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Abstract—Many applications require continuous mon-
itoring of a moving target by a controllable vision sys-
tem. Although the goal of tracking objects is not new,
traditional techniques usually ignore the presence of ob-
stacles and focus on imaging and target recognition is-
sues. For a target moving among obstacles, the goal
of tracking involves a complex motion problem: a con-
trollable observer (e.g., a robot) must anticipate that
the target may become occluded by an obstacle and
move to prevent such an event from occurring. This
paper describes a strategy for computing the motions
of a mobile robot operating in a 2-D workspace without
prior knowledge of the target’s intention or the distribu-
tion of obstacles in the scene. The proposed algorithm
governs the motion of the observer based on current
measurements of the target’s position and the location
of the local obstacles. The approach is combinatorial
in the sense that the algorithm explicitly computes a
description of the geometric arrangement between the
target and the observer’s visibility region produced by
the local obstacles. The algorithm computes a contin-
uous control law based on this description. The new
tracking strategy has been implemented in a real-time
robotic system.

Keywords— Target tracking, visibility constraints,
robotics, autonomous observers, escape paths.

I. Introduction

Various types of applications may benefit from mo-
bile sensors capable of autonomously monitoring tar-
gets moving unpredictably in environments cluttered
by obstacles. For instance, in [1], [2] a robot equipped
with a camera —called an “autonomous observer”
(AO)— helps geographically distributed teams debug
robotic software. The AO continuously tracks a sec-
ond robot (the target) executing an independent task.
The information acquired by the AO is sent over to
remote workstations, where a 3-D graphic rendering
of the target and its environment allows the program-
mers to detect and correct bugs in the target’s soft-
ware. Target-tracking techniques in the presence of
obstacles have also been also proposed for the graphic
animation of digital actors, in order to select the suc-
cessive viewpoints (positions of a virtual camera) un-
der which an actor is to be displayed as it moves in
its environment [3]. In surgery, controllable cameras
could keep a patient’s organ or tissue under continu-
ous observation, despite unpredictable motions of po-
tentially obstructing people and instruments. In an
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airport, mobile robots available to travelers for carry-
ing bags could autonomously follow the displacements
of their “clients.” The military domain offers many
other potential applications as well. As noted in [4],
a key distinction between the above applications and
standard tracking problems (e.g., missile control, pure
visual tracking [5], [6], [7]) is the introduction of ob-
stacles that occlude the field of view of the sensor and
obstruct the motions of the sensor and the target. The
sensor must then use its ability to move to prevent un-
desirable occlusions from happening.

In this paper, we consider the case where a con-
trollable vision sensor is mounted on an indoor mobile
robot acting as the observer. It is assumed that any
obstacle in the environment that obstructs the field of
view of the sensor also constrains the motions of both
the robot and the target, and vice-versa (no transpar-
ent objects or smoke screens). The target (as well as
the observer) operate on a plane, but the trajectory
of the target is not known in advance. Furthermore,
no prior model (map) of the environment is available.
These constraints imply that off-line techniques can-
not be used. Moreover, the lack of a prior map severely
limits the use of pre-computed calculations in order to
enhance the on-line execution of the algorithm. The
robot must rely upon a “local” map computed on-the-
fly from the measurements produced by its sensors.

Our on-line algorithm redirects the observer (i.e. the
robot) several times per second based on the differen-
tial change in a measure φ of the risk that the target
escapes its field of view. φ is computed deterministi-
cally, and is a function of how quickly can the target
escape and how easy it is for the observer to react to
such an event. For example, if the target can escape
by moving around a corner, φ grows with the distance
between the observer and such corner. This encodes
the fact that an occlusion is difficult to clear if the
observer is far away from the corner producing it.

The evaluation of the change in φ at each time step is
based on two key geometric computations. One com-
putation yields the observer’s visibility region in the
environment; this region is constrained by the sensor’s
characteristics (e.g., minimal and maximal range), the
observer’s position, and the view-obstructing obsta-
cles. The second computation is the construction of a
escape-path tree (EPT), which is a data structure con-
taining all the locally worst-case paths that the target
may use to escape the observer’s visibility region.

