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Abstract 

An experimental study is presented on  vision-based 
feedback control methods for the. nonholononomic 
wheeled mobile robot SuperMARIO. The robot posture 
is measured via a cameraf ied o n  the ceiling of an  in- 
door environment. To this end, a simple localization 
algorithm has been developed. Performance on  trajec- 
tory following and parking tasks i s  compared under dif- 
ferent controllers and using either odometric or visual 
feedback. The improvement with the latter i s  obtained 
at the expense of a limited increase in sampling time. 

1 Introduction 

Many feedback controllers have been proposed in the 
last decade for nonholonomic Wheeled Mobile Robots 
(WMRs) [l], addressing the basic motion tasks in a 
free indoor environment, i.e., following a desired carte- 
sian trajectory or parking at a given configuration. 

Control methods for stable trajectory tracking in- 
clude linear control based on tangent linearization, 
nonlinear control based on Lyapunov techniques [2,3], 
and dynamic feedback linearization [4, 51. The search 
for stabilizing controllers in parking tasks has led to 
novel solutions, based on time-varying [6] and/or dis- 
continuous nonlinear feedback [7], which overcome the 
well-known obstruction to the existence of smooth sta- 
bilizing controllers for first-order nonholonomic sys- 
tems. Other control designs include the use of a 
polar coordinate transformation [SI or, again, of dy- 
namic feedback linearization [9]. A detailed compar- 
ison of the actual performance of these techniques 
has been made in simulated environments, both for 
a unicycle-type vehicle [lo] and a car-like vehicle [ll], 
and through real experiments on a two-wheel differen- 
tially driven mobile robot [12]. 

Most of the performed experimental works assume 
the availability of the full current state of a WMR. The 
robot state, e.g., the position (2, y) and orientation 8 
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of a unicycle robot, is often reconstructed on the basis 
of proprioceptive sensors, e.g., incremental encoders 
mounted on the motor axes (dead reckoning). How- 
ever, these odometric estimates are subject to random 
and systematic errors, due to wheel slippage during 
maneuvers and to non-idealities of mechanical parts 
(e.g., different wheel radius), as well as to possible nu- 
merical drift over time (integration process). 

Exteroceptive sensing (ultrasonic, laser, vision) 
may provide instead an absolute measure of the robot 
state (localization). In particular, the information 
gathered by a vision system -the richest among ex- 
teroceptive sensors- about the environment makes it 
possible to detect natural landmarks, navigate among 
unknown obstacles, and achieve a reactive robot be- 
havior. Vision-based sensing has also some drawbacks, 
such as the need to recognize and extract a number of 
characteristic features from the image, an increased 
computational burden, and a critical dependence on 
lightning conditions of the environment. 

There are basically two ways of using exterocep- 
tive information within a motion control loop: i) map 
measures back to the robot state space and then use 
state-based control; ii) close the feedback directly in 
the sensor space, thus realizing an output feedback 
strategy. In vision-based control, the two approaches 
are often referred to as (position-based) visual feed- 
back and (feature-based) visual servoing, respectively. 
The first requires accurate calibration of the external 
sensors, but it allows a common ground for the fusion 
of heterogeneous sensor measures. The second relaxes 
the need for precise mechanics and is advantageous 
in less structured environments, but requires to deal 
with kinematic transformations and a redefinition of 
conventional, position-based control laws. 

In this paper, we present experimental results on 
the use of visual information within a real-time mo- 
tion control loop for a nonholonomic WMR. Previous 
work in this area includes, e.g., [13] for visual feedback 
and [14, 15, 161 for visual servoing. In particular, using 
the mobile robot SuperMARIO as a testbed, we have 
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compared visual feedback control laws for trajectory 
following and parking tasks, reconstructing the robot 
state from images obtained by a camera fixed on the 
ceiling of an indoor environment. A discussion of the 
results achievable using odometric versus visual feed- 
back will be given. We shall also illustrate how system 
constraints given by a common PC-based architecture 
affect the control design and the robot performance. 

