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Abstract — This paper addresses an experimen-
tal system simulating a free-flying space robot,
which has been constructed to study autonomous
space robots. The experimental system consists of
a space robot model, a frictionless table system,
a computer system, and a vision sensor system.
The robot model is composed of two manipulators
and a satellite vehicle, and can move freely on a
two-dimensional planar table, without friction, us-
ing air-bearings. The robot model has successfully
performed the automatic truss structure assembly,
including many jobs, e.g., manipulator berthing,
component manipulation, arm trajectory control
collision avoidance, assembly using force control,
etc. Moreover, even if the robot fails in a task
planned in advance, the robot re-plans the task
by using reinforcement learning, and obtains the
task goal for basically kinematic problems. But,
for a class of complicated dynamic problems, the
computational periods and efforts are infeasible for
on-line learning. Some approaches are proposed to
accelerate the learning speed, which also give mod-
els of cognitive actions and approaches to so-called
a frame problem. The experiment demonstrates
the possibility of the autonomous construction and
the usefulness of space robots.

I. INTRODUCTION

Space robots are necessary for future space projects to
construct, repair and maintain satellites and space struc-
tures in orbits. Hence, it is an important subject to develop
a free-flying space robot consisting of manipulators and a
satellite vehicle, which can fly freely in an orbit (this pa-
per calls it just a space robot). Lots of new complicated
dynamic problems have been raised, e.g., an interaction be-
tween the manipulators and satellite, a structural flexibility
caused by lightweight requirements, etc. There exist many
papers focused on the dynamic problems [1]-[5], whereas
the references cited here are not extensive. Some stud-
ies using hardware equipments on the ground have been
reported to examine the control and identification meth-
ods [5]-[7].

Moreover, studies of autonomous systems, e.g., recog-
nition using force and vision information, planning and
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reasoning, etc., are necessary to realize the autonomous
space robots that can achieve their mission commanded by
human operators [8]. The Stanford University has devel-
oped an experimantal space robot with low level auton-
omy that achieves collision avoidance[9]. In addition, the
following projects emphasize the present point: the Teler-
obotics Research Program [7], the space robot technology
experiment (ROTEX) [10], the Ranger Telerobotic Flight
Experiment [11], and the Engineering Test Satellite-VII
(ETS-VII) [12]. As of year, those projects have been almost
finished, but there remain many subjects for autonomous
space robots. There are many tasks autonomous space
robots can accomplish, thus replacing human astronauts.
For such autonomous robots, adaptation and learning in
real work environment are key issues. Therefore, testbeds
are necessary for the research and development.

For that purpose, this study has developed a ground
experimental system simulating a free-flying space robot
under micro-gravity condition in orbit (Fig. 1) and started
researching in the autonomy. Using the system, lots of
control techniques make the space robot model assemble a
truss structure automatically. In the assembly demonstra-
tion, the robot model performs several tasks, e.g., the ma-
nipulator berthing, the component manipulation, the arm
trajectory control collision avoidance, the assembly using
force control, etc. Repeating the sequence would enable
construction of large structures.

Figure 1: Photograph of space robot model and truss



But, the space robot may fail in a task planned in ad-
vance because of uncertainties and variations of the work-
site. To obtain the task goal, the robot must modify the
task suitably for the real work environment. For this pur-
pose, the robot re-plans by using reinforcement learning
with trial-and-error processes. The robot experimentally
achieves the goal by the re-planned task.

The reinforcement learning is applicable for the basi-
cally kinematic problems. For a class of dynamic problems,
the computational periods and efforts are infeasible for on-
line learning. To accelerate the learning speed, this paper
proposes some approaches. They also give models of cog-
nitive actions and approaches to so-called frame problem
obstructing efficient learning and action. The experiment
demonstrates the possibility of the autonomous construc-
tion and the usefulness of space robots.

