Research Institute for
Advanced Computer Science

Maximally Informative Statistics for
Localization and Mapping

Matthew C. Deans

RIACS Technical Report 01.25
October 2001

(©IEEE 2001. All rights reserved. Submitted to ICRA
2002. Reproduced with permission of IEEE.



Maximally Informative Statistics for
Localization and Mapping'

Matthew C. Deans
Robotics Institute

Carnegie Mellon University
Pittsburgh PA

RIACS Technical Report 01.25
October 2001

(©IEEE 2001. All rights reserved. Submitted to ICRA
2002. Reproduced with permission of IEEE.

This paper presents an algorithm for localization and mapping for a mobile robot
using monocular vision and odometry as its means of sensing. The approach
uses the Variable State Dimension filtering (VSDF) framework to combine as-
pects of Extended Kalman filtering and nonlinear batch optimization. This
paper describes two primary improvements to the VSDF. The first is to use an
interpolation scheme based on Gaussian quadrature to linearize measurements
rather than relying on analytic Jacobians. The second is to replace the inverse
covariance matrix in the VSDF with its Cholesky factor to improve the compu-
tational complexity. Results of applying the filter to the problem of localization
and mapping with omnidirectional vision are presented.
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1 Introduction

It may be required for a robot to enter an unknown environment and to con-
currently explore the area and produce a map while maintaining an accurate
estimate of its position. If the robot were to have an a priori map, then lo-
calization with respect to the known map would be a relatively easy task. Al-
ternatively, if the robot were to have a precise, externally referenced position
estimate, then mapping would be a relatively easy task. However, problems
in which the robot has no a priori map and no external position reference are
particularly challenging. Such scenarios may arise for underwater robots, min-
ing vehicles, planetary surfaces, or anywhere that maps are not available. This
problem has been referred to as concurrent localization and mapping (CLM) and
simultaneous localization and mapping (SLAM). We will use the latter in this
paper.

In the work presented here, we model the robot environment as a 2-D planar
world, so that the rover pose at time i is the 3-dof parameter vector m; including
position on the 2-D plane and orientation. Landmarks are assumed to be point
features and the position of landmark j is the 2-dof parameter vector x;. The
means of sensing considered in this work are an odometry measurement

d; = f(mj, m; 1) + w; (1)

which measures the change in vehicle pose from i — 1 to 4, and a bearing mea-
surement

br = g(mige), Xj00)) + k (2)
which measures the bearing from the rover position myj) to a landmark at
position Xj(y), where i(k) and j(k) indicate which pose and landmark correspond
to bearing measurement k. Both w; and vy, are modelled as i.i.d. Gaussian noise
processes. For notational convenience, we denote the parameter vector including
all unknowns as § = {mj,mg,...,X1,X2,...,XN} and the measurement vector
z = {di,da,...,d;,b1,ba,...,br}. The generating function for all measurements
as a function of all parameters is

z =h(8) +v, 3)

where v ~ A(0,R) is a normally distributed random variable and following
the assumption of i.i.d. noise above, R is diagonal. The generating function
for a single odometry or bearing measurement will be denoted zx = hy(0) + vg
where, with a slight change of notation from above, zx can be either type of
measurement.

The bearing only sensor model we use here is motivated by the use of monoc-
ular vision, which is fairly cheap, small, robust, low weight and low power com-
pared to active range-bearing sensors. Odometry is known to provide poor
egomotion data but the goal is to see what can be done with these two simple
sensing modalities alone. The incorporation of inertial measurement, external
position references, and range sensors can only improve the end results. Further-
more, other models of landmarks and map parameterizations are possible but



are not considered in this work. Finally, the method described here is extend-
able to the full 3-D problem, although admittedly the problem is more complex
and may require more sophisticated parameterization.

2 Previous Work

There are two primary sources of literature related to the problem considered
here. Bearings-only localization and mapping is similar to the SLAM problem in
robotics and to the Structure from Motion (SFM) problem in computer vision.

Most of the SLAM literature in robotics explores the problem of sensor fusion
for onboard egomotion sensing and range-bearing sensors such as radar, sonar,
and lidar. Approaches such as iterated closest point (ICP) [1], Expectation-
Maximization [2], and correlation [3] have been explored for the task. The
predominant body of SLAM work uses Extended Kalman filtering (EKF) based
approaches [4, 5, 6, 7] or related approaches such as Unscented Filter [8] or
Covariance Intersection [9].

