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Abstract

This paper describes experiments with a Probabilistic
Roadmap Planner on a spot-welding station with 2 to 6
robot manipulators combining 12 to 36 degrees of free-
dom. When performing centralized planning, the plan-
ner has proven to be reliable and fast. When perform-
ing decoupled planning, it was not significantly faster,
but it was much less reliable, failing to find a solution
30 to 75% of the times in 6-robot examples. This is an
important result as it invalidates the assumption that
the loss of completeness in performing decoupled plan-
ning is not very substantial in practice and indicates
that centralized planning is a more desirable approach
— at least in applications like spot-welding, which re-
quires rather tight robot coordination.

1 Introduction

Probabilistic roadmaps (PRM) are an effective tool
to capture the connectivity of a robot’s collision-free
space and solve path-planning problems with many
degrees of freedom (dofs) [3, 11, 13, 14]. An espe-
cially interesting application for PRM planners is to
compute coordinated paths of manipulator robots in
spot-welding stations such as those found in automo-
tive body shops (Figure 1). Such stations include
4 to 10 robots, each sharing workspace with 1 to 4
other robots. The number of robot degrees of freedom
ranges from 20 to 60. This does not account for the
dofs of the clamping devices, which may add several
dozen dofs. The CAD model of the environment may
consist of several 100,000 triangles. The task of manu-
ally programming a station using a graphic simulator
and/or teach pendants is long and prone to errors.
Late adjustments in weld points (these changes may
be motivated by data collected during crash-tests) re-
sult in interruptions of the manufacturing line. A
fast and reliable planner could greatly expedite the
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Figure 1: Spot-welding station.

re-programming task and shorten interruptions.

There are two well established approaches to multi-
robot motion planning, independent of the core path
planning technique used: centralized and decoupled
[16]. So far, the prevalent approach has been decou-
pled planning. In most cases, centralized planning has
been beyond the practical capabilities of existing core
planning techniques, as it requires searching configu-
ration spaces with many dimensions. Decoupled plan-
ning breaks the original planning problem into more
tractable sub-problems. Though decoupled planning
is inherently incomplete — that is, it is not guaranteed
to find a solution whenever one exists — it has been
assumed that, in practice, the loss of completeness is
relatively small and worth the computational gain.

We have recently developed a new PRM planner that
combines a single-query bi-directional sampling strat-
egy with a lazy collision-checking connection strategy.
The later postpones collision tests until they are abso-
lutely necessary. This planner, called SBL (for Single-
query, Bi-directional, Lazy in checking collision), is
described in [19, 20]. It is significantly more efficient
than previous PRM planners, which enables its ap-
plication to problems involving multiple robots inter-
acting in geometrically complex environments. Here,
we describe the use of SBL to implement both the



Figure 2: Model of six-robot welding station.

centralized and the decoupled approaches. We give
experimental results obtained for the model of a 6-
robot welding station shown in Figure 2, comparing
the performance and reliability of both approaches.
The results reveal that decoupled planning is too un-
reliable to be practical for this application. This is
an important observation, since it invalidates the as-
sumption that the loss of completeness caused by de-
coupled planning is not very significant in practice and
indicates that centralized planning is a more desirable
approach. By no means, however, does this imply that
decoupled planning is useless. First, it may be reason-
ably reliable for other applications where interactions
among robots are less constraining. Second, there are
distributed robot systems where centralized planning
is not possible because no robot or processor knows the
global state of the system or the goals of all robots.
Finally, even in cases where decoupled planning is pos-
sible but unreliable, it may still be useful if the planner
receives interactive hints from the user.

Section 2 presents the SBL planner. Section 3 de-
scribes the centralized and decoupled approaches to
multi-robot planning and their implementation using
SBL. Section 4 discusses experimental results compar-
ing the two approaches.

2 SBL Planner

Overview. The PRM approach was proposed to plan
collision-free paths for robots with “many” — 6 or
more — dofs [13, 14]. A PRM planner operates as
follows. It samples the robot’s configuration space at
random, tests each sample for collision, and retains the
collision-free samples as milestones. It connects pairs
of milestones that are relatively close apart by simple
paths (typically, straight line segments in configura-

tion space) and retains the collision-free ones as local
paths. The milestones and local paths form the proba-
bilistic roadmap. The planner connects the initial and
goal configurations of the robot to this roadmap and
invokes a search algorithm to extract a collision-free
path between them, if there exists one.

