavioral Selection,” Proceedings of the 2001 |EEE
International Conference on Robotics and Automation, pp. 1627
1634 2001.

[4] C. Vasudevan and K. Ganesan, “Case-based Path Planning for
Autonomous Underwater Vehicles” Autonomous Robots, 3(2-3), pp.
79-89, 1996

[5] M. Kruusmaaand B. Svensson, “A Low-risk Approach to Mobhile
Robat Path Planning” Proceedings of the 11" International
Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, 2, pp. 132-141, 1998

[6] P. Gugenberger, J. Wendler, K. Schroter, H. D. Burkhard, M.
Asada, and H. Kitano, “AT Humboldt in RoboCup-98 (team
description),” Proceedings of the RoboCup-98, pp. 358363, 1999

[7] M. M. Veloso and J. G. Carbonell, “Derivational Analogy in
PRODIGY: Automating Case Acquisition, Storage, and Utilization,”
Machine Learning, 10(3), pp. 249278 1993

[8] S. Pandya and S. Hutchinson, “A Case-based Approach to Robot
Motion Planning,” 1992 IEEE International Conference on Systems,
Man and Cybernetics, 1, pp. 492-497, 1992

[9] D. Mackenzie, R. Arkin, and J. Cameron, "Multiagent Mission
Specification and Execution," Autonomous Robots, 4(1), pp. 29-57,
1997.

[10] R. Arkin and T. Balch, "AuRA: Principles and Pradice in
Review," Journal of Experimental and Theoretical Artificial
Intelligence, 9(2), pp. 175189, 1997

[17] R. Arkin, "Motor-Schema based Mobile Robot Navigation,"
International Journal of Robotics Research, 8(4), pp. 92-112, 1989

[12] J. Kolodner, Case-Based Reasoning, Morgan Kaufmann
Publishers, San Mateo, 1993

[13] N. Chalmique Chagas and J. Hallam, “A Learning Mobile Robot:
Theory, Simulation and Practice,” Proceedings of the Sxth Learning
European Workshop, pp.142-154, 1998

[14] P. Langley, K. Pfleger, A. Prieditis, and S. Russel, “ Case-based
Acquisition of Place Knowledge” Proceedings of the Twelfth
International Conference on Machine Learning, pp. 344352, 1995

[15] RPN. Rao and O. Fuentes, "Hierarchicadl Learning of
Navigational Behaviorsin an Autonomous Robot using a Predictive
Sparse Distributed Memory," Autonomous Robots, 5, pp. 297-316,
1998

[16] A. Ram, R. Arkin, G. Boone, and M. Pearce, "Using Genetic
Algorithms to Learn Reactive Control Parameters for Autonomous
Robatic Navigation," Journal of Adaptive Behavior, 2(3), pp. 277
305, 1994.

[17] S. Mahadevan and J. Connel, "Automatic Programming of
Behavior-Based Robots Using Reinforcement Learning,”
Proceedings of the Ninth National Conference of Artificia
Intelligence, pp. 768773, 1991

