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Abstract

Locomotion is considered as most basic function of robots. In the
case of ordinary robots, they are not needed to change locomotion
pattern because their configurations are constant. For
self-reconfigurable modular robots, since they can change their
configurations, locomotion patterns must be prepared in advance
and changed by each configuration. There are two types of
locomotion used for modular robots. One is locomotion by
self-reconfiguration which is realized by using its reconfiguration
capability. The other is locomotion using many degrees of
freedoms of the configuration, e.g. walking, crawling and rolling,
where the connection relationship between modules is constant. In
this paper, we focus on the latter type of locomotion. Actually to
design locomotion pattern suited for each configuration
analytically or manually by human is difficult because it includes
many DOFs. To solve this problem, we propose an automatic
locomotion pattern generation method using neural oscillator and
network and evolutionary computation method. The method is
applicable for various kinds of modular robots. We confirmed the
availability of the method by software simulation and hardware
experiments.

1 Introduction

In recent years the feasibility of reconfigurable robotic systems
has been examined through hardware and software experiments
[1-14]. Self-reconfigurable robots (modular robots) proposed so
far are composed of homogeneous or heterogeneous robotic
modules and they can be connected together in a variety of
configurations according to given tasks. They can also change
their configuration by themselves by disconnecting connections
between modules and changing positions of modules. This
capability is effective for adapting themselves to the external
environment by changing their configurations or repairing
themselves by using spare modules. Modular robots seem to be
useful at extreme conditions such as on distant planet, in deep sea,
inside nuclear plants and at disaster areas where the access is
difficult for human.

Current research topics on modular robots are mainly on their
hardware systems and also many studies on their reconfiguration
algorithms or planning methods have been proposed [15-20].
Locomotion using self-reconfiguration is actually useful when the

number of modules becomes larger. However when the number
of modules is not large, locomotion such as walking, crawling and
rolling is faster and efficiently compared to the locomotion using
reconfiguration. There are few studies on the latter locomotion
using real modular robots or methods for making locomotion
patterns in variety of module configurations. This is because
locomotive motions need high motor torque for supporting the
whole body or moving by themselves, which is difficult for most
of the current modular robots. In [7], we have shown hardware
experiments on various locomotive motions and reconfiguration
between configurations by using our M-TRAN1 module, where
all the sequences in each configuration were programmed by
human and it needed much time and effort to make stable
locomotion patterns.

On the other hand, in biological cybernetics research field, there
are several researches on generation of biped or quadruped
locomotion by using neural oscillators [21-24]. The method has
been studied for understanding of the mechanism for walking
from the neurodynamics point of view or realizing a robust
locomotion and adaptation against the external disturbances. It is
considered possible to apply the same principle on the modular
robots for making locomotive motions.

In this paper, we describe an automatic locomotion generation
method (called ALPG hereafter) aimed at making locomotion of
arbitrary module configurations using neural oscillator as a model
of CPG (Central Pattern Generator) and Genetic Algorithm for
evolving parameters. In section 2 basic functions of M-TRAN
module are explained; in section 3 the details of ALPG software
are described and the results are shown and in section 4 hardware
experiments on locomotion are described.

2 Basic Functions of M-TRAN Module

In this paper, we work with the self-reconfigurable modular robot
M-TRAN2 shown in Fig.1 as an exercise for realizing locomotion
of modular robot. This module is composed of three components,
two semi-cylindrical parts and a link part. Each semi-cylindrical
part can rotate from –90 to 90 degree independently by a geared
motor embedded in the link. There are four permanent magnets
on each of three connecting surfaces of each semi-cylindrical part.
As the polarity of the magnets between two parts is different, the
module can connect to other modules by magnetic force. As each



connecting surface can be connected to another connecting
surface in every orthogonal relation, various lattice structures are
easily formed as shown in Fig.2 and it can be reconfigured by
changing positions of the semi-cylindrical parts.

Besides self-reconfiguration, this modular robot system can also
make various robotic motions such as a crawler and a quadruped
robot [7] by using two degrees of freedoms on each module.

 

Figure 1. Schematic view of the module
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Figure 2. Example of possible configurations

3Automatic Locomotion pattern Generation Method

3.1 Locomotion Generation Flow

The automatic locomotion pattern generation method (ALPG)
makes locomotion pattern of an arbitrary module configuration
and an initial shape in simulation space. Note that the
configuration here means connection relationship between
modules and that shape will change according to each module’s
angle.