In general, a differential change in the position of the
observer produces a differential change in the struc-
ture of the EPT, which in turn produces a differential
change in the risk φ. This change can be computed
analytically, and thus the gradient of φ can be used



to direct the motion of the robot. The result is not
only an on-line strategy, but a differential one (i.e., a
feedback controller).

The rest of the paper is organized as follows: Sec-
tion II gives a formal statement of the tracking prob-
lem and describes previous work on this topic. Sec-
tion III defines escape paths and their connection to
the tracking problem. The notion of escape risk as
a tracking criterion is also introduced here. In Sec-
tion IV, we present an algorithm for target tracking
that does not require a prior map. Section V de-
scribes the implementation of our techniques into a
robotic platform and reports on the experiments with
this system. Finally, Section VI suggests topics for
future research.

II. Problem Formulation and Background

Below, we follow the mathematical formulation used
in [4].

Suppose the observer and the target move in a
bounded Euclidean subspaceW ⊂ <2 (the workspace).
The observer and the target are assumed to be rigid
bodies, and their free configuration spaces are denoted
Co and Ct, respectively. Let X be the state space of
the problem, which is the Cartesian product of the
individual state spaces of both the observer and the
target. The Cartesian product Co×Ct is equal to X in
the absence of dynamics. In general, however, Co ×Ct

is a subspace of the state space.
Define qo(t) ∈ Co as the observer’s configuration at

time t, and xo(t) as its state. Let fo be the transi-
tion equation for the states of the observer: ẋo(t) =
fo(xo,u), where u(t) is the control or action selected
from a control set U at time t. The function f o

models the observer’s dynamics, and may encode non-
holonomic restrictions or other type of constraints.

Similarly, let qt(t) ∈ Ct be the configuration of the
target at time t and xt(t) its state. The transition
equation for the target is given by ẋt(t) = f t(xt,θ),
with the action θ(t) selected from a target control set
Θ. For a reactive target with knowledge about the
observer’s actions, f t depends on xo(t) or qo(t). An
important case, treated extensively in [4], is when the
target is predictable. In this case, the target’s transi-
tion equation simplifies to q̇t = f t(qt(t)).

Together, fo and f t define a state transition equa-
tion ẋ(t) = f(x,u,θ), where x(t) = (xo(t),xt(t)).
The state can be mapped into a configuration pair by
some function (qo, qt) = H(x), where H : X → Co×Ct

is a mapping that is not injective in general.

A. Visibility regions

The workspace geometry plays an important role
in the target-tracking problem. In addition to ob-
structing motion, obstacles determine the area of the
workspace that is visible to the observer.

The observer’s configuration determines the field of
view of its sensors. Let V(qo) ⊆ W be the set of
all locations where the target is visible to an observer
located at qo. The set V(qo) is the visibility region
at the observer position qo and can be defined in a
number of ways [8]. For example, the observer may
have a 360-deg field of view and the target may be a
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Fig. 1. Measuring the visibility region with a laser range-finder.

point inW. In this case, the target is said to be visible
iff the line-of-sight to the observer is un-obstructed. In
other examples, visibility may be limited to some fixed
cone or restricted by lower- and upper-bounds on the
sensor range.

The visibility region can be computed from a syn-
thetic model or from sensor measurements. In the for-
mer case, a ray-sweep algorithm can be used to com-
pute this region for polygonal models (see [9] for a
survey of methods). For the latter, the visibility re-
gion can be measured with a laser range-finder using
the technique proposed in [10] (see Fig. 1).

B. Tracking strategies

In essence, the target-tracking problem consists of
computing a function u∗(t) — a strategy — such that
the target remains in view for all t ∈ [0, T ] (where T
is the horizon of the problem). Additionally, it may
be important to optimize additional criteria based on
the total distance traversed by the observer, the dis-
tance to the target, or a quality measure of the visual
information. Sometimes losing track of the target is
unavoidable, in which case an optimal strategy may
consist of maximizing the target’s escape time (tesc)
— the time when the observer first loses the target.

If the target action θ(t) ∈ Θ is known in advance
for all t ≤ T , then the target is said to be predictable.
In this case, the optimal strategy can be calculated
off-line before the observer begins to track the target.
Because the location of the target is known for all t,
it is possible to re-acquire the target when it is lost.
Therefore, for cases where it is impossible to track the
target for all t ≤ T , we may instead maximize the
exposure — the total time the target is visible to the
observer — as an alternative to maximizing the escape
time.

