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Abstract −−−− The simultaneous localization and mapping 
(SLAM) with detection and tracking of moving objects 
(DATMO) problem is not only to solve the SLAM problem 
in dynamic environments but also to detect and track these 
dynamic objects. In this paper, we derive the Bayesian 
formula of the SLAM with DATMO problem, which 
provides a solid basis for understanding and solving this 
problem. In addition, we provide a practical algorithm for 
performing DATMO from a moving platform equipped with 
range sensors. The probabilistic approach to solve the whole 
problem has been implemented with the Navlab11 vehicle. 
More than 100 miles of experiments in crowded urban areas 
indicated that SLAM with DATMO is indeed feasible.  
 

I. INTRODUCTION 
     
     The simultaneous localization and mapping (SLAM) 
problem has attracted immense attention in the mobile 
robotics literature [17], and SLAM techniques are at the 
core of many successful robot systems. Most researchers 
on SLAM assume that the unknown environment is static, 
containing only rigid, non-moving objects. In [20], we 
presented a method to solve the SLAM problem and the 
detection and tracking of moving objects (DATMO) 
problem concurrently and showed that the initial results of 
SLAM with DATMO are dramatically better than SLAM 
without DATMO in crowded urban environments. But at 
that moment we did not present a theoretic framework for 
solving the SLAM with DATMO problem; the tracking of 
moving objects also had not been fully developed. In this 
paper, we extend the Bayesian formula of the SLAM 
problem to the SLAM with DATMO problem. In order to 
supplement our previous paper, we also present the 
approach for solving the DATMO problem in detail.  
      The new focus of the Navlab group at Carnegie 
Mellon University is on short-range sensing, to look all 
around the vehicle for improving driving safety and 
preventing traffic injuries caused by human factors such 
as speeding, or distraction. We believe that being able to 
detect and track every stationary object and every moving 
object, to reason about the dynamic traffic scene, to detect 
and predict every critical situation, and to warn and assist 

drivers in advance, is essential to prevent these kinds of 
accidents.  
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Fig. 1: NAVLAB 11 testbed 
 

n order to perform DATMO by using sensors 
nted on a moving ground vehicle at high speeds, a 
ise localization system is essential. It is known that 
 and DGPS often fail in the urban areas because of 
n canyon effects; and a good IMU system is very 
nsive. Our solution of the SLAM with DATMO 
lem satisfies both the safety and navigation demands 
using laser scanners and odometry. SLAM with 
MO can provide a better estimation of the vehicle’s 

tion and provide information of the dynamic 
ronments, which are critical to driving assistance and 
nomous driving.       
f we can have a stationary object map in advance, the 
M problem reduces to a localization problem with a 
n map, which is easier solved than the full SLAM 

lem. Unfortunately, it is difficult to build a usable 
onary object map because of temporary stationary 
cts such as parked cars. Even though we can filter 
ing objects out, the stationary object maps of the 
e scene built from different times could still be 
rent, which means that we still have to do online map 

ding for updating the current stationary object map. 
driving assistance applications, basically a globally 
istent metric stationary object map is not necessary. 
 result, we include a digital map in our system and 
mplish global localization in a topological way.  



     The DATMO problem has been extensively studied for 
several decades [1, 2]. It is not easy to solve the DATMO 
problem in crowded urban environments from a moving 
ground vehicle at high speeds. There are many kinds of 
moving objects, such as pedestrians, animals, wheelchairs, 
bicycles, motorcycles, cars, buses, trucks, trailers, etc., 
which means that targets have a wide range of sizes and 
velocities. The range of the velocities is from under 5mph 
(such as the pedestrian’s movement) to 50mph. When 
using laser scanners, the features of moving objects can 
change significantly from scan to scan. The observation 
of a single object such as a trailer may be shown as 
several objects; multiple objects such as pedestrians may 
also be shown as a single object and moving objects may 
disappear and reappear. Besides, the vehicle may have 
extreme roll and pitch motions. To solve these difficulties, 
we presented a motion-based detector to detect different 
kinds of moving objects in [20]. A hypothesis tree is 
managed for data association and moving object 
merging/removal. The results show that our DATMO 
algorithm can be run in the crowded urban areas robustly 
and efficiently. 
     Both SLAM and DATMO have been studied in 
isolation. However, when driving in crowded urban 
environments composed of stationary and moving entities, 
neither of them is sufficient. The contribution of this 
paper is to establish a mathematical framework that 
integrates both, SLAM and DATMO. The paper provides 
ample experimental results that show that performing 
both at the same time is superior to doing just one or the 
other.   
     The rest of this paper is arranged as follows: In Section 
II, the Bayesian formula for the SLAM with DATMO 
problem is introduced; Section III reviews our approach 
of SLAM in outdoor environments briefly; Section IV 
introduces the algorithms to solve the DATMO problem 
in detail. The experimental results are in Section V, and 
the conclusion and future work are in Section VI. 
 