The rest of this paper is organized as follows. The ex-
perimental system is introduced in the next section. In
the third section, the autonomous truss structure assembly
is experimentally demonstrated by synthesizing the tech-
niques. The fourth section illustrates the method using
reinforcement learning to plan the task-sequence appropri-
ately for the real work environment when the robot fails in
the task planned in advance. The fifth section gives some
methods to accelerate the reinforcement learning, which is
considered as a model of cognitive actions. Some conclud-
ing remarks are given in the final section.

II. EXPERIMENTAL SYSTEM

Figure 1 is a photograph of the space robot model
and a truss structure under assembly. Figure 2 shows a
schematic diagram of an experimental system constructed
in this study. The robot model is supported on the hor-
izontal table without friction by using air-pads. The ex-
perimental system simulates a free-flying space robot in
orbit while motion of the robot model is restricted in a
two-dimensional plane.

Information from the robot model is put into the com-
puter system placed beside the table. In the vision sensor
system, the stereo images are taken by the CCD cameras
and sent to an image-processing unit. After appropriate
process in the image-processing unit, the visual informa-
tion is sent to the computer system. The computer system
processes the sensing data and computes control commands
to the robot model.

The robot model consists of a satellite vehicle and dual
3 degree-of-freedom (DOF) selective compliance assembly
robot arm (SCARA) type manipulators. A pair of charge-
coupled device (CCD) cameras for a stereo-vision and a
position/attitude control system are installed on the satel-
lite vehicle. The position/attitude control system consists
of four thrusters and a control momentum gyro. The to-
tal length from the right hand to the left is approximately
1.7 m and the total mass is about 70 kg.

See [13] for details of the experimental system.

III. TRUSS ASSEMBLY

The fundamental control techniques for the space robot
have been developed, e.g., the visual servoing, the position
and attitude control of the satellite vehicle, the position-
ing control of the free-floating space robot, path planning
of arms for avoiding collision with the local work environ-
ment, force controls considering contact with the work en-
vironment, etc. After that, truss assembly experiments
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Figure 2: Schematic diagram of experimental system

are conducted. This section represents the experimental
results. See [14] for details of the control techniques.

Manipulating a truss component and connecting it to a
node precede the assembly. The component is installed in
the planned position and direction because the connector
at the node has a notch to insert the component. Corners
at the notch are planed off to insert the component easily.
The installed component would not be detached since the
connector has a latch mechanism. The truss is designed as
robot-friendly and can be assembled by using one arm.

Figure 3 is a series of photographs of the experimen-
tal assembly. An experimental manipulator berthing is
shown in Scene (i) of Fig. 3, where the visual servoing with
the sensory feedback control for space robots is used. The
right manipulator hand is controlled well and the manip-
ulator berthing is successful, whereas the satellite vehicle
is moved by the reaction of the arm motion and the dis-
turbance of cables suspended from above. The robot holds
on to the worksite by the right arm to compensate reac-
tion force through the assembly. The arm path is planned
and the manipulator is controlled to track the obtained
path. The robot installs the first component, member 1,
during scenes (ii) and (iii). The component installation is
performed well by the position-force hybrid control called
saturated-proportional and differential feedback (SP-DF)
control [15]. The robot installs other members successively
and assembles one truss unit from scene (iv) through (vi).
Repeating the sequence enables construction of a large
truss structures.

The robot-friendly truss is one of the main reasons why
the robot has succeeded assembling whereas the vision sys-
tem has a 2 mm mean measurement error after a hand-eye
calibration. However, success is not ensured because of the
measurement error.

IV. AUTONOMY WITH LEARNING

In section III, the robot has successfully achieved the
truss structure assembly of the task-sequence planned in
advance. However, the space robot may sometimes fail in
the task because of uncertainties and variations of the work
site. To recover from the error and obtain the task goal,
the robot must re-plan the task suitable for the real work
environment,.



Figure 3: Photograph of truss structure assembly

A. Application of Reinforcement Learning

For the re-planning, one of typical reinforcement learn-
ing algorithm, Q-learning [16], is used. The reinforcement
learning is used because the robot learns how to do suitably
for the real environment so as to maximize a numerical re-
ward that is given by the designer to describe what to do,
where the environment cannot be modeled exactly.