If u∗(t) is computed as a function of the state x(t),
then the strategy operates in closed loop. Otherwise,
the strategy runs in open loop. Closed-loop strategies
are preferred over open-loop ones even for the pre-
dictable case, unless there is an absolute guarantee
that the motion models and position measurements
are exact (e.g., as is the case in [3]).

When the target actions are unknown, the target is
said to be unpredictable. This is a significantly more
complex problem. Following the framework proposed
in [11], the unpredictable case can be analyzed in two
ways: If the target actions are modeled as nondeter-
ministic uncertainty, then it assumed that we know



Θ but not a specific θ(t) ∈ Θ. That is, we know
the action set but not the specific action selected by
the target. In this case, one can design a strategy
that performs the best given the worst-case choices
for θ(t). Alternatively, if a probabilistic uncertainty
model is available — i.e., the probability density func-
tion p(θ(t)) is given — then it is possible to compute
a motion plan that is the best in the expected sense.

In any event, the unpredictable case has to be solved
on-line. Unless there is a mechanism for re-acquiring
the target [12], a good tracker seeks to maximize tesc
as opposed to maximize the exposure. A strategy de-
signed for the worst-case scenario will anticipate the
target’s most adverse action for a future horizon T ,
execute a small (possibly differential) initial portion
of the computed strategy, and repeat the entire pro-
cess again [2]. On the other hand, a strategy designed
to anticipate the expected target’s action will seek to
maximize tesc by maximizing the probability of future
target visibility [1], [4], [13].

C. Robot localization issues

In practice, the tracking problem is often inter-
woven with that of robot self-localization. This is
true when the tracking algorithm uses a prior map
of the environment to calculate the observer’s actions.
Self-localization is typically done by using landmarks.
In the systems described in [1], [2], the landmarks
are artificial ceiling landmarks scattered through the
workspace. The observer localizes itself with good pre-
cision if a landmark is visible; otherwise, it navigates
by dead-reckoning and the observer’s position uncer-
tainty increases until the next landmark observation.

The techniques in [1], [2], [4] do not explicitly ac-
knowledge the need for the observer to see landmarks
for self-localization. This issue is specifically addressed
in [14], where the need to re-localize is explicitly con-
sidered by the tracker. The algorithm decides at each
stage whether it is preferable to perform the best track-
ing motion, or deviate from this motion in order to see
a landmark and achieve better self-localization.

Of course, if the tracker does not require a prior
map and makes all its decisions based on a local map
computed from its sensor inputs, then the localiza-
tion problem is solved implicitly and no other self-
localization mechanism is required. This is the design
philosophy behind the system described in Section V.

III. Escape paths and Escape Time

Under the line-of-sight visibility model, the region
V(qo) inside a polygonal workspace is also a polygon
(a star polygon in fact). This visibility polygon has
linear complexity (see [9]), and its boundary is com-
posed of solid and free edges. A solid edge represents
an observed section of the workspace (i.e., it is part of
a physical obstacle). A free edge is caused by an oc-
clusion, and it is contained inside the workspace (i.e.,
it is an element of Cfree ⊆ W). Fig. 2 shows the free
and solid edges for an example of a visibility region.

Suppose that the target is visible to the observer
(i.e., qt ∈ V(qo)). An escape path for a target lo-
cated at qt is any collision-free path connecting qt to
a point in W outside V(qo). The escape point of this
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Fig. 2. Visibility region example. Free edges are shown in red
(dashed lines) and solid ones in black (solid lines). Also shown
is the shortest escape path through one free edge (dotted path).

path is the point where the path intersects the bound-
ary of V(qo), which always occur along a free edge.
It is clear that there exists an infinite number of es-
cape paths for a particular configuration of target and
observer. Note, however, that for a particular escape
point there exists a path of minimal length. More-
over, for any free edge e, there exists an escape path
of minimal length among all escape points along that
edge (see Fig. 2). Such path sep(qt, e) is called the tar-
get’s shortest escape path through the free edge e. The
length of sep(qt, e) is the shortest distance to escape
through e (sde(qt, e)).