II. SLAM WITH DATMO PROBLEM DEFINITION 
 
     In this section the Bayesian formulation of the SLAM 
with DATMO problem is introduced.  
 
A. Notation 
 
     We denote the discrete time index by the variable k, 
the vector describing an odometry measurement from 
time 1−k  to time k  by the variable ku , a laser scanner 
measurement from the vehicle at time k  by the variable 

kz , the state vector describing the true location of the 
vehicle at time k  by the variable kx , and the stochastic 
map which contains l  features by the variable 

{ }lmmM ,,1
m= . In addition, we define the following set 

to refer data leading up to time k. 
 

{ } { }kkkk uUuuuU ,,...,, 110 −==                (1) 

{ } { }kkkk zZzzzZ ,,...,, 110 −==                           (2) 

{ } { }kkkk xXxxxX ,,...,, 110 −==                (3) 

where the initial location of the vehicle 0x is assumed 
known. 
 
B. Bayesian Formulation of the SLAM Problem 
 
     Before formulating the SLAM with DATMO problem, 
we briefly introduce the formula of the SLAM problem. 
The SLAM problem is to determine the robot location 

kX and the stationary object map M  from laser scanner 
measurements kZ  and odometry measurements kU . The 
general probabilistic formula for SLAM is expressed as: 
 

),|,( kkk UZMXp       (4) 
 

Although the batch methods can provide an optimal 
estimation, the recursive methods are considered and used 
because of the online requirement and the computational 
power limitation in most of applications. According to the 
Bayes’ theorem and the assumptions that the vehicle 
motion model is Markov and the objects in the 
environment are stationary, the general recursive 
Bayesian formula for SLAM can be derived and 
expressed as: (See [19, 10] for more details.) 
 

=),|,( kkk UZMxp                  (5) 
   ∫ −−−−−⋅ 11111 ),|,(),|(),|( kkkkkkkkk dxUZMxpuxxpMxzpη  

 
where ),|,( 111 −−− kkk UZMxp  is the posterior probability at 
time 1−k , ),|,( kkk UZMxp is the posterior probability at 
time k , ),|( 1 kkk uxxp −

is the motion model, ),|( Mxzp kk
is 

the update stage which can be inferred as the sensor 
(measurement, perceptual) model, and η  is a normalizing 
constant. The motion model is calculated according to the 
vehicle kinematics/dynamics. The sensor model can be 
represented and calculated by different ways, such as 
feature/landmark based and occupancy-grid-map based 
approaches. 
  
C. Bayesian Formulation of SLAM with DATMO 
 
     The SLAM with DATMO problem is not only to 
accomplish SLAM in dynamic environments but also to 
detect and track these dynamic events. Since the unknown 



SLAM 

environment is dynamic and contains moving objects, the 
general recursive probabilistic formula for SLAM with 
DATMO can be expressed as:     
 

),|,,( kkkk UZMYxp         (6) 
 
Here { }n

kkk yyY �,1= are the locations of moving objects, 
of which there are n  moving objects that appeared inside 
the sensor’s range at time k.  
 
C.1 Assumptions 
      
     Before introducing the derivation, the assumptions we 
made are addressed.  
 
Assumption 1: Measurements can be decomposed into 
measurements of stationary and moving objects: 
 
       m

k
s
kk zzz +=    and hence   m

k
s
kk ZZZ +=    (7) 

 
Here the sensor measurement belonging to stationary 
objects is denoted by the variable s

kz  and the sensor 
measurement belonging to moving objects is denoted by 
the variable m

kz . In particular this implies the following 
conditional independence 
  

),,|(),,|(),,|( kk
m
kkk

s
kkkk xMYzpxMYzpxMYzp =  

                       ),|(),|( kk
m
kk

s
k xYzpxMzp=            (8) 

 
Assumption 2: When estimating the posterior over the 
map and the vehicle pose, the measurements of moving 
objects carry no information, neither do their location kY :  
 

),|,(),,|,( k
s
kkkkkk UZxMpUZYxMp =       (9) 

 
This is correct if we have no information whatsoever 
about the speed at which objects move. Here it is an 
approximation, but one that reduces the complexity of 
SLAM with moving objects enormously.  
 