The motivation for this approach is that, while it is of-
ten impractical to compute an explicit geometric rep-
resentation of the collision-free subset (the free space)
of a configuration space, algorithms exist to efficiently
check whether a given configuration or local path is
collision-free [3]. In particular, hierarchical algorithms
pre-compute a multi-level bounding approximation of
every object in an environment (e.g., [6, 8, 18]). At
each collision query, they use the pre-computed ap-
proximations to quickly discard large subsets of the
objects that cannot possibly collide. They scale up
well to environments where object surfaces are de-
scribed by 100,000’s of triangles [10].

A PRM planner cannot usually recognize that no
collision-free path exists. So, it returns that no path
exists if it has not found one after some specified com-
putational time. But it has been shown that, under
broad assumptions, the probability that a PRM plan-
ner finds a collision-free path, if one exists, goes to
1 exponentially in the number of milestones (which
in practice is roughly proportional to the running
time) [10, 9]. Said otherwise, if the planner returns
that no path exists, the probability that this outcome
is incorrect converges quickly to 0. This property is
called probabilistic completeness.

Sampling strategies. PRM planners differ among
them mainly by their sampling strategies. Some plan-
ners — called multi-query planners — pre-compute a
roadmap that they later use to answer multiple path-
planning queries [13, 14]. Others — single-query plan-
ners— compute a new roadmap for each query [10, 15].
Multi-query planners are appropriate when the rela-
tively high cost of pre-computing a roadmap can be
amortized over many queries. Single-query planners
are more suitable when the queries are few.

A single-query planner uses the query configurations
to explore restricted subsets of the free-space com-
ponents that are reachable from these configurations.
This is done either by growing one tree of milestones
rooted at one query configuration, until a connection
is found with the other query configuration (single-
directional sampling), or by growing two trees con-
currently, respectively rooted at one of the two query
configurations, until a connection is found between the
two trees (bi-directional sampling) [9]. In both cases,
milestones are iteratively added to the roadmap. Each



Figure 3: Path planning environments.

new milestone m’ is selected in a neighborhood of a
milestone m already in a tree and is connected to m
by a local path (hence, m' becomes a child of m).
Bi-directional planners are usually more efficient than
single-directional ones.

SBL planner. Previous PRM planners test each con-
nection between milestones for collision before insert-
ing it in a roadmap. It was shown in [5] that a lazy
collision-checking strategy that postpones tests until
they are absolutely needed save considerable time. We
have refined this strategy and integrated it with a
single-query bi-directional sampling strategy, yielding
the SBL planner [19, 20]. SBL uses the PQP collision
checker described in [8]. It also includes a simple path
optimizer that shortens the generated paths.

Our experiments showed that SBL is between 4 and 40
times faster than a classical single-query bi-directional
PRM planner. Figure 3 presents four single-robot ex-
amples on which we have run the planner. The path
of the end-effector before optimization is shown in red;
the path after optimization is in yellow. Table 1 lists
performance measures of the planner; for each exam-
ple, these measures are averages over 100 runs with
different seeds of the random-number generator. The
longer running times in the geometrically simpler ex-
amples a and d result from the fact that in these two
examples the obstacles create “narrow passages” in

Running | Milestones | Total Nr. | Std. Dev.
time (s) | in roadmap of CC

a 4.45 1609 11211 2.48

b 4.42 1405 7267 1.86

c 0.17 33 406 0.07

d 6.99 4160 12228 3.55

Table 1: Statistics for environments in Figure 3
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Figure 4: Experimental rate of convergence of SBL.

free space. The running times do not include path
optimization, which takes a small fraction of the plan-
ning time.

What is a failure? The results of Table 1 are based
on a total of 500 runs of SBL. The maximal number
of milestones that SBL was allowed to generate in a
single run was set to 50,000. Had this number been
reached during a run, the planner would have reported
failure (i.e., that no path exists) for this run. Not only
SBL did not fail in any of the 500 runs, but the number
of milestones actually needed in each run was much
smaller than 50,000. This is a good indication of the
planner’s reliability. But since the notion of a failure
will be important later, a discussion is appropriate
here.

The diagram in Figure 4 was established for the ex-
ample of Figure 3(b) by running SBL with increasing
values of the maximal number of milestones (horizon-
tal axis), from very small ones to larger ones. For each
maximal number S of milestones, we ran the plan-
ner 200 times with different seeds, and we counted
the number of failures (vertical axis). The curve indi-
cates that for a given problem there exist two thresh-
olds Spin and Spmez. If S < Spmin, the planner fails
consistently; if S > S,42, it succeeds consistently; if
Smin < S < Spaz, it has mixed successes and fail-
ures. In Figure 4, S, and S;,4, are roughly equal
to 700 and 1500, respectively. Similar diagrams were
obtained with other examples. They are coherent with
the theoretical result that a PRM planner has a fast



convergence rate in the number of milestones.