Figure 3 shows a flow chart for making locomotion pattern in
ALPG software. We adopted the Vortex simulator (Critical Math
Labs) as a three-dimensional dynamic simulator, which is fast
enough to calculate dynamic motions in real time. First, a module
configuration and an initial shape are determined. The locomotion
pattern made by the ALPG software depends on the initial shape.
In 3.4 we show an example of different locomotion patterns
emerged from the same configuration but different initial shape.
Second, the configuration is input to the software and each
module’s semi-cylindrical part begins to rotate periodically
depending on frequency and amplitude determined by a neural
oscillator. The locomotion pattern made by the neural oscillators is
evaluated and GA (Genetic Algorithm) embedded in the ALPG
software evolves the parameters for the oscillators.

The evolved locomotion pattern consists of motion sequences at

each motor of each module, and the locomotion is realized in the

real world by downloading these sequences into the real
hardware.

 

Module configuration and its shape
are determined

Initial population for GA is
randomly determined

Evaluate each individual by moving
modules in simulation space and
calculate fitnesses

Sort the individuals by their fitness
and perform selection, crossover and
mutation procedures

Download each module’s sequence
into the hardware and execute
locomotion

Simulation space (ALPG software)

Real world (module hardware)

Figure 3. Simulation flow in ALPG software
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3.2 Module and Environment Description in Simulation

In simulation space, the coordinate system shown in Fig.4 is used.
The gravity goes toward the minus direction of the y-axis. The
ground is completely flat and having appropriate friction. The
rotation of each semi-cylindrical part is controlled by an output
from the neural oscillator (described in 3.3). We carefully
examined the maximum torque of the motor and relationship
between the maximum rotation speed and the input value by
using the real hardware and implemented them in the simulator. In
simulation, connections between modules are also considered and
two surfaces are automatically connected when they are drawing
near. The simulator calculates collisions and friction between
modules or a module and the ground, and the scene is updated in
every 0.015sec (step hereafter) which is the calculation frequency
of the simulation.
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3.3 Neural Oscillator Model (CPG)

To realize stable locomotion where the rotation angles of the
modules are cooperatively oscillated, we applied a neural
oscillator as a model of the CPG (Central Pattern Generator) to
control each module’s rotation. Each neuron in this model is
represented by the following non-linear differential equations (1),
which is the same model used by Taga[22] and Kimura[23]. As
shown in Fig.5, a couple of inhibiting neurons (CPG) is connected
to each rotation motor of each module, which controls rotation in
proportion to the output from a CPG expressed by equation (2).
CPGs are mutually entrained and oscillate in the same period and
with a fixed phase difference. This mutual entrainment between
CPGs, other entrainment called global entrainment between
CPGs and a mechanical system results in a cooperative motion
with modules.
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where ui is the inner state of the ith neuron; vi is a variable
representing the degree of the self-inhibition effect of the ith

neuron; yi is the output of the ith neuron; ue is an external input
with a constant rate; fi is a feedback signal from each angle. τ and
τ’ are time constants of ui and vi; weightij is a connecting weight
between the ith and jth neurons.

The differential equations above are solved by using Runge-Kutta
method in every step, and every module’s angle[step] at each step
is stored as motion sequences and utilized for making locomotion
on the hardware.
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Figure 5. Schematics of the neural oscillator(CPG)
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3.4 Evolutionary Computation

We implemented GA on the ALPG software to evolve the
locomotion pattern automatically. By using GA, initial values
u0{1,2}i and v0{1,2}i of each CPG and the connection weights weightij
are evolved together. The u0{1,2}i and v0{1,2}i are a real number from
–8.0 to 8.0 and from 0.0 to 3.0 respectively. The weightij is
selected from three values, –1:inhibitory connection, 0: no
connection and 1:excitatory connection. The initial values u0{1,2}i

and v0{1,2}i are important parameters for converging the oscillation
of the CPG to a limit cycle attractor smoothly. The connection
weights determine the phase-contrast between neurons and make
the limit cycle robust against external disturbance.