2 Experimental setup 

The wheeled mobile robot is our prototype Super- 
MARIO, a two-wheel differentially-driven vehicle. The 
driving wheels have radius r = 9.93 cm and are at a 
distance of d = 29 cm along their axle, while a small 
passive off-centered wheel (castor) is placed near the 
vehicle front. The weight of the robot (including four 
12 V batteries) is about 20 kg, with center of mass 
located slightly in front of the main axle so as to limit 
disturbances caused by the castor. 

Each wheel is driven by a DC servomotor, supplied 
at 24 V and equipped with an incremental encoder 
counting 200 pulses/turn (multiplied by four through 
on-board electronics). Two 8-bit ST6265 microcon- 
trollers implement a digital velocity PID on the left 
and right wheel, with a low-level cycle time of 5 ms, 
realizing the wheel angular velocity commands W L  
and W R  generated by the high-level robot controller. 
SuperMARIO communicates via radiomodem with a 
300 Mhz PC Pentium 11, where a library of C++ con- 
trol algorithms is installed. 

2.1 Kinematic model 

The kinematic model of the nonholonomic WMR Su- 
perMARIO is equivalent to that of a unicycle: 

[ i ] = [ "f s" ] 21 + [ 8 ] w, (1) 

where (z, y) is the Cartesian position of the wheel axle 
midpoint, 0 is the vehicle orientation w.r.t. an arbi- 
trary sa&, while v and w are, respectively, the linear 
and angular robot velocity. The actual input com- 
mands (WL,WR)  are one-to-one related to (v,w),  by 
means of 

2.2 Odometric feedback 

One possible reconstruction of the current robot state 
is based on incremental encoder data (odometry). Let 

Figure 1: A camera-image of SuperMARIO 

A ~ R  and A ~ L  be the angular wheel displacement mea- 
sured by the encoders during a sampling time T,. From 
eq. (2), the robot linear and angular displacements are 

where - -  A0 

The localization of SuperMAFtIO using the odometric 
prediction (3) is quite accurate whenever wheel s l ip  
page does not occur and a small number of backup 
maneuvers is executed. Controllers based on odo- 
metric state reconstruction run with a sampling time 
T, = 50 ms (including reference motion generation). 

0 k  = e k - 1  + -. 
2 

2.3 Visual feedback 

To provide visual feedback of the robot state, we have 
used a digital 112" camera with 768 x 576 pixels, fixed 
on the laboratory ceiling. The camera has been cal- 
ibrated using Tsai's algorithm [17]. The workspace 
(i.e., the vision area) dimensions are 2.90 x 2.10 m, set 
by the height of the camera from the floor and by its 
focal distance. As a result, 1 pixel x 3.7 mm. The 
camera output is a RGB or CCIR signal sent to a Ma- 
trox Meteor frame-grabber on the PC, with a 25 Hz 
frame rate in CCIR mode. 

For reconstructing the robot posture by means of 
the camera, we have mounted on SuperMARIO a black 
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surface with three leds, located at the vertices of an 
isosceles triangle pointing in the forward direction (see 
Fig. 1). The upper vertex position is taken as the (5, y) 
reference point of the robot. 

In order to localize the triangle in the image, we 
proceed as follows. A binary image is created first 
from a 256-level grayscale image, by using a threshold 
of 240. Using a ddation operator (see [18]), a more 
significant image is obtained from which a list of light 
blobs (in the range of 30-120 pixels each) is extracted. 
Unfortunately, reflections from the floor and the robot 
chassis (especially the wheels) are also marked as light 
blobs. A preliminary step to discard false reflections 
is to put upper and lower bounds to the blob areal. 
Next, an appropriate algorithm based on relative dis- 
tances deletes from the list all the blobs that cannot be 
candidate vertices (within some tolerance), and builds 
with the remaining blobs all isosceles triangles with 
consistent side length. The localization routine fails 
if everything but a single triangle is returned (an ex- 
tremely rare event in our experiments). 