Time ¢, state s, and action a are discretized following
a general Q-learning formulation. The Q-learning algo-
rithm estimates the optimal action-value function Q(s,a)
through interactions between the robot and the environ-
ment with trial-and-error processes. The @) evaluate a at
s. During learning, the robot chooses a from s using policy
derived from (). The robot takes action a, observes new
state s’ and reward r, and updates Q as

Qs,a) + (1-)Q(s,0) +alr +7maxQ(s',a')

where @ (0 < @ < 1) and v (0 < v < 1) are a learning
rate and a discount rate, respectively. It has been shown
that the estimated @) converges to the optimal if the sys-
tem is modeled as a finite Markovian decision process and
all actions are chosen enough times. To choose the ac-
tion appropriately through learning, this study uses the
e-greedy policy [16] where any action is selected randomly
with probability €, otherwise the optimal action is chosen
by using the current estimated Q(s,a).

B. Autonomous Actions with Learning

1) Case 1: Compensation for Measurement Error:
The bad lighting condition in the space environment of-
ten yields measurement error in visual sensing. Consider a
situation that the space robot fails in scene (iii) of Fig. 3
because of the measurement error. Let the robot acquire
suitable actions for the situation by using the reinforcement
learning with trial-and-error process. Task achievement is
examined by sensor information of joint angles and ap-
plied forces because the component is not moved when it
is installed in the right node and latched correctly.
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Figure 4: Experimental result of case 1 (dashed line rep-
resents the measured position of truss by the vision sensor
with measurement error)

Figure 5: Experimental result of case 2

A discrete state space with 9% = 729 states is made for
the reinforcement learning, where each coordinate of hand
position (z,y) and orientation 6 is discretized in 9 states.
The z and y coordinates are quantized every 0.02 m and 6
every 2.0°. Each state has 2 x 3 = 6 actions that are one-
step movements of discrete coordinates to the neighbor.
Parameters in (1) for updating @ are o = 0.1, v = 0.6, and
r = 10. For the e-greedy policy, e = 0.1 is initially used
and reduced gradually to be the policy deterministic. The
manipulator is controlled by the force control for contact
situation.

Figure 4 is the graphic of the experimental robot mo-
tion. After an adequate trial-and-error process, the robot
obtains adaptive action suitable for the measurement er-
ror. The learning method enables it to accomplish the task
of compensating the measurement error. This action with
learning can be an approach to the sensor-fusion problem.

2) Case 2: Adaptive Action to New Environment::
Consider a situation that the diagonal element of scene (iv)
is lost after scene (v) during the truss structure assembly
sequence of Fig. 3. In this situation, the robot cannot
assemble the diagonal element into the truss structure by
the sequence planned in advance because the element at-
tached in step 3 becomes an obstacle. In the previous
section, manipulator path is planned by the artificial po-
tential method. But, the artificial potential method is not
suitable for the on-line planning, because it needs more
computation cost as the work environment gets more com-
plicated.

A discrete state space with 15° = 3375 states is made
for the reinforcement learning, where each coordinate of
hand position (z,y) and orientation 6 is discretized in 15
states. The x and y coordinates are quantized every 0.05m
and 6 every 10°. Other conditions are the same as case 1.

Figure 5 is the experimental robot motion planned by
the reinforcement learning. The generated task-sequence
in the state space is illustrated in Fig. 6. The learning
method enables to accomplish the task avoiding collision
against the environment.
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Figure 7: Experimental action acquired to avoid collision

Most path planning methods generate a path from the
initial state to the desired state. On the other hand, the
reinforcement learning estimates the optimal action-value
function @ for all states that derives a policy to choose
the best action. Therefore, the robot can take the best
action at any state in the environment after the optimal @Q
is estimated.

3) Case 3: Complicated Obstacle Avoidance:: ~ Con-
sider a situation that the robot cannot assemble a com-
ponent into the truss structure by the sequence planned
in advance due to unexpected obstacles that interfere with
the manipulator motion. Figure 7 is the graphic of this
experimental robot motion, where the suitable action for
the environment is obtained by the reinforcement learning
using the same conditions of case 2. The learning method
enables the robot to acquire such a complicated action to
avoid collision with the obstacles in the environment.