First, a group of parameters, u0{1,2}i, v0{1,2}i and weightij, is
randomly initialized by the number of population size, pop_size. A
locomotion made by each individual is evaluated one by one in 15
sec in simulation space by the evaluation function represented by
equation (3).
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where length is a moving distance of the center of gravity in plus
direction of z-axis; width is a moving distance of the center of
gravity in x-axis; loss is a energy loss that is an accumulated value
of motor torque during evaluation interval and num is the number
of modules. The speed is an average speed in evaluation time. The
value of connection increases when two modules’ surfaces are
connected, which inhibits the change of configuration. The value
of tumbled becomes 1 when the acceleration of the center of
gravity becomes larger, which inhibits tumble or unreasonable
motions. By using above evaluation function, a locomotion
pattern such that the module configuration moves faster along the
z-axis in the positive direction with low energy consumption will
emerge.

When every individual is evaluated, they are sorted by their fitness
and the lower groups are deleted according to the selection rate,
s_rate. To fill the deleted parts, crossover is achieved by selecting
parents from the remaining individuals by a roulette selection
method. As for initial values, UNDX (Unimodal Normal
Distribution Crossover) method [25] is used. This method is used
for real-coded Genetic Algorithm, which is superior in
optimization for multimodal functions or variables having many
local minimums. On the other hand, N-point crossover method is
used as for connection weights. In mutation procedure, several
individuals are selected according to the mutation rate, m_rate,
and initial values, u0{1,2}i and v0{1,2}i, of each individual are given a
little bit fluctuation and a part of the connection weights is
randomly initialized by -1, 0 or 1. Hereafter the procedure restarts
with the newly generation. The process of GA stops when the
number of generation has passed a maximum number of
generation max_gene or the average of fitness becomes constant.
By repeating above GA processes, quasi-optimized locomotion
pattern will emerge. The fixed parameters of the neural oscillator



and GAare summarized in Table 1.

Table 1. Parameters for neural oscillator (N.O.) and GA

Parameters for N.O.ValueParameters for GAValue

τ 0.05 pop_size 150

τ’ 0.6 max_gene 150

β 1.5 s_rate 0.6

p1, p2 0.125 m_rate 0.05

k 8

w12 2.5

ue 8.5

(a) (b) (c)

(d) (e)

9 modules 9 modules 9 modules

6 modules 6 modules

Figure 6. Examples of tested configurations

(f)

4 modules

 

Figure 7. Obtained locomotion patterns, gait pattern
(upper) and wave-like pattern (below)

3.5Application to Various Module Configurations

We applied ALPG method to various module configurations
shown in Fig.6. For every configuration stable locomotion
patterns were obtained. The obtained locomotion patterns of Fig.6
(a) and (b) are shown in Fig.7. In spite of the configurations being
the same, two different kinds of locomotion patterns were
obtained, one is a gait pattern and the other is a wave-like motion.
This is caused by the difference of the initial shape.

Figure 8 shows the fitness curve of each configuration from Fig.6
(a) to (f). It is found that the configuration (d) has the highest
fitness value. On the flat grounds, it is considered that the crawler
shape is more effective for moving faster since it can roll to move.

Figure 9 (a) shows the relationship between angle and angular
velocity for one of the motors involved in Fig.6 (a). Figure 9 (b)
shows the transition of every motor’s angle of Fig.6 (a). It is found
that every motors is oscillating with a constant frequency (about

1.2Hz), amplitude and phase-contrast, namely the locomotion
pattern is stable. The needed time for making locomotion pattern
by ALPG software depends on the number of modules and the
number of collisions at each step. It took about 6 hours by using
2.53GHz Pentium 4 processor PC to evolve a stable walking
pattern for the 9-module configuration in Fig.6 (a).
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Figure 9. (a) Relationship between angle and angular
velocity for one of the motors involved in Fig.6 (a). (b)
Transition of every motor’s angle in Fig.6 (a).
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4 Hardware Experiments

4.1 Specifications of M-TRAN2 Module

We have developed twenty M-TRAN2 modules shown in Fig.10.
There are two semi-cylindrical parts called a passive part and an
active part. The passive part has four permanent magnets (S pole
outside) on each of three surfaces. On the same surface, electrodes
are placed symmetrically for power supply (VCC, GND), global
communication (RS-485) and local communication. Inside the
passive part, there are circuit boards including a microprocessor



(Neuron chip, TMPN3120FE5M, Echelon Corporation) for
global inter-module communication and a microprocessor
(PIC16F873, Microchip Technology, Inc.) for local
communication. A power supply circuit and a battery are also
embedded as shown in Fig.11. Power for the module is supplied
by an internal battery or by connecting wires from outside to any
of surfaces of the modules. In the experiments that follows we
used the internal battery and no tethers were attached.