The shortest time in which the target may traverse
an escape path is the escape time for that path. Again,
for any free edge e and a target location qt, there exists
a path of minimal escape time, and in general this is
not equal to the sep(qt, e). These two paths are equiv-
alent only if the target is holonomic and has negligible
inertia. We reserve the term tesc(q

o, qt) to denote the
minimum escape time among all escape paths leaving
V(qo) and originating in qt.

Given qt ∈ V(qo), we can compute sep(qt, e) ∀ e
bounding V(qo). Thus, if V(qo) is bounded by nf

free edges, there are nf “shortest” escape paths. The
shortest sep(qt, e) over all e bounding V(qo) is the
shortest escape path sep(qt, qo) for the configuration
(qo, qt). Its length is sde(qt, qo). If the target is holo-
nomic and has negligible inertia then sde(qt, qo) equals
tesc(q

o, qt) multiplied by the target’s maximum speed.

A. Properties of escape paths

Suppose qt ∈ V(qo), and let l(qo, qt) be the line
passing through the target and the observer. For
polygonal workspaces, and assuming the target is a
point, the path sep(qt, e) satisfies the following basic
properties (stated here without proof):
Property 1: sep(qt, e) is a polygonal line connecting

qt to a point in a free edge e bounding V(qo). Each
vertex of this polygonal line, if any, is a vertex of V(qo).
Property 2: The path sep(qt, e) cannot strictly cross

the radial line l(qo, qt). The path either lies fully on a
single side (right or left) of l(qo, qt) or is contained in
l(qo, qt).
Property 3: The path sep(qt, e) cannot strictly cross

any radial line l(qo, v) ∀ v ∈ V(qo) more than once.
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Fig. 3. Escape tree for the example shown in Fig. 2. The tree
is shown in blue (dotted lines), and the nodes of the tree are
drawn as little squares. The root of the tree is the target.

Let Ll be the list of vertices of V(qo) that lie to the
left of l(qo, qt), sorted in counter-clockwise order. Sim-
ilarly, define Lr as the list of vertices of V(qo) to the
right of l(qo, qt), sorted in clockwise order. If l(qo, qt)
passes through a vertex of V (qo) then let this vertex
be included in both Ll and Lr.

The next theorem is the basis of the ray-sweep al-
gorithm in Section IV:
Theorem 1: If the shortest path from qt to an ob-

stacle vertex v in Ll (or Lr) does not pass through a
previous vertex u in Ll (or Lr), then neither the short-
est path from qt to any vertex w appearing after v in
Ll (or Lr) passes through u.

Proof: If the shortest path from qt to w passes
through u, then the shortest path from qt to v will
intersect the shortest path from qt to w at a point
other than qt. Therefore, one of the two paths could
be made shorter. ¤

Theorem 1 implies that sep(qt, e) can be constructed
incrementally with a ray-sweep algorithm. It is only
necessary to remember the shortest path from qt to
the most recently visited obstacle vertex during the
scanning of Ll (or Lr).

B. Escape-path trees

Computing escape paths is important because a
tracking strategy based on expecting the worst-case
scenario assumes that the target will escape by tak-
ing the quickest route. One such strategy is to move
the observer to a position that (locally) minimizes
sde(qt, qo) [4]. This, of course, assumes that an algo-
rithm to compute the shortest escape path is given [2].

The sde is a worst-case measure of the likelihood
that the target abandons the observer’s field of view
(the larger the sde, the more likely will the target re-
main in view). An alternative is to minimize the aver-
age length over all paths sep(qt, e), or optimize a sim-
ilar function operating over all the individual paths.

If all the escape paths are computed for a configura-
tion (qo, qt), these form a tree structure (see Fig. 3).
We call this structure the escape-path tree. The root
of this tree is the target, and each branch in the tree
terminates in a free edge. The complexity of this tree
is linear, since each node in the tree is a vertex in the
visibility polygon (Prop. 1).

It is evident from the tree that many paths share the
same initial structure (Fig. 3). This property reveals a
fundamental problem with a strategy that minimizes
the average distance over all paths sep(qt, e). Escape
paths along the same branch are over-represented by
taking the global average at the expense of solitary
escape paths. This is often the case in an implemen-
tation, where chairs, table legs and similar small ob-
stacles produce many escape paths along the same
branch. In our system, we lessened this problem by
computing a recursive average from the tree’s children
backwards into the parent node. Children of the same
node are first averaged between each other, and the
result is then back-propagated to the previous node.