This leads to the following conclusion. Suppose that
we consider a new planning problem that is too com-
plex for us to know in advance if it admits a solution,
or not. If we run SBL on this problem several times
and the planner never finds a solution path, then ei-
ther there exists no such path, or S < S,,i, (for the
Smin of this problem, which is unknown). If the plan-
ner succeeds at least once, then we know that there
exists a solution path. Then, by increasing the max-
imal number of milestones, we can easily achieve a
100% success rate. This reasoning will be critical to
properly analyze the experimental results of Section 4.

3 Multi-Robot Planning

We now turn to the application of SBL to multi-robot
systems. An initial and a goal configuration are in-
put for each robot. A coordinated path is one that
indicates the configuration of every robot at each in-
stant. Collisions must be avoided between each pair of
robot and workspace obstacle, and between each pair
of robots.

Centralized planning. It consists of considering all
the robots as if they were forming a single multi-arm
robot, by encoding their dofs in a single “compos-
ite” configuration space C and searching that space
for a free path between the initial and goal configura-
tions. C = C; x Ca X ... X Cp, where p is the number
of robots and C; is the configuration space of the ith
robot (i € [1,p]). Thus, the number of dimensions of
C is equal to the total number of dofs of the robots.
In the example of Figure 2, each robot has 6 dofs and
C has 36 dimensions.

Let 7 : s € [0,1] = 7(s) € F be a path in the free
subset F of C. The projection 7; of 7 into C; is the
path to be followed by the ith robot. For each s €
[0, 1], 7(s) is of the form (71 (s), 72(s), ..., Tp(s)), which
describes the configurations of the p robots at a single
point along the path 7. Hence, a path in F, if one
exists, not only describes the individual path to be
followed by each robot, but also how the robots are to
be coordinated.

In principle, any sufficiently general path-planning al-
gorithm can be used to implement centralized plan-
ning, by applying this algorithm to the composite
space C. But, in the past, centralized planning has not
been considered practical because it usually leads to
searching large-dimensional configuration spaces that
are beyond the practical capabilities of existing plan-
ning techniques. Most proposed centralized planners
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Figure 5: Coordination space of two robots.

have been based on incomplete heuristics, for example
potential field techniques [4, 23, 24]. Complete algo-
rithms have only been proposed only for very simple
robotic systems, e.g., the coordination of two discs
among polygonal obstacles [21]. PRM-based central-
ized planning has recently been applied to disassembly
planning [22].

Decoupled planning. This is a two-phase approach.
In the first phase, a collision-free path is generated
for each robot by considering only the obstacles in
the environment and ignoring the other robots. In
the second phase, called wvelocity tuning, the relative
velocities of the robots along their respective paths
are selected to avoid collision among them [2, 12, 17].
Variants of this scheme have been proposed [1, 7].

Velocity tuning consists of searching a coordination
space. Consider two robots, and let 71 and 7 be their
respective paths computed in the first phase. By forc-
ing the robots to move along these paths, we reduce
the number of dofs of each robot to 1, hence the di-
mension of their composite configuration space — now
called the coordination space — to 2. Let each path
7;(i = 1,2) be parameterized by some s; € [0,1]. The
set P = [0, 1]? represents the coordination space of the
two robots (Figure 5). Each point (s1,s2) € P defines
a placement of the robots at their configurations 74 (s1)
and 7 (s2). This point is collision-free if at this place-
ment the two robots do not collide with each other. A
path joining the point (0,0) - where both robots are
at their initial configurations — to (1,1) — where they
are at their goal configurations — in the collision-free
subset of P defines a valid coordination of the robots
along 7 and 7». This path may not be monotonic
along any of the dimensions of P, meaning that for a
while the ith robot may move backward along 7;, e.g.,
to provide maneuvering space to the second robot. An
unfortunate choice of 73 and 7» in the first planning
phase may lead the points (0,0) and (1,1) to lie in
two distinct connected components of the free subset



(a) Initial configuration

(b) Goal configuration

Figure 6: A “bad” example for decoupled planning.

of P. Figure 6 shows a classical example, in which the
two robots are discs that must switch positions, where
decoupled planning is most likely to fail.