The photogrammetry and computer vision literature contain a significant
amount of work related to the structure from motion (SfM) problem, in which
monocular images alone are used to reconstruct the scene and recover the cam-
era motion. Among the popular approaches are factorization [10], sequential
multiframe geometric constraints [11], and nonlinear bundle adjustment [12].

The Variable State Dimension filter[13] is a combination of Extended Kalman
filtering and nonlinear optimization. The filter was developed to be a recursive
algorithm for Structure from Motion, and it has some of the characteristics of
bundle adjustment and Kalman smoothing. The VSDF provides the foundation
for the work in this paper.

3 The VSDF Algorithm

The variable state dimension filter (VSDF) combines aspects of the EKF with
aspects of Gauss-Newton nonlinear optimization[14]. Since zy is a Gaussian
random variable with mean hy (f) and variance Ry, we can write the likelihood
for z given 6
T -1

p(z|0) x e~ > (@e—hi(0)) T Ric ™ (zac—huc(6)) (4)
Gauss-Newton optimization searches for the parameter which minimizes the
negative log of the likelihood

e = —log(p(z|9))
= Z(zk - hk(ﬁ))TRkil(Zk - hk(a)) (5)
k

In order to minimize this cost function, the algorithm starts with an estimate
of the state vector §y and computes

a = Z —HkTRkil(Zk - hk(9)) (6)
k



A = > HRy 'Hyg (7
k

where Hy = %
0o

is the measurement Jacobian, a = Ve is the gradient of (5)

and A =~ VZe is an approximation to the Hessian[14]. The algorithm computes
an update to the state estimate by solving the linear system

Ad=a (8)
and updating the parameter vector
0—60-9 9)

Equations (6) through (9) are iterated to convergence, . Solutions found using
Gauss-Newton are optimal in a least squares sense, which is also maximum
likelihood for Gaussian noise. However, the vector 8 contains the entire map
and the entire vehicle trajectory, which makes Gauss-Newton slow for large
datasets.

The VSDF provides a method for linearizing measurements, incorporating
them into a Gaussian “prior”. The filter equations may be derived by linearizing
terms on the right hand side of (6) and (7). Suppose we wish to replace the
term involving zy in (5). We can compute a linear approximation to hy()

hk(G) ~ hk(go) + Hk(a - 00) (10)

and in order to minimize the new cost function we simply replace the corre-
sponding term in (6) and (7) with the same linearization.
In the VSDF, terms are replaced with a linearization of the form

(0 — 00)" Ax(6 — o) ~
(2 — Hi(0 = 60))" Ry (zic — Hic(6 — 65)) (11)

where Ay = HkTR,ZlHk is the contribution of measurement %k to the Hessian,
and
ax = Hi' B (zi — hi(6o)) (12)

is the constant contribution of measurement & to the gradient (6). In the original
VSDF the linearization Hj is again taken to be the Jacobian of the measurement
function evaluated at the state estimate.

This is similar to the EKF, except that the EKF linearizes each measure-
ment immediately upon incorporation into the state estimate. The VSDF opens
the possibility of linearizing the term at some later time[13]. The advantage in
linearizing the measurement later is that the point of expansion for the lineariza-
tion is extimated using more data, and therefore has smaller variance. We can
expect the linearization to occur at a more accurately estimated point, as shown
in Figure 1.
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Figure 1: Advantage of leaving nonlinear measurements in the filter (a) The
estimate of the state x at time i given information up to time 7 leaves a large
region of uncertainty (shaded). (b) After processing later observations, the
VSDF has an estimate with lower variance, increasing the chances that our
linearization will be a good one.

The Jacobian and Hessian can now be expressed as a combination of terms
from the linearized measurements and the nonlinear measurements

a ag +Ao(0 — o) + > Hi"Ri '(zi — hi(6))

A = A0+ZHkTRk*1Hk (13)

Once measurements are linearized, there are parts of the state space that will no
longer be a part of new measurements coming in (like old robot poses). Those
subspaces can be eliminated from the filter. If we partition the state vector into
6 =[0:76,"]" and the gradient a = [a;Tas”]” and

A—ll A12
A= 14
(mlAn) (14)

then we can eliminate the first subspace by updating the parameter vector,
gradient, and Hessian as follows,

0 < 6, a<+ ap
A « Ags—AxAiitAg (15)

See [13] for details. The filter continues to incorporate new measurements as
they become available, and linearizes them at some later time.