C. Tracking by minimizing the escape risk

Solving the target-tracking problem on-line can be
computationally expensive. In practice, it is usually
necessary to settle for strategies that plan for a small
time horizon ∆t in order to have a sufficiently fast
algorithm.

The algorithms in [2], [4] consists of discretizing the
problem in stages of some small duration ∆t. For a
given stage k, the algorithm finds a control action uk

by solving the following equation:

u∗
k = arg sup

uk∈U

tesc(q
o
k+1(q

o
k,uk), q

t
k), (1)

where the target is assumed to remain at the same
location until the next stage. The key in Eqn.(1) is
the calculation of tesc (an expensive computation).

For any target under kino-dynamic constraints, tesc
is upper bounded by a factor proportional to the sde,
which is a lot easier to compute. In [2], the solution
to Eqn.(1) is approximated by solving:

u∗
k = arg sup

uk∈U

sde(qo
k+1

(qo
k
,uk), q

t
k
), (2)

which essentially uses the sde as a proxy function
of the escape time. In practice, this strategy pro-
duces poor results except for simulated experiments
and holonomic observers without dynamics.

There are two problems with Eqn.(2). One is due
to the nature of the sde function. As the observer
moves, new occlusions form and old ones disappear,
and new paths become the shortest escape path. As a
result, the value of u∗

k changes abruptly from one stage
to the next producing a shattering effect on the con-
trol signal [15]. Un-modeled observer dynamics will be
excited by a shattering signal, producing very erratic
and unpredictable observer motions.

The second problem is that the sde is not a good
proxy function for tesc. The relationship between sde
and tesc is not linear. In fact, a large sde makes it
increasingly harder for the target to escape. To under-
stand this, imagine a situation where the sde becomes
increasingly larger. Tracking becomes easier because
the target has to travel a longer distance in order to
escape and the observer has time to improve its future
ability to track.

In this paper, we attempt to solve both problems
with a new proxy function for tesc. This function is
the escape risk, defined for every free edge e as follows:



φe = c ro
2

(

1

h

)m+2

, (3)

where h = sde(e, qt), ro is the distance from qo to
the corner causing the occlusion at e, d is the distance
between qt to this corner, c > 0 is a constant and
m ≥ 0 is a given integer. We call the numerator of the
fraction the look-ahead component, because its min-
imization increases the future ability of the observer
to track. The denominator is the reactive component,
because its maximization decreases the likelihood that
the target escapes the current visibility region.

It is possible to compute the gradient of Eqn.(3)
with respect to the observer’s position in closed form.
The gradient is given by different formulas depending
on the way the escape path sep(e, qt) exits V(qo) (e.g.,
through a vertex of V(qo) or through a corner). For
instance, in the following arrangement (for m = 0):

h
target

observer

δ

t̂
ρ̂

,
the gradient is:

∇φe =
[

2 c ro

(

1

h

)2
ρ̂ , −2 c δ ro

(

1

h

)3
t̂
]

. (4)

Here (ρ̂, t̂) is a coordinate system attached to the ob-
server, and δ is the target’s radius (assuming it is a
circle). Other cases are dealt similarly, but they are
omitted for the sake of space. It is important to note
that the gradient computation can be degenerate when
the target is a point. But when the target is a circle
with δ > 0, the gradient exists for all cases. Because
∇φe is computed analytically, only current sensor in-
formation is required.

Our tracking strategy consists of moving the ob-
server in the opposite direction of the average of ∇φe

over all free edges e in V(qt). Let ∇φ̄ denote this aver-
age. ∇φ̄ can be computed using the escape-path tree
as explained before. However, other ways of aggregat-
ing the individual risks are possible.

IV. A Combinatorial Target Tracker

We now describe our target-tracking algorithm. Its
basic structure is the following:

Algorithm track (no prior map):
Repeat:
1. Extract a local map from measurements.
2. Determine the target’s position.
3. Compute the escape-path tree.
4. Compute ∇φe for each free edge e in the map.
5. Compute ∇φ̄ using the escape-path tree.
6. Steer robot using −∇φ̄ (robot control).