If there are p > 2 robots, one may coordinate all the
robots by generating a collision-free path in the p-
dimensional space P where the ith axis encodes the
parameter s; of the path of the ith robot, from the
point (0, ...,0) to the point (1,...,1). We call this ap-
proach to velocity tuning global coordination. An al-
ternative, pairwise coordination, consists of planning
p — 1 paths in p — 1 two-dimensional spaces P, ..., Pp.
The axes of P, encode the parameters s; and s, along
the paths of the 1st and 2nd robots, and a collision-
free path 712 : 812 € [0,1] = 71,2(s1,2) € P> defines
a valid coordination of these two robots. One axis of
P3 encodes the parameter s3 along the path of the 3rd
robot, while the other axis encodes the parameter s; »
along the coordinated path of the 1st and 2nd robots.
Hence, each point in P; determines a placement of
the first three robots, and a collision-free path in P;
defines a valid coordination of these robots. Etc.

Decoupled planning leads to searching lower-
dimensional spaces than centralized planning. But
it is inherently incomplete, even if the core planning
algorithms used in the first and second phases are
complete. Velocity tuning may fail because the paths
generated in the first phase cannot be coordinated
without collision between robots, while such coor-
dination would have been possible had other paths
been selected. A decoupled planner based on global
coordination is less incomplete than one based on
pairwise coordination, since a specific path selected in
the path space P; may result into a space P;11 with
no collision-free path between (0, ...,0) and (1,...,1).
Nevertheless, pairwise coordination has been more
widely used than global coordination.

Implemented planners. We have developed three
multi-robot planners respectively based on centralized
planning, decoupled planning with global coordina-

tion, and decoupled planning with pairwise coordina-
tion. They all use SBL as the core planner. We call
these planners C-SBL, DG-SBL, and DP-SBL.

C-SBL is exactly SBL running in the composite con-
figuration space C of the robots. The collision test of
a point in C is done by calling the collision checker on
every pair consisting of a rigid body of a robot and
an environment obstacle, and on every pair of rigid
bodies belonging to two distinct robots.

DG-SBL makes p+1 calls to SBL, where p is the num-
ber of robots: p calls to plan the path of each robot
(ignoring the other robots); then, another call to plan
a collision-free path in the space P = [0,1]P. The
roadmap in P is built by growing two trees of mile-
stones respectively rooted at (0,...,0) and (1,...,1).
The collision test of a point in P is done by calling
the checker on every pair of rigid bodies belonging to
two distinct robots.

DP-SBL makes 2p — 1 calls to SBL: p calls to plan the
path of each robot; then, p — 1 calls to plan paths in
the spaces P, through P,. The collision test of a point
in P; is done by calling the checker on every pair of
bodies consisting of one rigid body of the ith robot
and one rigid body of one of the robots 1 to i — 1.

All three planners use the same optimizer. In DG-
SBL and DP-SBL, this optimizer is called after the
robot paths have been coordinated. Indeed, optimiz-
ing individual paths before they are coordinated would
reduce the flexibility left for coordinating them, and
hence increase the incompleteness of the planners.

4 Experimental results

Experimental setting. We have conducted experi-
ments with the three planners in the environment of
Figure 2. The models contain 5,000 triangles for each
robot and 21,000 triangles for the car. Figures 7-9
show the initial and goal configurations for three prob-
lems (identified as problems I, II, and III). The robots
are identified as robots 1, 2, ..., 6, in the figures. Prob-
lem I for 2 (or 4) robots is defined as shown in Fig-
ure 7, but restricted to robots 1 and 2 (or 1, 2, 3, and
4). Problems IT and IITI for 2 and 4 robots are defined
in the same ways.

To keep our planners general, we did not take advan-
tage of certain obvious properties of the environment.
For example, the planners assume that collisions may
occur between any two bodies of any two robots, while
it is clear that many pairs of bodies cannot collide.
So, in C-SBL and DG-SBL, since each robot consists
of 6 rigid bodies, testing that no two robots collide



Figure 9: Initial and goal configurations, problem III.

Running | Milestones | Std. Dev.

time (s) | in roadmap
PI-2 Robs 0.26 11 0.52
PII-2 Robs 0.25 11 0.17
PIII-2 Robs 2.44 191 1.57
PI-4 Robs 3.97 62 5.67
PII-4 Robs 3.94 56 2.40
PIII-4 Robs 30.82 841 15.55
PI-6 Robs 28.91 322 28.91
PII-6 Robs 59.65 882 31.08
PIII-6 Robs 442.85 5648 170.46

Table 2: Average data for centralized planner.

Figure 10: Path computed by C-SBL.

at a given configuration requires running the checker
on 540 pairs of bodies (for DP-SBL the number is
smaller).

