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Abstract

This paper presents a novel analysis of the probabilistic
roadmap method (PRM) for path planning. We formu-
late the problem in terms of computing the transitive
closure of a relation over a probability space and give
a bound in terms of the number of intermediate points
for some path and the probability of choosing a point
from a certain set. Explicit geometric assumptions
are not necessary to complete this analysis and conse-
quently it provides some unification of previous work
as well as generalizing to new path planning problems,
two of which, 2k-dof kinodynamic point robots and de-
formable robots with force field control are presented
in this paper.

1 Introduction

Planning a collision-free path for a rigid or articulated
robot to move from an initial to a final configuration
in a static environment is a central problem in robotics
and has been the topic of extensive research over the
last decade [1, 8, 16]. The complexity of the prob-
lem is high and several versions of it have been shown
PSPACE-hard [16]. Interesting applications and ex-
tensions of the problem exist in planning for robots
that can modify their environments [9, 18] and flexible
robots [3], planning for graphics and simulation [15],
planning for virtual prototyping [6], and planning for
medical [20] and pharmaceutical [7] applications.

This paper concentrates on the analysis of PRM [14, 11].
Since 1994, when PRM was invented, several researchers
have reported on the excellent performance of the
planner for robots with many degrees of freedom, sev-
eral variations of the method have been developed
(e.g., [2]), several planners that bare resemblances
with PRM have been introduced (e.g., [10]), and sev-
eral extensions of the basic path planning problem
have been solved with PRM-based methods (e.g., [18]).

The experimental success of the planner has moti-
vated many researchers to seek a theoretical basis for
explaining its performance and relative successes in
this direction have been reported, among others, in
[5, 13, 12, 23, 10, 21]. This paper presents a further
extension in this direction by using the mechanism of
measure theory [4].

1.1 Previous Work

The techniques discussed in this section can be roughly
classified as one of two types: isolation of a single path
and space covering arguments. This paper is inter-
ested chiefly in the former type as it is the approach
we take.

Path isolation method

PRM is a randomized algorithm for constructing paths
by concatenating simple pieces of path together. The
paths are computed by a local planner which is not
complete and fails in some cases. If the local planner
is sufficiently powerful and some path exists, the path
can be eventually guessed. PRM turns out to be supris-
ingly effective in practice and seems to be exploiting
the property that there are many paths between two
configurations in most robotics applications.

A common technique for analyzing PRM is to consider
motion planning for point robots in open subspaces of
R*. An example of this kind of this analysis can be
found in [12]. A single path is isolated and then ana-
lyzed by tiling with simple shapes or buckets. [5], [12],
[22] and [14] use this approach. The simple shapes
used in these papers are e-balls where € > 0 is related
to the path clearance. The point choosing function is
assumed to have distributions proportional to the vol-
ume of the balls. A bound in terms of path clearance
and the measure of an open e-ball is obtained. The
probability of failure is shown to decrease exponen-
tially with the number of guesses.

An extension to this technique can be made for small



time locally controllable robots [24] such as car-like
robots and tractor trailer robots. The property ex-
ploited is that for every € > 0, there exists § > 0 such
that for any point within § distance, it can be reached
by taking a path within e. A path with e clearance
can thus be tiled with J§-balls. Again the probabil-
ity of failure was shown to decrease exponentially. A
proof for car-like robots that cannot drive backwards
was also achieved in [23].

Space covering method

In [13], a notion of e-goodness was described in at-
tempt obtain the rate of total coverage of the free
space. A space is e-good if every point in the free space
can ‘see’ more than an e fraction of the space with the
local planner. The spaces discussed were simply con-
nected compact sets with measure 1. The notion of
milestone was introduced to describe the intermediate
points in the computed paths. This paper showed how
to bound the number of milestones needed to achieve
some prbability of success. [25] showed an example
of %—good space which required an infinite number of
milestones to capture the entire space. Some evidence
that the disconnected fraction of an e-good space will
decrease asymptotically to 0 was given.

Hsu explored an extension to e-goodness with his work
on expansive spaces [9]. This work further formalized
the notions of reachability and made use of measure in
some sense. Concisely, for a connected set of points S,
the #—LOOKOUT(S) is the subset of S whose points
‘see’ using the local planner more than a g fraction of
the set of points which can be ‘seen’ from S. A space
is (o, 8) — EXPANSIVE if the 8 — LOOKOUT(S) is
always larger than an « fraction of the measure of S
for every connected subset S of the points reachable
from any point in free space. Again this work provides
a bound on the number of milestones required to gen-
erate a path. This work was useful to shed insight on
the probabilistic completeness of kinodynamic plan-
ners [10].