The algorithm is presented sequentially for clarity pur-
poses. In an actual implementation it will be more
efficient to intermingle some of these steps.

Steps 1, 2 and 6 are implementation dependent (see
next section). Step 4 consists on evaluating the gra-
dient of Eqn.(3) for every escape path. Step 5, as ex-
plained before (Section III-B), consists of computing
a recursive average of the risks of the various paths in
the escape path tree.

Step 3 is the missing piece. In order for this al-
gorithm to work in real-time, the computation of the
escape-path tree has to be done efficiently. This can
be accomplished with a ray-sweep algorithm.

A. Computation of escape paths using ray-sweep

Suppose V(qo) is represented by a list of vertices
ordered counter-clockwise. We split its contents into
the lists Ll and Lr, where Ll is the list of all vertices
of V(qo) to the left of l(qo, qt), and Lr is the list of all
vertices to the right of l(qo, qt). We reverse the order
of Lr so its contents are ordered clockwise.

The ray-sweep algorithm consists of computing the
shortest path from qt to every vertex in V(qo) by per-
forming a sequential scan of Ll followed by a similar
scan on Lr. We describe here the scan for Ll.

The algorithm visits each vi ∈ Ll and updates a
pivot list πi: the list of vertices that define the shortest
path from qt to vi ∈ Ll. The update operation is as
follows:

Pivot List update:
Repeat until size of(πi) < 3 or Step 2 fails:
1. Let ur−1, ur, and ur+1 be the last 3 elements

in πi, with ur+1 = vi.
2. If ur+1 lies to the right of the line (ur−1, ur)

then remove ur from πi.

The above algorithm derives from the fact that once
a vertex is no longer a member of an escape path, it
will never become one again. This is a consequence of
Theorem 1.

A path sep(qt, e) is computed from a pivot list πi at
the currently visited vertex vi. There are three mu-
tually exclusive cases for vi and the algorithm acts
differently in each case:
1. If vi isn’t in a free edge then πi isn’t an escape path.
2. If vi is an endpoint of a free edge and the segment
(vi−1, vi) is an obstacle edge, then πi represents a new
escape path sep(qt, e).
3. If vi is an endpoint of a free edge, but the segment
(vi−1, vi) lies in free space, then it might be possible
to shorten the newly-found escape path by displacing
the escape point along the free edge preceding vi. This
can be easily calculated in constant time.

B. Run-time analysis

Each vertex in Ll and Lr is appended to the pivot
list exactly once. At the same time, each removed
vertex is never re-inserted into the list. Hence, if the
input list representing V(qo) is pre-sorted, the compu-
tational cost of the ray-sweep algorithm is proportional
to the number of vertices stored in Ll and Lr. The cost
for computing all the escape paths is thus O(n). This
is also the cost for computing the escape-path tree,
since each node in the tree is a vertex in V(qo).



V. Implementation and Experiments

We implemented our tracking strategy on a Nomad
SuperScout robot. The robot is equipped with a laser
sensor from Sick OpticElectronic. This sensor mea-
sures distances to objects in the workspace based on a
time-of-flight technique. Measurements are done along
evenly-spaced rays in a horizontal plane. The sensor
operates at a frequency of 32 scans/s, and each scan
consists of 360 points with 0.5-deg spacing, for a total
field of view of 180 deg. The sensor’s range is 8 meters.
A Nomad 200 robot acts as the target.

Our visibility region is limited to the half-plane in
front of the robot. Since our tracking algorithm relies
only on the local map to generate a new motion, the
observer cannot move backward without risking a col-
lision. Therefore, in our experiments we restricted the
target to move away from the observer. This assump-
tion, however, can be easily removed by mounting two
range finders on the observer.

The software runs in a 410 MHz Pentium II work-
station, with the exception of the low-level robot and
sensor drivers (running on-board the robot). Sensory
data is transmitted to the workstation through an ieee
802.11b wireless link. The workstation computes the
local visibility polygon as well as the escape-path tree,
followed by a velocity command (v, ω) that is then
sent to the robot for execution. The software was de-
veloped in C++ under Linux using functions from the
LEDA 3.8 library [16]. The implemented track algo-
rithm operates at approximately 10 Hz.