Once a single triangle is detected, let (xu,yu), 
(21, yl), and (xr, yr) be the coordinates of, respectively, 
the upper, lower-left, and lower-right vertex. The es- 
timate of the robot reference point is simply 3 = xu, 
y^ = yu. The center ( x c , y c )  of the triangle and its 
base midpoint ( x m , y m )  are then computed from the 
three vertices. The estimate ê  (at time t k )  of the robot 
orientation is finally computed as 

euc + Qum + 8cm e =  9 

3 
with 8,, = ATAN2{yi - y3, xi -xj}, i , j  E {u,c,m}. 
We found out that this simple averaging strategy, 
which maximizes the use of measured data, is already 
effective in reducing the effects of image noise, that is 
particularly crucial in the reconstruction of 8. 

When using visual feedback, the control sampling 
time grows to Tc = 55 ms, including frame acquisition, 
elaboration and robot-server communication. The in- 
crease in sampling time has been limited by making 
frame acquisition asynchronous from other control rou- 
tines and by restricting the above triangle search to a 
300 x 300 window centered around the previous robot 
state estimate. A full window search would have led 
to a sampling time of 80 ms. 

2.4 Motion constraints 

The achievable precision of SuperMAlUO is limited 
by the finite resolution of the digital low-level control 

~~ 

'This is done using the MIL Libraries that allow blob detec- 
tion and fast analysis of basic blob features, such as center of 
mass, area, etc. 

layer. In particular, the minimum linear displacement 
is Asmin = 0.0039 cm, while the minimum increment 
of linear velocity is 0.78 cm/s. 

The motor dynamics imposes bounds on the maxi- 
mum angular velocity and acceleration of the wheels. 
The robot may reach a maximum speed of about 
2 m/s. However, in order to prevent as much as pos- 
sible wheel slippage and robot rearing (especially at 
start), we have imposed conservative constraints on 
the linear velocity and acceleration of the wheels at 
their contact with ground: 

with i E L,  R. 
When reaching one of these saturation levels, it is 

necessary to  perform a suitable command input scal- 
ing so as to preserve the curvature radius of the actual 
commanded motion. This is achieved by scaling in se- 
quence first acceleration (if needed) and then velocity 
commands. For a given set of acceleration commands 
(ai?, UL), define 

We modify then the original commands as follows: 

From the obtained accelerations, left and right wheel 
velocities are computed at time t k  as Vk+1 = a Tc + vk 
and then scaled in a similar way using the velocity 
bound U". 

3 Control laws 

We briefly recall the five feedback control laws com- 
pared in our experiments, two for trajectory following 
and two for parking tasks. 

3.1 Trajectory following 

Let (xd(t) ,  yd ( t ) )  be the reference Cartesian trajectory 
on the workspace plane. The associated robot orienta- 
tion is 8 d ( t )  = ATAN2{yd(t),id(t)} and the nominal 
feedforward commands are 
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Nonlinear time-invariant control (NTI) [3] 
The tracking controller is the outcome of a Lyapunov- 
based design: 

V = 2)d COS( e d  - e) + kl [ ( x d  - S) COS 8 + ( y d  - U) Sin e] 
W = W d + k z V d  w, [ ( y d  - 9) COS 6 

- ( x d  - z) sine] + k3(Od - e) .  
An usual choice for the control gains is 

kl = k 3  = 2C.\/w$(t) + bvi(t), k 2  = b, 

with damping coefficient C E (0, 1) and b > 0. 

Dynamic feedback linearization (DFL) [4, 51 
Exact linearization of eq. (1) can be achieved by in- 
creasing the dimension of the robot state, i.e., adding 
an integrator on the linear velocity input 

v = c  ( = a ,  (4) 
and defining the new input (a, w )  as 

Feedback stabilization is obtained on the linear side by 
choosing 

U 1  = ?d + K p l  ( x d  - z) + K d l  ( k d  - k )  
(6)  

212 = y d  -k Kp2(yd - 9) + K d 2 ( $ d  - y), 

with Kpi > 0, K d i  > 0 (i = 1,2). The initial state of 
the integrator in eq. (4) should be # 0 and the de- 
sired trajectory should be persistent in order to  avoid 
the singularity in eq. ( 5 ) .  

3.2 Parking 

Let the desired configuration be, w.l.o.g., the origin of 
the robot state space. 

Polar coordinate control (POL) [8] Using the 
polar coordinate transformation, singular at the origin, 

P = d x 2 +  y2 

6 = y + e ,  
Y = ATAN2{y, x }  - 8 + 7r 

the control law is defined as 

with k l ,  k 2 ,  and k g  all positive. This feedback law, 
once rewritten in the original state variables, is dis- 
continuous at the origin. 