C.2 Derivation 
 
   We begin by factoring out the most recent measurement: 
 
 ),,,,|(),|,,( 1 kkkkkkkkk UZxMYzpUZxMYp −∝        
      ),|,,( 1 kkkk UZxMYp −         (10) 
 
Observing the standard Markov assumption, we note that 

),,,,|( 1 kkkkk UZxMYzp −  does not depend on 1−kZ  and 

kU . Furthermore, we can now partition the measurement 

into stationary and moving, and obtain by exploiting 
Assumption 1 and (8): 
 

∝),|,,( kkkk UZxMYp  
   ),|,,(),|(),|( 1 kkkkkk

m
kk

s
k UZxMYpxYzpxMzp −    (11) 

 
The rightmost term ),|,,( 1 kkkk UZxMYp −  can now be 
further developed, exploiting Assumption 2: 
 

),|,,( 1 kkkk UZxMYp −

 ),,|,(),|( 11 kkkkkkk UZYxMpUZYp −−=  
),|,(),|( 11 k

s
kkkkk UZxMpUZYp −−=           (12) 

 
Hence we get our desired posterior 
 

∝),|,,( kkkk UZxMYp   
),|,(),|( 1 k

s
kkk

s
k UZxMpxMzp −

 

                           ),|(),|( 1 kkkkk
m
k UZYpxYzp −

        (13) 

 
The term ),|( 1 kkk UZYp − resolves to the following 
predictions 
 

),|( 1 kkk UZYp −  
11111 ),|(),,|( −−−−−∫= kkkkkkkk dYUZYpYUZYp  

11111 ),|()|( −−−−−∫= kkkkkk dYUZYpYYp          (14) 

 
Finally, the term ),|,( 1 k

s
kk UZxMp − in (13) is obtained by 

the following step: 
 

),|,( 1 k
s
kk UZxMp − ),|(),,|( 11 k

s
kk

s
kk UZMpMUZxp −−=  

∫ −−−−= ),,|(),,,|( 1111 MUZxpxMUZxp k
s
kkkk

s
kk

         
                                      11 ),|( −− kk

s
k dxUZMp  

11111 ),|,(),|( −−−−−∫= kk
s
kkkkk dxUZMxpxuxp             (15) 

 
which is the familiar SLAM prediction step. Putting 
everything back into (13) we now obtain the final filter 
equation: 
 

∝),|,,( kkkk UZxMYp  
),|( kk

m
k xYzp 11111 ),|()|( −−−−−∫ kkkkkk dYUZYpYYp       

 
),|( k

s
k xMzp 11111 ),|,(),|( −−−−−∫ kk

s
kkkkk dxUZMxpxuxp  

 
                                                                                     (16) 
 

DATMO

Prediction  
Update  

Prediction  
Update  



D. Solving the SLAM with DATMO problem 
 
     From (16), input to the SLAM with DATMO filter are 
two separate posteriors, one of the conventional SLAM 
form, ),|,( 111 −−− k

s
kk UZMxp , and a separate one for 

DATMO, ),|( 111 −−− kkk UZYp . 
     The remaining question is now how to recover those 
posterior at time k. For the SLAM part, the recovery is 
simple. 
 

∝= ∫ kkkkkk
s
kk dYUZxMYpUZMxp ),|,,(),|,(       (17) 

),|( k
s
k xMzp 11111 ),|,(),|( −−−−−∫ kk

s
kkkkk dxUZMxpxuxp  

 
For DATMO, we get 
 

),|( kkk UZYp ∫∫= kkkkk dMdxUZxMYp ),|,,(  

]),|()|(),|([ 11111 −−−−−∫ ∫∝ kkkkkkkk
m
k dYUZYpYYpxYzp  

kk
s
kk dxUZxp ),|(            (18) 

 
where the posterior over the pose ),|( k

s
kk UZxp is simply 

the marginal of the joint posterior calculated in (17): 
 

∫= dMUZMxpUZxp k
s
kkk

s
kk ),|,(),|(       (19) 

 
Equation (18) shows that DATMO should take account of 
the uncertainty in the pose estimate of the robot because 
the laser scanner measurements are directly from the 
robot. 
     There are a number of possible methods for solving the 
SLAM problem such as the Particle Filter, the Extended 
Kalman Filter (EKF), the Unscented Kalman Filter, and 
the Sum-of-Gaussian method [10]. The SLAM with 
DATMO problem can be solved by these methods as well. 
The main differences of these methods are the 
representations of the joint posterior density. Given 
enough particles (sample points), the Particle filter can 
provide a complete representation of the joint posterior 
density, which is the key to deal with non-linearity and 
non-Gaussianity.  
     Currently, because the computational power of our 
system is not enough to run particle filter-based 
algorithms, the whole SLAM and DATMO problem is 
solved through the use of the EKF. We assume that the 
sensor model and motion model are Gaussian so that all 
these integrals of the formula are easily carried out in 
closed form. Since SLAM can get a better result if the 
moving objects are filtered out in advance, the whole 
procedure can be operated iteratively in order to get a 
more accurate result. 