C. Evaluations and Discussions
For the above three cases, Table 1 shows the step numbers
of the trial-and-error process, the episode numbers, and
the periods for learning convergence, where an episode is
a process from start to goal. The computation periods
are measured by Pentium II 266 MHz CPU for numerical
simulations using modeled environments. From case 1 to
case 3, the learning method needs the longer period as the
environment becomes more complicated. The computation
periods are within a few tens of seconds and the learning
method is feasible for the class of problems.

Here, the learning method acquires actions for the ba-
sically kinematic problems. For a dynamic problem, it
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Table 1: Computation numbers and periods for conver-
gence of learning

Case 1l Case2 Case 3
State no. 729 3,375 3,375
Trial & error no. 33,666 238,092 154,043
Episode no. 1041 854 886
Period [s] 3 15 25

needs a larger number of states and actions to treat the
state space with a higher dimension and to model the in-
teraction between the robot and the environment. For this
class of dynamic problems, the computational periods and
efforts are infeasible for on-line learning. An approach to
this class of problems is still an open problem.

V. COGNITIVE ACTION

A. Models of Cognitive Actions

Investigations of skilled human operators point out a
change of “observation”. At the beginning, the operators
must recognize, plan, choose from actions, etc. and diffi-
cult to work quickly. As the persons repeat working, they
skip the internal processes relating the environment recog-
nition with much effort, and their environmental observa-
tion change to indicate efficient and right action. This can
be considered that a knowledge-based behavior changes to
a rule-based or skill-based behavior in Rasmussen’s model
and amount of the information process reduces[17]. The
efficient observation is similar to feature-based action[18].
It is called co-provision with a dual-loop feedback structure
that the environmental observation provides and organizes
behavior and the resultant behavior provides observation
again[19]. In the following sections, the change of observa-
tion and the co-provision are modeled as the selection of
state variables, the categorization of state, and the use of
categorized state space. They are also approaches to the
frame problem[20] using recognition.

There are some studies to identify the environment[21].
They relate to this example, but direction is different.

B. Formulation by Reinforcement Learning

As shown in Fig. 8, considered here is a task where the
3-link SCARA type manipulator places the component and
presses it against the corner of walls in desired direction
and force to assemble.

This is simplified from the Peg-in-Hole task and no fric-
tion is contained for simplicity. Visual information is not
used on the grounds that the robot uses only the forces
at hand and joint angles in the final assembling because
vision measurement error is not ignored.

As a solution for the reinforcement-learning problem,
Q-learning[16] is employed Its formulation is base on a fi-
nite discrete space, where time, state, and action are dis-
cretized as well as general Q-learning. The system state is
defined as follows. Convergence of learning is guaranteed
only if the system’s state space is constructed so as to de-
termine its future state relating the task form current state
and action. Hence it is reasonable to use the state variables
of the equations of motion of the robot manipulator with
the geometric endpoint constraint as:

(1)

[z7y7a7d:ay7a.7fwvfy?n2]
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Figure 8: Experimental result following an acquired motion

where they are z, y positions, a = 61 + 02 + 63 direction of
hand and component, their velocities, and applied forces
in z, y, o directions from the environment, respectively.
They all are measured form the sensors.
The following controller is used to generate actions:
T=-J"Kpr(y-y,) - Kng (2)
where 7 is control input to the manipulator, J = dy/dq”
Jacobian matrix, ¥y = [z, y,a]” manipulation variable vec-
tor, y, reference of y, g joint variable vector, Kp and
K p feedback gain matrices, respectively. For the refer-
ence manipulation variable y* at time 4, y(*?) is given
by Y = ¢ 4 5y Action at time i is considered
as the dy("). The robot regards as the task having been
achieved at a target state, where reword is given. In the
target state, all velocities and n. are zeros, and «, f., and
fy are specified values.