1.2 Key Concepts and Motivation

The key difference in the treatment in our paper is the
abstract reformulation of typical path planning prob-
lems to isolate the essential properties which allow us
to analyze PRM. We capture the properties of a path
planning task for a single path in terms of two sim-
ple constants. We relate these constants to previous
analyses to suggest ways that they can be bounded in
practice. Certain notions from an analysis such as [12]
will be replaced with more general ideas.

The simple geometric shapes, e.g., e-balls of [12], tiling
a path can be replaced with sets of strictly posi-
tive measure. They are not necessarily connected,
open or even infinite. The probability distribution
of the point choosing function can be replaced with
a computable probability measure. The configuration
spaces can be replaced with the more vague notion
of state space without any explicit geometric assump-
tions. The predicate of reachability and the local plan-
ner are formalized with binary relations with the lo-
cal planner being a subset of the reachability relation.
The reachability is assumed to be transitive and both
are assumed to have certain measurability properties.

Our reformulation of the PRM advances the state-of-
the-art PRM analysis by working with spaces with
weaker mathematical structure and by using geometry
less explicitly. Although for some systems, an analy-
sis using particular geometric facts might yield better
bounds than what we give, we are not aware of treat-
ment to date which has achieved this. Our approach
unifies some the existing work and gives a framework
for approaching new path planning problems.

2 Problem Formulation

The operation of the PRM algorithm can be summa-
rized as follows.

Algorithm 2.1. PRM planner.

1. Generate N points (configurations) from the state
space (C-space) at random.

2. Use the local planner to build o directed graph
with the points as vertices and the edges meaning
local path reachability.

3. Given a query (z,y), connect  and y to the graph
and use graph search to find a path.

4. If a path is found return it otherwise return
FAILURE.

We seek to connect the value of N required to guar-
antee sufficiently low probability of error in PRM with
the interaction between the local planner and the state
space.

Take a set X to be the free state space for a robot. By
analogy, this is taken to mean the entire set of distinct
and allowable states the robot can assume. For exam-
ple, this might be the C-space with some extra infor-
mation as to the state of the robot which is relevant
to the planning problem, e.g., time, memory contents,



velocity or the amount of fuel left. The path reach-
ability relation is transitive, i.e., if x reaches y and y
reaches z then x reaches z. This is a natural assump-
tion which expresses what is intuitively understood
by state space and path reachability. Note that sym-
metry and reflexivity are not enforced. If X encodes
time, for example, path relations would be necessarily
asymmetric.

The local planner can also be thought of as a bi-
nary relation over X. This relation, which we will
call R, is not necessarily transitive. This method has
a hope of success if any valid path can be broken
down into a finite sequence of states xi,...,z, such
that x1R--- Rx,. If zo,...,z,_1 are present in the
roadmap then a query of “does z; reach x,?” will be
answered correctly. PRM can also return this sequence,
from which the path can reconstructed and executed
[14].

PRM might be successful in the case where the transi-
tive closure of our local planner R, denoted R, is the
path reachability relation. Cases where the closure
and the path relation do not agree will be discarded -
the algorithm fails in these cases. This leads to an ab-
stract rephrasing of a general path planning problem
with PRM.

3 Notation

As stated earlier, the set X will be the set of distinct
and valid states the robot can assume. The set ¥ C 2%
is a o-algebra for X. For example, a natural choice for
this would be Borel algebra in the case where X has
a topology [19]. The function px : ¥ — [0, 1] is a prob-
ability measure on (X, Y). p is taken to represent the
distribution of the random sample function on X. If a
is the random variable indicating a point chosen from
X at random by the sampler and A is a measurable
subset of X, P(a € A) = p(A). In short, (X,X, p) is
a probability space.

For this discussion it will be necessary to extend the
measure on X by finite dimensions in order to con-
sider n-ary reachability relations over the space. The
operator ® denotes generation of o-algebras via the
usual construction over rectangles (elements of Carte-
sian products of g-algebras). The canonical ¢-algebra
and probability over X” willbe X" =¥ ®---® X and
tn 2 X" = [0,1]. p, is uniquely defined by its action
on rectangles, i.e., un(A; X -+ X A,) = [ w(4:).
The local planner is described by a relation, R, over
the set X. This relation will have the additional re-
striction that it is measurable, in other words R € ¥2.