4 Maximally Informative Statistics

Good heuristics for how and when to linearize measurements can come from
the notion of mazimally informative statistics. A statistic 7 = t(z) is some
function of a data set which may be a reduction such as moment computation
(mean, variance), finding the maximum or minimum of the data, or estimation
of parameters for some parametric model. Typically the goal is to compute a
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Figure 2: Recursive filtering requires linearization of the nonlinear measurement
function h(x) at a point. The Jacobian provides the instantaneous slope at a
point estimate, but the maximally informative statistics principle indicates that
an interpolation can fit the function better by minimizing expected square error
under the probability distribution p(x)

statistic which allows inference to be made without reconsidering the entire data
set.

A sufficient statistic is a statistic that can be used to make inferences about
the data just as effectively as the original data itself. More formally, a statistic
is sufficient if the distribution for an estimator under the statistic is the same
as it is under the original data,

p(0|T) = p(6]z) (16)

An example of a sufficient statistic is the sample mean and sample variance for
normally distributed data.

A mazimally informative statistic is a generalization of sufficiency. There is
not always a sufficient statistic, but we can always find some statistic 7 € T
which satisfies

7 = Argminser D(p(60]1)|[p(9]2)) (17)

where D(:||-) is the Kullback-Liebler divergence, or relative entropy, and T is
some class of statistic. Here we will let 7" be the set of all mean vectors and
covariance matrices. When a sufficient statistic exists within 7', the sufficient
statistic is the maximally informative one and the KL divergence becomes zero.

Under the assumption of normally distributed additive observation noise, we
can write the true posterior for model parameters given data as

p(0]z) o e~ (z=h(8)"R™!(z—h(9)) (18)
and the Gaussian approximation in state space can be written

p(8]60, Co) x e (0—00)" Co ™" (6—00) (19)



If we assume that Cq can be computed as Co~' = HT”R'H then our job
becomes one of finding the H such that the KL divergence

= (o (s ) &

is minimized, which after manipulation becomes

D= (21)
E, [(h(8) — H(8 — 60))" R~ (h(6) — H(4 — 6)))]

where E, denotes expectation under distribution p. Since R is positive definite,
D is bounded below by zero and is minimized when the linearization H(f — ;)
is most accurate over the region of high probability within p(6|z). Typically
the means for computing the linearization H in Extended Kalman filtering is
to compute the Jacobian[15], which is only accurate for infinitesimal departures
0 — 6g. Alternatives have been reported elsewhere, the DDF filter [16] replaces
the Jacobian with a central divided difference, and the Unscented filter [8] uses
a deterministic sampling scheme to compute the posterior covariance directly.
Each of these approaches finds a linearization that is more accurate over the
interval than the Jacobian computation, and performance increases over the
EKF have been reported for both. In our work we compute a locally weighted
linear interpolation of the function hy(-) using Gaussian quadrature.

Gaussian quadrature is a means of numerically computing an integral using
a small number of carefully chosen points and associated weights[14]. Deter-
ministic rules for computing the samples and weights exist. There are specific
rules for computing the samples to use for evaluating expectations as in (21) de-
pending on the form of the distribution over which the expectation is computed.
Because the envelope function p(f|z) above is approximated by a Gaussian, we
compute the Gauss-Hermite[14] quadrature points y; and associated weights w;
for the dimensions corresponding to the inputs to hg(), namely the robot pose
and landmark position related to that measurement.

Once the quadrature points are computed, we fit the linear system

\/“TIZk(yl) \/U)_1X1;
Vws :k(y2) _ \/w_2:X2 He 22)
\/th(ij) mXNT

using least squares. The resulting coefficient matrix Hy is used to update the
Hessian matrix A in the VSDF.

5 Using Cholesky factors

A reduction in computational complexity can be realized by working with the
Cholesky factorization of the Hessian matrix rather than the Hessian itself.
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Figure 3: Ground truth for an example problem with four landmarks and a
trajectory consisting of 50 robot poses.

Cholesky factorization is a common means of solving a system of linear equations
Axz = b when the coefficient matrix A is symmetric and positive definite. The
cholesky factorization SS”T = A is first computed, then the two triangular
systems

Sy = b
STx =y (23)

are solved. The Cholesky decomposition of a dense N x N matrix can be
computed in O(N?). The solution to the two triangular linear systems is O(N?).

If rather than storing and manipulating the full Hessian matrix A we can
store and manipulate its Cholesky factor S, then the factorization step can be
avoided and the solution to (8) can be computed with O(N?) backsubstitu-
tions alone. The only remaining problem is to determine how to propagate the
Cholesky factor from step to step in the filter.