Dynamic feedback linearization (DFL) [9] The 
DFL tracking controller (4-6) can be used also for sta- 
bilization to the origin, by setting x d  = @d = x d  = 
y d  = 0 in eq. (6). Avoidance of the singularity that 
may occur when the robot comes to a stop is obtained 
by suitable choice of the PD gains and of the initial- 
ization t o  (see [9]). 

4 Experimental results 

In both types of motion tasks (trajectory following and 
parking), the initial position and orientation of Super- 
MARIO is acquired through the vision system. We 
have implemented two operation modes, depending on 
whether the robot state is measured by odometry or 
by visual information. In the latter case, whenever the 
visual localization routine fails (see Sect. 2.3), odome- 
try is used until vision-based estimation recovers. 

4.1 Trajectory following 

The reference trajectory is an eight-shaped path 
(see Fig. 2), with an associated rest-to-rest trape- 
zoidal velocity profile lasting 32 s. The trajectory 
starts at (1,0.8,30), while the robot is initially at 
(1.7,0.3,90) [m,m,deg]. Figure 2 shows that, under vi- 
sual feedback, DFL control has a faster transient than 
NTI control. Although a stable tracking is obtained, 
visual noise affects as expected the imposed velocities; 
in Fig. 3, the angular velocity command w obtained 
with odometric feedback is smoother than with visual 
feedback. An independent measure of the Cartesian 
error is shown in Fig. 4 for odometric and visual feed- 
back under DFL control. In this case, the robot traces 
approximately twice the eight-shaped path (60 s). 

4.2 Parking 

The robot starts at (1.1,1.2,135) [m,m,deg], with the 
origin as the desired parking goal. In Fig. 5, the robot 
reaches the goal in forward motion with POL con- 
trol and moving only backwards with DFL control. 
Figure 6 shows that DFL control is faster than POL 
control in reducing the error to zero. Odometric and 
visual feedback are compared under DFL control in 
Fig. 7 and under POL control in Fig. 8. The per- 
formance is similar, although a final residual error is 
found using odometric feedback. This Cartesian error 
is larger with POL control, essentially due to the pres- 
ence of one backup maneuver, while it remains small 
(about 1 cm) with DFL control. 
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Figure 2: Trajectory following: DFL (- -) and NTI 
(. e )  control using visual feedback 
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Figure 3: Trajectory following: Angular velocity w 
with odometric (above) and visual (below) feedback 
under DFL control 

Figure 4: Trajectory following: Norm of Cartesian er- 
ror (in m) under DFL control using odometric (-.) 
and visual (-) feedback 

Figure 5: Parking: Cartesian path executed with DFL 
(-.) and POL (-) control using visual feedback 

Figure 6:- Parking: Norm of Cartesian (top) and ori- 
entation (bottom) error with DFL (--) and POL (-) 
control using visual feedback 

5 Conclusions 

We have presented experimental results on visual- 
based motion control of the nonholonomic mobile 
robot SuperMARIO. Both trajectory following and 
parking tasks have been executed using two different 
feedback controllers for each case, comparing the per- 
formance obtained with odometry or visual data. The 
reconstruction of the robot state from visual informa- 
tion is based on a simple but efficient algorithm using 
a three-light triangle mounted on the top of the vehi- 
cle. For all controllers and motion tasks, the expected 
performance improvement when using visual feedback 
is obtained at the expense of a slight (5 ms) increase of 
the sampling time with respect to odometric feedback. 

This work could be improved by implementing a 
noise reduction algorithm within the low-level image 
processing and performing fusion of odometric and vi- 
sual information in the EKF framework. Our final 
objective is to achieve visual acquisition and nonholo- 
nomic motion planning in the presence of obstacles. 
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Figure 7: Parking: Norm of Cartesian error under DFL 
control using visual (-) and odometric (-.) feedback 
(with a zoom of the final approach) 
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Figure 8: Parking: Norm of Cartesian error under POL 
control using visual (-) and odometric ( - e )  feedback 
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