This a natural assumption which will not inhibit the
study of ‘reasonable’ planning problems. The notation
of this object is given by the identity xRy < (z,y) €
R € 2. gz reaches y is meant by zRy.

Another representation for R is as the characteristic
function for the set R, which is more convenient for
our purposes:

0 for (z,y) ¢ R,

Xr(z,y) :=
1(@,9) {1 for (z,y) € R.

The preimage of the above function is R, i.e., R =
X7'(1). This function is measurable and can be easily
extended to n-ary analogues as follows. The family of
functions f, : X™ — {0,1} is given by

n—1
fn(!El, . :cn) = H XR(.'L'Z', .’L‘H_l).

i=1
In other words, f,(z1,...,2,) =1iff z; R--- Rx,. An-
other useful version of this function will be written f2¥
and defined as fX¥(xq,...,Tn) := faia (T, 21, 0y Tn,Y).
It follows directly that these functions are well-defined
and measurable.

A second kind of closure can be formulated in a sim-
ilar way. Intuitively, we want any membership in R
to be determinable by a random point guessing pro-
cess L. The binary relation R will be taken to mean
xRy when a random point guessing process has posi-
tive probability of proving that zRy. Here is a formal
construction of R. Let

Faww) = [ £ Odp

Note that F, is a measurable function from X 2 to
[0,1]. Now R can be written

R:= L_JO F1((0,1)).

By their constructions, R C R C R and each relation
is an element of ¥2.

4 A Bound for N

The main result presented in this paper is a bound on
the expected number of points needed to be generated
in order to determine membership in R. This bound

LAny algorithm which guesses points with u and tries to
construct paths from input x and y with R.



holds if and only if R = R. We know if this assumption
does not hold, then random point guessing processes
will fail on some queries. The method of proof will be
to reduce the problem of finding a path between two
particular points to a standard problem in discrete
probability; the following theorem will be used.

Theorem 4.1 (Coupon Collector[17]). To win a
prize in o contest held by a breakfast cereal company, it
is necessary to obtain at least one of each of n coupons
in the boxes. The coupons are placed in the boxes ac-
cording the uniform distribution, one per box. The ex-
pected number of boxes one must buy to get the prize
is
E(N) =nlogn.

For the problem considered in this paper, the existence
of certain buckets (cereal boxes) of strictly positive
measure will be shown. These buckets will be such
that guessing at least one point from each ensures that
PRM has computed a path.

Theorem 4.2. If it is possible to randomly guess a
path with positive probability, the expected number of
random points needed to be generated for PRM to suc-
cessfully compute xRy from R, E(N), satisfies the fol-
lowing inequality

MMS%T

for constants n and p.

Proof. It is possible to randomly guess a path with
positive probability if and only if R = R.

Suppose zRy for some z,y € X. Since R = R, there
is n such that F,(x,y) > 0, using the earlier defini-
tion of F,,. In other words, A = (f2¥)~1(1) is such
that p,(A) > 0. It follows that there is a rectangle
Aq X ---x A, C A such that p(A;) > 0 for each 1.
Notice that for any sequence z1,...,x, with z; € A;,
zRz1 R - - - Rz, Ry holds.

PRM will certainly succeed if a point from each A4; can
be guessed. Since they each have positive measure
this will eventually happen, however we would like to
obtain a bound as well.

Each A; can be thought of as a Coupon Collector
bucket. For an illustration look at Figure 1. We will
ignore points that land outside of the distinguished
Ay x--- x A, in order to obtain an overestimation of
E(N). Also, we will assume that the A; are disjoint
- otherwise if a point is guessed which is in multi-
ple buckets it can be randomly reassigned to a single
bucket to obtain an overcount of E(N).

n=>5
p = area(A2)

FINISH

Figure 1: A free path in state space and an illustration
of the coupon buckets

Let p = min u(A;) and conservatively take all the
buckets to have measure p. Again this produces an
overcount and we conclude that with probability at
least np a point in at least one bucket is guessed.