The implementation is entirely based on the meth-
ods described previously, with the exception of a few
additional functions listed below.

A. Some important peripheral functions

The algorithm track requires a few support func-
tions in order to run: local map construction, target
detection, and robot control.

Local map construction
The sensor readings are captured sequentially and

stored into a list Lp of points in the reference frame
local to the sensor. The technique described in [10] is
used to transform Lp into a collection of polylines.

The technique first segments Lp into sub-lists by
detecting gaps between successive points, and fits a
polyline to each of the sub-lists. There are two kinds
of gaps: occlusion and out-of-range gaps. An occlu-
sion gap occurs whenever two successive points in Lp

are further apart than a certain threshold. Out-of-
range gap correspond to a series of consecutive mea-
surements in Lp that have saturated to the sensor’s
maximum range. Gaps are detected as Lp is captured.

The visibility region V(qo) is obtained by closing the
contour formed by the computed polylines. Two con-
secutive polylines are connected by an occlusion edge
if they are separated by an occlusion gap. If they are
separated by an out-of-range gap, they are connected
by a sequence of three free edges: an occlusion edge, a
range edge, and another occlusion edge.

Target detection
Our detection algorithm is deliberately simple. A

Nomad 200 is a fairly cylindrical object. We detect its
shape by finding a cluster of points in Lp that matches

the target’s circular contour. If the algorithm identifies
several sequences of points that can plausibly match
the target, it retains the one that provides the best fit.

The target creates a shadow in the local visibility
region. For the effect of computing the escape paths
in V(qo), we assume that no obstacle lie in this shadow.

Robot control
The gradient −∇φ̄ should be interpreted as the de-

sired direction of the observer’s motion. The speed of
the observer should be proportional to |∇φ̄|.

A trajectory-follower [15] can be used to generate
observer trajectories that follow −∇φ̄. The choice of a
trajectory-follower depends on the dynamic model of
the observer. In our implementation, we assume a very
simple kinematic model for a non-holonomic observer:

ẋ = v cos(θ), ẏ = v sin(θ), θ̇ = ω. (5)

Here, v is the translational speed of the observer and
ω is the angular speed.

A crude but effective way of steering the robot is to
use the following controller:

v = kv n̄ · (−∇φ̄), ω = kω

n̄× (−∇φ̄)

|∇φ̄|
, (6)

where kv and kω are positive constants, and n̄ =
[cos(θ), sin(θ)] is a unit vector representing the cur-
rent direction of the observer. One can prove that
for a slow-varying ∇φ̄ this controller is stable: v and
tan(α) converge exponentially to a steady-state (where
α is the angle between n̄ and −∇φ̄).

Eqn.(6) has to be complemented with a second reg-
ulator to maintain the target at a preferred distance
to the observer. This is required because we ignored
the sensor’s range and angular restrictions in our cur-
rent implementation of ∇φ̄. This second regulator is
a simple proportional feedback of the target’s devia-
tion from the center of the field of view, and would
be unnecessary if the computation of ∇φ̄ explicitly ac-
knowledged the sensor’s range limits.

B. Experiments

We present here the results of three experiments: an
example of the influence of the escape-path tree in the
computation of –∇φ̄ (chair example), a test of the tran-
sient response of the target tracker (cardboard box ex-
ample), and a long tracking tour around the Robotics
Lab. at Stanford University (tour example).

Chair example
In this example, the observer is surrounded by sev-

eral chairs (Fig. 4), and is forced to remain motionless
while the target is parked in the background. One of
the chairs was pushed past the target and toward the
observer, and we observed the change that this pro-
duces on −∇φ̄. The moving chair is enclosed with a
red square in the pictures, and its corresponding shape
in V(qo) is the shaded region in the plots.

From the bottom plot in Fig. 4, it is clear that most
of the escape paths to the left of the chair share a com-
mon branch. If −∇φ̄ is computed using the average of
−∇φe over all free edges e in V(qo) this results on the
vector shown in Fig. 5(a). The problem with this vec-
tor is that it points in a direction behind the chair.



Fig. 4. Evolution of an escape-path tree for a scene with chairs.
The long vector shown in the figures to the right is −∇φ̄.

(a) (b)

Fig. 5. Example of ∇φ̄ computation: (a) standard average; (b)
average using the escape-path tree.