     It should be noted that SLAM with DATMO could be 
handled by calculating a joint posterior over all features 
(map, robot pose, moving objects). Such an approach 
would be similar to existing SLAM algorithms, but with 
additional structure to allow for motion of the moving 
objects. Our choice to decompose the estimation problem 
into two separate estimators is motivated by two 
observations: First, moving features are highly 
unpredictable and including them in the vehicle 
localization (as would be the case for the single-filter 
solution) would have a negative effect on the vehicle's 
localization. Second, by maintaining separate posteriors 
for the static map variables and the moving features, the 
resulting estimation problems are much lower 
dimensional than the joint estimation problem. This 
makes it possible to update both filters in real-time. 
                                                                                   

III. SLAM IMPLEMENTATION IN URBAN AND 
SUBURBAN AREAS 

 
     Extracting features robustly and correctly in outdoor 
environments is difficult. Whenever a feature is extracted, 
an error from feature extraction will occur. The error 
analysis of feature extraction is not yet rigorously studied. 
Instead of feature-based approaches, our system applies a 
scan matching technique, the Iterative Closest Point (ICP) 
algorithm [22], and uses a grid-map to represent the 
environments. The map updating in our system is similar 
to the approach presented in [18]. Unlike other mapping 
methods, the map in our system contains information not 
only from stationary objects but also from moving objects. 
Checking the consistency of both the moving object map 
and the stationary object map provides important 
information of the SLAM with DATMO algorithm 
performance. The main problem of the scan-matching-
based approaches is that there is no efficient and good 
way to estimate the uncertainty of the location estimation. 
This does decrease the likelihood of the successful large 
loop closing and DATMO. The study for solving this 
problem is ongoing. 
     In order to globally localize the vehicle online, a 
digital map is included into our system and the global 
localization is accomplished in a topological way. Online 
global topological SLAM using a digital map without 
GPS will be presented in another paper.  
 

IV. DATMO IMPLEMENTATION 
 
     Basically, an algorithm for solving DATMO problems 
has to address the following issues: 
  
• Detection and initiation of new moving objects; 
• Moving object motion modeling; 
• Data association; 



• Merging moving objects when two or more moving 
objects coalesce; 

• Removal of moving objects that have moved outside 
the sensor's range; 

• Occlusion; 
• Adaptation of the false measurements; 
• Algorithm can be shown to work robustly over long 

sequences of data. 
 
     Our DATMO algorithm solves above problems in the 
following manner.  The motion-based detector is used to 
detect different kinds of moving objects in crowded urban 
environments. Then the Multiple Hypothesis Tracking 
(MHT) method [3, 15] is applied to accomplish data 
association. Given the data associated with a moving 
object, the motion of this moving object is modeled and 
this model is used to predict the future motion. In this 
section, the motion-based detector presented in [20] is 
briefly introduced. The approaches of data association and 
motion modeling are addressed. In the end of this section, 
we will show that our DATMO algorithm has the ability 
to adapt the false measurements. 
   
A. Motion-based Detection  
 
    In indoor environments, the most important targets of 
the DATMO problem are people [6, 8, 9, 11, 16]. If 
cameras are used to detect people, the appearance-based 
approaches are widely used and people can be detected no 
matter if they are moving or not. If laser scanners are used, 
the feature-based approaches are usually the preferred 
solutions. Both appearance-based and feature-based 
methods rely on the prior knowledge of the targets. In our 
application, because of the variety of our targets, it is very 
difficult to define features or appearances by using laser 
scanners. Also, the task is to detect moving objects, not 
temporary stationary objects such as parked cars, which 
are still useful information for the online SLAM. 
     Other than appearance-based and feature-based 
approaches, we presented a motion-based detection 
approach in [20] for both indoor and outdoor 
environments. As long as an object is moving, our 
approach can detect it. Although this method cannot 
detect stationary cars and pedestrians, these temporary 
stationary objects actually do not have to be dealt with, 
because their stationary state will not cause any critical 
threat that the driver has to be aware of, therefore this 
drawback is tolerable. Fig. 2 shows the results of SLAM 
with moving vehicle detection by our motion-based 
approach. 
     The detection of moving people at very low speeds is 
difficult but it is possible by fusing information from the 
moving object map. From Fig. 3, we found that the data 
associated with a pedestrian is very small, e.g. 2-4 points. 