We will define a sequence of random variables Y;
counting the number of guesses before the ith point in
some bucket is guessed. The random variable 7' will
count the number of guesses in any bucket required
to obtain at least one guess in each bucket. It follows

that E(N) < E (E;Trzl Y;) Note that the Y; are in-

dependent and identically distributed. Furthermore,
the Y; are independent of T'. These observations allow

us to conclude that E (Z;Trzl Y;) = E(T)-E(Y1).

By Coupon Collector we know that E(T) = nlogn
(since there are n buckets) and E(Y;) = 1/np, the
inverse of the probability of landing in some bucket.
The final inequality follows. O

Corollary 4.3. After guessing N points, we can write
the probability of not having guessed the path, P, as

P <n(1-p)V.

This can be seen by applying the union bound and it
clearly decreases exponentially when p > 0.

The limiting part of bound of 4.2 is p. A useful ad-
ditional result would be to show that for some partic-
ular path planning that p could be lower bounded in
terms of the state space or some attribute of a given
path. Our analysis allows for the use of sets which
may not have simple geometric shapes thus extending
the palette of sets of positive measure that we could
use to find a lower bound for p.



5 2k-dof Kinodynamic Robots

In this section, we begin by summarizing the known
single path analysis of a k-dof holonomic robot and
then discuss issues surrounding the extension to 2k-
dof kinodynamic robots.

The workspace for this example will be a k-manifold
W C [0,1]%. The state space is the workspace, X =
W. The random sample function has the distribution
induced by the Borel measure on [0, 1]* normalized to
be a probability measure.

A fully holonomic robot operating in this workspace
and the local planner connects points with a straight
line. This analysis closely parallels [12] and [5].

The buckets (as in Th. 4.2) for k-dof point robots can
be constructed and used to get more explicit bounds
on E(N). Let u(Bs(-)) be the measure of an open J-
ball in [0, 1]*. Suppose we have some path with € path
clearance and length L. Then

(log L — log €) u(X)
/“L(BE/Q() .

Estimating E(N) is made more difficult by considering
velocities.

E(N) <

The workspace for the extension is a k-manifold W C
[0,1]% and the state space of the robot is X = W x
(—1,1)*, which encode position and velocity. The
robot can be controlled by applying a constant ac-
celeration in the range (—1, 1) for a constant non-zero
time period. In 1-d, the local planner that we use tries
to connect position (z1,v1) with (za,v2) by taking

t = 2(z2—z1)

Vo —v1
vitve

a = 7

In k-d, we solve each dimension independently and
cases where either acceleration is too large, singulari-
ties arise or time is non-positive are not solutions. We
refer to this local planner as R in the following.

We aim to show that PRM succeeds but that ball tiling
arguments as in [12] are inappropriate for this prob-
lem. The shapes of the buckets we need are discon-
nected and dependent on the input points.

The claim we will establish is that the solution space
around a given xRy has positive measure. Together
with closure of open sets under intersection, we show
this fact is enough to conclude that R = R.

Let Y C R* = {(z,v,y,w) : (z,v)R(y,w)}. For every
z = (z,v,y,w) €Y, |z —y|l >0 and [vtw| > 0,
so Je > 0 such that B.(zZ) C Y. It follows that Y is
4-manifold.

Figure 2: solution space for a single bucket path

The point guessing distribution (u) that we use
has positive measure on open sets. Suppose
(z1,v1)R(z2,v2)R(x3,v3).  There exists ¢ > 0
such that (z5,v}) € Be(zz,v2) is such that
(21, v1) R(x5,v3) R(xs,v3). Since pu(Be((22,v2))) > 0,
we have a probabilistically complete path planner and
Th.4.2 applies.

In this example, n and p depend on the input points
independently of the obstacles. Given a C' path be-
tween two points, a path made of piecewise constant
second derivatives which arbitrarily well approximates
the first path can be found. In Figure 2, we can see a
possible solution space for a planning problem with a
single intermediate milestone in 1-d, the vertical axis
being velocity and horizontal axis being position. The
shape depends heavily on the start and finish points
and is disconnected. The measure of the set, however,
is a significant fraction of the measure of smallest disc
which encloses all of the points.

6 Deformable Robots

In this section, we consider motion planning with de-
formable robots controlled by force fields. This section
will sketch how to show probabilistic completeness of
the path planner. There will be little emphasis on the
control and simulation of parametric deformables, an
interesting topic on its own.