In this example, number of state is a few millions be-
cause of many degree of the state space. The learning
has not been converged in 50 hours by using Pentium III
500 MHz/Matlab since much time is consumed for numeri-
cal simulations as well as the may states. One must reduce
the states from a point of view of the recognition.

C. Change of Observation and State Space

One may wonder if all state variable in (1) are really
needed. The learning has been converged using

[‘Tayvaafihfy] (3)

as state variables. One of the obtained optimal behavior is
illustrated in Fig. 8. The optimal behavior is achieved from
any initial state after the learning is converged. The state
variables are reduced because some of the state variables
in (1) are not necessary for the task achievement and the
sampling time for learning is longer than the settled time of
the control (2). The learning has been converged in 4 hours
because the number of states has been reduced by 1/1000.
An algorithm with a decision tree is used to find the state
variables in (3). It takes 5 hours for the convergence of
learning including this state variables finding algorithm.

This is an approach to find the minimum sufficient state
space for the learning convergence as well as to ease the
frame problem. This is also a model of the change of ob-
servation because the notable information in state variables
is becoming clear as one is learning.
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D. Categorization and Learning

One can categorize the states by differences of interac-
tion between the manipulator and the environment. There
are many states, e.g., the robot move freely without con-
straint force, it moves freely except = direction because of
constraint force f., etc. The states are categorized by the
interaction as illustrated in Fig. 9

A state is described by a pair of two graphs of the z—y
and the f,—f, at hand where 4 variables are used in (3). In
the figure, each of SS; to SSy is a set of states belonging
to each category. They are subspaces of the entire state
space. For instance, the manipulator does not contact to
any walls in a state of SS1, it contacts to the upper wall
in SSs5, and SS> is a subspace of their border. In each
subspace, state transitions from any states by an action
are same. Note that the categorization is dependent on
the actions that one can take.

Connecting relation among the subspace is illustrated
in Fig. 10. The lines between subspace shows existence
of actions and the thickness indicates number of actions.
The connecting relation enables to decide the action rule
through a reinforcement-learning problem where each sub-
space is treated as a state. In the example in Fig. 8, the ma-
nipulator moves from SS; to SSy. In order to achieve the
determined action, the manipulator decides its action rule
in each subspace through a reinforcement-learning prob-
lem whose subtask is the tangent between subspaces. The
number of states can be reduced again for learning in each
subspace and the learning becomes more efficient. In this
example, the number of states is reduced by 1/10 form



that in (3). As a result, the learning has been converged
in 30 minutes.

The categorization dependent on the selectable actions
can be regarded as the change of observation dependent on
selectable skills. The action decision based on the subspace
can be considered as the behavior organization followed
by the change of observation. Moreover, if the organized
behavior with the subtasks of subspace transitions becomes
a skill, one can consider the rule-based behavior changes
to skill-based behavior. The change from the rule-based
to the skill-based may change the observation. The co-
provision of observation and action can be modeled in the
above. This is also an approach to ease the frame problem.

VI. CONCLUDING REMARKS

This study has demonstrated the autonomous truss
structure assembly by the experimental autonomous space
robot system. The fundamental techniques have been de-
veloped and synthesized for the assembly task, i.e., the
stereo image measurement, the visual servoing, the posi-
tioning control of free-floating space robot, the arm path
planning, and the force control considering contact with
the work environment. The robot successfully achieved
the autonomous truss structure assembly. Furthermore,
the robot re-planned the task-sequence by using reinforce-
ment learning and obtained the goal even when the robot
failed in the task-sequence planned in advance. The rein-
forcement learning was applicable for the basically kine-
matic problems, whereas it often requires a large num-
ber of computation for a dynamic problem. To accelerate
the learning speed, some approaches have been proposed.
They also give models of cognitive actions and approaches
to so-called frame problem obstructing efficient learning
and action. As a result, this study has shown a possibility
of the autonomous truss structure construction and the
usefulness of space robots.

There remain some subjects for autonomous space robots.

The approach to the autonomy and/or intelligence is the
biggest subject to realize useful space robots. This study
has approached this issue by the reinforcement learning
algorithm where its application has been still limited.
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