This occurs because the escape paths to the left of the
chair are over-represented.

Fig. 5(b) shows the value of −∇φ̄ computed as the
recursive average over the nodes of the escape-path
tree. −∇φe is first averaged among all the branches to
the left of the chair before it is averaged with those to
the right. The result points in the desired direction.

Cardboard box example
This example was used to test the transient response

of the target tracker. The scenes shown in Fig. 6(a)
and Fig. 6(b) differ in that a cardboard box is present
in the latter but not in the former. In both experi-
ments the observer was initially located at a distance
of 165 in. aiming towards a stationary target, and the
tracking program was activated afterwards.

The tracking paths for both scenarios are shown
with Matlab plots in Fig. 6. The plot in (a) is a very

(a) (b)

Fig. 6. Scenes (a) and (b) differ by the presence of a cardboard
box. In (b), the observer must swerve around the box in order
not to lose the target. Both plots show the walls detected by
the laser (black curves), and the noise of the target detector (the
scattered points to the right of each plot). Scale in inches.

straight-forward path, but not the one in (b). In (b), a
straight path becomes a high-risk strategy due to the
presence of the box. Therefore, the observer should
swerve around the box in order to decrease the risk,
and this maneuver must occur almost immediately af-
ter the observer becomes aware of its situation. The
position data was captured from the observer’s en-
coders. The walls detected by the sensor are shown
as solid curves in the plots.

The noise of the target detector is also shown
in Fig. 6 (the scattered points to the right of each
plot). It is interesting to note that the tracker’s mo-
tion is relatively smooth in spite of this noise. We
reached the empirical conclusion that a precise detec-
tion algorithm is not extremely important, as long as
the detector runs at a fast rate. More critical is the
rate of false positives (instances when the detector in-
correctly identifies a target as such). A long stream of
false positives will confuse the tracker.

Tour example
An experimental run is shown in Fig. 7. The tracker

followed the target through the Robotics Lab. at Stan-
ford U. The path is long, and only snapshots are shown
in the figure. The tour started outside the office of
one of the co-authors. The observer chased the target
down the North corridor of the lab, through a lounge
area cluttered with chairs, and into one of the offices
in the South corridor.

The accumulated paths for both the observer and
the target are shown with Matlab plots in Fig. 7. The
path for the observer is drawn with red circles and the
one for the target with blue triangles. The observer’s
path is plotted using the data from the encoders. The
target’s path is computed from the output of the target
detector in combination with the observer’s encoders.

Video of the experiments The tour example is
difficult to appreciate in pictures. Please visit our
web-site at http://underdog.stanford.edu/ to see
a video of this experiment and other examples.



Fig. 7. Tracking the target around the Stanford Lab. The
path of the observer is shown in red (circles) and the one for the
target in blue (triangles). Scale in inches.

VI. Conclusion

Several applications require the continuous tracking
of a target moving in a cluttered environment. This
paper introduces a new tracking algorithm for the case
when the target moves unpredictably and no prior map
of the environment exists.

Our algorithm computes a motion strategy based
exclusively on current sensor information — no global
map or historical sensor data is required. The algo-
rithm is based on the notion of escape risk and the
computation of an escape-path tree. This tree is a
data structure storing the most effective escape routes
that a target may follow in order to escape the ob-
server’s field of view. This paper also shows how an
escape-path tree can be computed in linear time from
range-finder data using a ray-sweep technique.

We have implemented an experimental robotic ob-
server equipped with a range finder as its sole sensor.
Our experiments show that the observer is able to keep
a moving target in view by continuously steering in
the direction minimizing the escape risk. Most fail-
ures were due to the shortcomings of our simple target
detector. An improvement would be to equip the ob-
server with an additional vision system to make target
detection and localization more reliable and precise.

Several interesting extensions and variations can be
considered in future investigations. Currently, our the-
ory is limited to a 2-D workspace. In the future, we
would like to extend our algorithm to consider prob-

lems in 3-D space. This will have an immediate im-
pact in several applications. Another extension is to
integrate our target-tracking technique with the map-
building system described in [17]. This hybrid system
will map the environment while the target is being
tracked. The computed map could then be used to
enhance the behavior of the observer by extending its
reasoning beyond the local vicinity.
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