The robot we consider in this section will be a
deformable operating in a k-dimensional compact
workspace. It will be controlled by an external force
field.

For the sake of simplicity, suppose the configura-
tion space is the set of all C? curves embedded into
a k-manifold workspace W C [0,1]F which satisfy
some constraints on total deformation energy and lo-
cal strain energy. The state space X is W together
with a C! velocity field on the curve. The robot can
be controlled by applying C° force fields to the curve.

We can subdivide the curve recursively (say in two
pieces). This will form a lattice £ of subdivision



topologies. For each A € £, we have a state space Xy
which is a m-manifold for some m which represents
the curve’s constrained deformation, embedding and
velocity field in terms of a finite parameter set (where
the curve is obtained by interpolation). To each A € L,
we assign a probability py > 0 such that ), . px = 1.
Also, an operator V on every pair A\, \' € £ can be de-
fined so that AV X' is the simplest common subdivision
topology.

For two states z,y € X, suppose there is a path be-
tween them. We will now sketch an approximation
scheme for the path, discuss what kind of properties
the local planner must have and show how we can
compute the path with PRM. More specifically, we con-
struct X’ with an associated measure and local plan-
ner R such that PRM succeeds and implies paths in X.

We will now show a path planning result for a space
which is not a manifold which, to our knowledge, has
not been achieved to date.

We rely on several reasonable assumptions. The sub-
division scheme we propose must be of the type where
the curve represented by some subdivision topology
and parameters must be the limit of the subdivision
process. The family of curves and primitive paths
must also be sufficiently rich to approximate any given
curve arbitrarily well when taken under finite compo-
sition, i.e., R is path reachability. Finally, we assume
that queries are made with representable pairs (z,y).

Let Ry be the local planner which connects points in
X. We must first show that X with its probability
measure py and with local planner R) is probabilisti-
cally complete. Recall that X, is an m-manifold. For
any z1,22,23 € X such that z1 Ryz2Rxz3, we define
Y as the set of points 2}, € Y where 21 Ryz5Ra23. It
is now sufficient to show Y is also an m-manifold. We
could conclude that py(Y) > 0, then it follows p > 0
(in the sense of Th. 4.2) for any path with a finite
number of milestones.

We construct the state space X' = [Jycp Xa with
probability measure taken by the product o-algebra
and measure constructions. Measures are weighted
for each A by px. The local planner for points z, 2’
(with subdivision A and )’ respectively) works by rein-
terpreting z and 2z’ as points in X,y and using its
corresponding local planner. It is easy to show that
this constructs a probability space. Furthermore, it
follows that PRM is probabilistically complete on X'
with local planner R.

Suppose v : [0,1] — X is the path between z and
y and this path has € clearance. Since the subdivi-
sions can generate arbitrarily good approximations to

points in X, there exist points zy,...,z, € X' such
that xRx1 R --- Rx, Ry and the new path is within €
of v.

We have shown that, under reasonable assumptions,
given a path for our deformable robot we can con-
struct a path which is within € > 0 that can be found
using PRM without fixing a parametrization a priori.
This shows that a generic path planner could be con-
structed for this problem and that the probability of
failure of the planner would tail exponentially with
respect to the number of guesses. Since the approx-
imation space we constructed is not a manifold, we
also note that we succeeded in showing path planning
results in non-manifold spaces without sacrificing the
aspects of PRM that make it desirable to implement in
practice. This kind of analysis was not possible with
previous frameworks.

7 Summary of Results

We reformulated the robot path planning problem in
terms of probability spaces, measures and the com-
putation of the transitive closure of a given measure.
We showed that if it was possible to guess a path at
random then by using PRM the probability of failing
to find an existing path would decrease exponentially.
This bound was given in terms of two intuitive con-
stants n and p. The expected number of guesses re-
quired to find a path was shown to be logarithmic in
n and inversely proportional to p. We showed that
PRM succeeds for 2k-dof point robots and gave strong
arguments towards success for deformable robots con-
trolled by force fields.

In the examples, we exhibited asymmetric, discon-
nected bucket constructions to how our analysis offers
alternatives to simple geometric tiling shapes. We also
described path planning results for non-manifold, non-
parametric spaces. We believe that our treatment pro-
vides a framework for analysis of path planning with
more physically realistic spaces where geometry, dy-
namics and computational efficiency concerns require
state spaces which have multiple and redundent rep-
resentations.
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