Inside the active part, there are connecting plates that will rise to
the surface by the attractive force of the magnets and connects two
surfaces electrically and mechanically. Two surfaces are also
detached automatically by heating and lengthening shape memory
alloy coils by small light bulbs as shown in Fig.11. There is also a
microprocessor (PIC16F873) for controlling detachment and local
communication with other modules.

Inside the link, there are two geared motors and their control
circuit board that includes a microprocessor (PIC16F877) into
which we implemented a PID position control program. The
motion sequence of each module made by the ALPG software is
realized by a trajectory control using this PID position control.

Specifications of M-TRAN2 module are summarized in Table 2.
More details on mechanical and electrical design of M-TRAN2
module are available in [26].

 ActivePassive

Link

GND VCC (8V)

Global
Communication
(RS-485)

Permanent
mganet (S)

Local
communication

Geared motor

Figure 10. M-TRAN2 module
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Figure 11. Inner structure of the module

4.2 Experimental Setup

Figure 12 shows the experimental setup and the internal
communication system of the modules. First, the motion sequence
of each module made by the ALPG software is downloaded by
using global communication line between host PC and modules
and it is stored in Main-CPU RAM of each module. After the

download is completed, synchronization between modules is
achieved by host PC and the cable is disconnected. In every 60
msec each module’s Main-CPU sends the angle datum for each
step to the microprocessor (PIC-M) in link and the locomotion of
the modules is thereby realized in a cooperative manner.
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Figure 12. Experimental setup and communication system

4.3 Experiments on Locomotion

We have performed experiments on locomotion of all the
configurations shown in Fig.6. As shown in Fig.13, all the
locomotion but Fig.6 (d) are successfully realized by real
hardware. The moving speeds of locomotion in hardware
experiments and in simulations are shown in Table 3. This proves
the validity of the simulation and the implemented model. As for
the configuration of Fig.6 (d), the chain was broken by a module
detachment and we stopped the experiment. One of the reasons
for the failure is that synchronization between modules was not

Table 2. Specifications of a M-TRAN2 module

Item Value
Dimension
Weight
CPU
Global communication
Local communication
Power supply (wired)
Power supply (battery)
Max. torque of each axis
Max. rotation speed
Connecting force
Battery
Total power dissipation
Sensor

60x120x60mm
0.4kg (including battery)
Neuron chip and three PICs
LonWorks, 39kbps
4,800 bps
DC 8V~20V
DC 3.8V
19.8 kg cm (rating)
0.5π rad/sec
83 N
Li-ion (3.8V, 700mAh)
0.4W(8V)
Acceleration sensor (3 axes)

Table 3. Comparison of the speed in hardware experiments
and in simulation

Hardware experiments Simulation
(a)
(b)
(c)
(d)
(e)
(f)

20 cm/sec
4.5 cm/sec
11cm/sec
N/A
6.0 cm/sec
6.0 cm/sec

23 cm/sec
6.8 cm/sec
19 cm/sec
49.3 cm/sec
7.9 cm/sec
6.7 cm/sec



complete. It seems to be solved by doing synchronization at each
step by using the global communication between modules.

5 Concluding Remarks and Future Works

In this paper, we applied neural oscillator as a CPG model for
making stable locomotion patterns of modular robotic systems.
By using Genetic Algorithm we have succeeded in making a
locomotion pattern suited for a given module configuration and its
shape automatically. As it is also possible to make the locomotion
patterns such as going to left, right and back by changing the
evaluation function, we will be able to control the moving
direction of the module configuration. Furthermore, we
performed hardware experiments on various locomotion patterns
by implementing the obtained patterns in real hardware and
realized locomotion successfully. We are convinced that this
method is also applicable to other modular robotic systems by

changing the module description in the simulator. In the current
M-TRAN2 system, self-reconfiguration capability has not been
used. Our next target is to realize locomotion utilizing both
self-reconfiguration capability and motion capability of
M-TRAN2 system. As described in section 1, locomotion using
self-reconfiguration costs too much in time and energy
consumption for current modular robotic systems. However that
locomotion becomes more effective compared to walking or
rolling when the number of modules increases. As future works,
we’d like to develop a modular robotic system that can move
around with a small size of configuration for searching or any
other tasks and can change into a large size of configuration for
crossing a wall or a ditch by connecting with each other if
necessary.
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