There exist algorithms for performing the update and downdate of a Cholesky
factor, where update is defined as the addition of a symmetric outer product
A’ = A +v"ov and downdate is the subtraction of a symmetric outer product
A’ = A —vTov. For a rank-1 update or downdate these algorithms require
O(N?) computation, so a rank-k update can be done in O(kN?). If we already
have the Cholesky factor for the prior Hessian Ag, then the step which com-
bines the prior and the likelihood is given by (13) which can be computed as
a Cholesky update, and the marginalization of state dimensions to be removed
from the filter is given in (15) which can be computed as a Choleksy downdate.
Since we can perform Cholesky updates and downdates for adding and remov-
ing measurements and states in the filter, and use the Cholesky factors in the
optimization step to solve the normal equations, we can do away with the full
covariance matrix A and only maintain and use its Cholesky decomposition S.
This technique has been used to modify Kalman filters for parameter estimation
problems[15].
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Figure 4: Result from one trial on the example problem. (a) Initial state esti-
mate using measurements from first five robot poses. (b) Final state estimate,
including map and last five robot poses. This is the estimate after processing
all information.

The insertion and removal of measurements and states in the filter proceeds
as before except that Cholesky updates and downdates replace the operations
on AO.

6 Experimental Results

Figure 3 shows an example problem with four landmarks and 50 robot poses
in the trajectory. The small problem size is chosen to make the figures more
legible. We ran 100 Monte Carlo trials of the filter algorithm by generating
synthetic data z(® for r = 1...100 using the generative model described in
the introduction with Gaussian additive noise. For each trial the algorithm was
used to produce a state estimate once using the Jacobian linearization H = %
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Figure 5: Map reconstruction error over time, ensemble average over 100 trials.
Solid line shows result of linearization using quadrature based interpolation,
dash-dot line shows result of linearization using Jacobian.

and once using quadrature based interpolation. In this example the filter retains
nonlinear measurements for 5 time steps before linearizing. Figure 4 shows an
initial and final state estimate for one run of the filter. After filtering each data
set, the squared error between the true map and the final estimated map was
computed.

Figure 5 shows the map reconstruction error over time, compared with
ground truth and averaged over the 100 runs. Some variation is expected from
one run to the next, so we cannot expect the quadrature based method to per-
form strictly better than the Jacobian method on a per-trial basis, but over the
course of many runs the quadrature method shows much better performance
in terms of the accuracy of the final estimate. What is interesting to note in
Figure 5 is that the Jacobian based method seems to converge to a solution with
smaller reconstruction error early but then diverges. This may be because as
the filter estimate changes the linearization as computed at old state estimates
becomes less accurate and effects are not seen until the state estimate moves
sufficiently far from where it was linearized.

Figure 6 shows the convergence of the z and y coordinate of the landmark
that appears in the lower left of Figure 3, which is the most difficult to estimate
given the problem geometry. The evolution of the estimated position is shown
for ten runs along with the estimated variance, and convergence to the true
solution is seen.

7 Summary and Conclusions
In this paper we investigate the implication of maximally informative statis-

tics on linearization for recursive filtering. The maxinfo criterion is shown to
be equivalent to the expected squared error between the true nonlinear model
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function and its linearization under the posterior. This metric is physically
meaningful and very intuitive. It is used to determine a means of linearizing
the measurements in the VSDF which is shown to outperform the analytic Ja-
cobian for the problem considered here. The linearization itself is performed
using Gaussian quadrature. We are investigating using the linearization error
to decide when to linearize and when to leave measurements in the filter, al-
though at some point computational resources may require linearization even if
only a poor approximation is available.

We have also introduced a square root formulation of the VSDF which cuts
the computational complexity from O(N2(L+ N)) to O(N(L+ N)), where N is
the number of landmarks in the map and L is the time lag for the VSDF. This is
a significant for large maps since N could be in the hundreds or thousands. The
algorithmic improvement only changes the way in which the sufficient statis-
tics are represented and used in optimization, and does not affect the error
performance.
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Figure 6: Convergence of the lower right landmark, which is the one that is
least certain in early estimates. (a) shows the convergence of the x coordinate
for landmark #3. (b) shows the convergence of the y coordinate for landmark
#3. Values for ten runs are plotted as dashed lines. Also plotted are the true
value and the 95% confidence (30) region centered on the true value in solid
lines.
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