Evaluation of C-SBL. Table 2 shows average data
collected over 100 runs of C-SBL on problems I, II,
and IIT, with 2, 4, and 6 robots. In all 100 x 3 x
3 = 900 runs, C-SBL successfully returned a path in a
satisfactory amount of time. In all runs, the planner
generated much fewer milestones than the maximum
allowed (50,000). The largest number of milestones,
which was achieved for a run on problem III-6, was
6917. Figure 10 shows a series of snapshots along a
path computed for problem IIT with two robots.

The increase in the running times when the number
of robots grows is caused by both the quadratic in-
crease in the number of pairs of bodies that may have
to be tested at each collision check and the greater
difficulty of the problems due to the constraints im-
posed by the additional robots upon the motions of
the other robots. The time per collision check in-
creases from 0.001 seconds for 2 robots, to less than
0.004 seconds for 4 robots, to about 0.0085 seconds for
6 robots. So, it increases more slowly than the number
pairs of bodies tested. The reason is that each collision
check involves testing each robot body against the en-
vironment and testing every pair of bodies from two
different robots against each other. On average, the



second type of test is less costly than the first. Indeed,
the environment contains more triangles than a robot
body. Moreover, many pairs of robot bodies are far
apart, especially when the number of robots increases.
This allows the hierarchical checker to rapidly decide
that they cannot possibly collide. While the number
of body-environment tests is linear in the number of
robots, the number of body-body tests is quadratic in
that number.

Comparison of C-SBL, DG-SBL, and DP-SBL.
Unlile C-SBL, the two decoupled planners failed a
number of times. Table 3 lists the average running
times in seconds (T) and numbers of failures (F) of
DG-SBL and DP-SBL over 20 runs on each of the 9
problems. The average times are computed only over
the successful runs. For comparison, we also include
the averages for C-SBL (established over 100 runs).
The maximal number of milestones allowed at each in-
vocation of SBL was 50,000. This means that DG-SBL
and DP-SBL had up to 50,000 milestones to generate
each individual robot path. DG-SBL (global coordi-
nation) had up to 50,000 milestones to coordinate the
robot paths. DP-SBL (pairwise coordination) had up
to 50,000 milestones to coordinate each pair of paths.
The rate of failure of each decoupled planner is rela-
tively small for the three problems with 2 robots, but
it increases sharply as the number of robots grows to 4
and 6. For 6 robots, it ranges between 30% and 75%,
with pairwise coordination being more unreliable than
global coordination. A finer analysis showed that DG-
SBL and DP-SBL never failed to generate individual
robot paths. All their failures happened when velocity
tuning in a coordination space returned failure after
generating 50,000 milestones. In every successful run
of a decoupled planner, the number of milestones in
each of the roadmaps built by this planner was much
smaller than 50,000 (at least 10 times smaller), indi-
cating that with very high probability (recall Figure 4)
the planner’s failures in other runs were caused by the
incompleteness of decoupled planning, not by SBL’s
probabilistic completeness.

In the most difficult problem (III-6), DG-SBL and DP-
SBL failed 13 and 17 times, respectively, out of 20
runs. These numbers indicate that in a problem as
complex as III-6, relatively few individual paths can
be coordinated. We are not aware of any technique
that would allow a decoupled planner to reliably find
them in the first planning phase.

5 Conclusion

This paper describes the application of a PRM plan-
ner, SBL, to plan collision-free paths for several in-
teracting robots. It introduces three planners that
respectively implement centralized planning, decou-
pled planning with global coordination, and decoupled
planning with pairwise coordination. These imple-
mentations were made possible by the fact that SBL
efficiently handles many degrees of freedom.

We experimented with these planners on a multi-robot
welding station, with 2, 4, and 6 robots. We made
the important observation that decoupled planning is
substantially incomplete for this type of application,
which requires tight robot coordination. The rate of
failures of the decoupled planners for problems with
6 robots ranged from 30 to 75%, which makes them
of little practical value. On the other hand, the de-
coupled planners were at best only marginally faster
than the centralized planner when they were success-
ful. This observation invalidates the prevailing as-
sumption that the loss of completeness in performing
decoupled planning is not very significant in practice.
It indicates that centralized planning may be a more
desirable approach, and that the existence of efficient
PRM planners such as SBL makes this approach tech-
nically feasible. Clearly, there are problems where cen-
tralized planning is not suitable, or even impossible -
e.g., problems where multiple mobile robots with on-
board computing and limited communication channels
move in the same environment. For such problems, de-
coupled planning may remain the preferred approach.
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