Also, the motion of a pedestrian can be too slow to be 
detected by the motion-based detector. Since the map also 
contains information from previous moving objects, we 
can say if this blob is in an area that was previously 
occupied by moving objects, this object can be recognized 
as a moving object. In the bottom of Fig. 3, even if an 
object has no motion, this object is defined as a moving 
object according to the information from the map. 
 
B. Moving Object Initiation and Data Association 
 
    Once a new moving object is detected, our algorithm 
initializes a new track for this object, such as assigning an 
initial state and a motion model to this new moving object. 
By using laser scanners, we can only get the position but 
not the velocity and orientation, therefore our algorithm 
uses the data from different times and then accomplishes 
data association in order to initialize a new track. 
     Data association and tracking problems have been 
extensively studied and a number of statistical data 
association techniques have been developed, such as the 
Joint Probabilistic Data Association Filter (JPDAF) [1] 
and the Multiple Hypothesis Tracking (MHT). Our 
system applies the MHT method, which maintains a 
hypothesis tree and can revise its decisions while getting 
new information. This delayed decision approach is more 
robust than other approaches. The main disadvantage of 
the MHT method is its exponential complexity. If the 
hypothesis tree is too big, it will not be feasible to search 
the whole hypotheses to get the most likely set of 
matching. Fortunately, the number of moving objects in 
our application is usually less than twenty and most of the 
moving objects only appear for a short period of time. 
Also, useful information about moving objects from laser 
scanners, such as location, size, shape, and velocity, is 
used for updating the confidence for pruning and merging 
hypotheses. In practice, the hypothesis tree is always 
managed in a reasonable size. 
 
C. Motion Modeling and Tracking 
 
     Given the data associated with a moving object, the 
goal of motion modeling is to find the motion model of 
this moving object. Without any prior knowledge, the 
procedure of getting a motion model is complicated and it 
needs enough data and time in order to get the correct 
model. The Interacting Multiple Model (IMM) estimator 
is a sub-optimal hybrid filter that has been successful 
implemented in various target-tracking applications. For 
instance, in [21] an extended Interacting Multiple Model 
(IMM) algorithm was demonstrated on the Navlab5 
vehicle for tracking of moving cars on highways. 
     In order to analyze the interactions between the vehicle 
and other moving objects, precise motion models of 



moving objects and a long period of observation are 
necessary. Intuitively and experimentally, it is a good 
approximation that moving cars have three behavior 
modes: the constant-velocity mode, the constant-
acceleration mode, and the turning mode. Regarding other 
moving objects such as moving people, selecting good 
and efficient motion models is challenging. But if the task 
is to predict the future motions of moving objects, we 
found that the results are satisfying by assuming that 
moving objects have only one behavior mode, which is 
the constant-velocity mode. 
     Tracking algorithms estimate the state of moving 
objects according to motion models, sensor models, and 
measurements. Since the whole SLAM and DATMO 
problem is solved through the use of the EKF in this 
paper, motion models of moving objects are described in 
terms of a constant velocity model subject to zero mean 
Gaussian errors. 
   
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: The result of SLAM with Detection using a laser scanner 
mounting on the front of the vehicle. The solid blue rectangle represents 
the vehicle itself, whose width is 2m and length is 5m; the faint chain of 
magenta circles trailing from the vehicle is the list of positions from 
which the vehicle made its observations; the light red dots and light gray 
dots respectively belong to stationary parts and moving parts of the map; 
yellow, green, and blue circles represent the current scan; yellow small 
circles mean stationary; blue small circles are unidentified since we 
don’t have enough information to tell if they are moving or stationary; 
small green circles are belonged to moving objects; green boxes are the 
moving objects recognized by our motion-based detector. 
 

 
Fig. 3: Moving People Detection 

   

D. Adaptation of the False Measurements 
 
     False measurements are often observed in our 
experiments. One is due to roll and pitch motions of the 
vehicle, which are unavoidable because of making turns 
at high speeds or sudden stops or starts. These motions 
may cause false measurements such as wrong scan data 
from the ground instead of other objects. Another cause of 
false measurements due to the fact that outdoors, the 
ground is not always flat; hence the flat world assumption 
in SLAM is only approximately valid; therefore uphill 
environments may cause false measurements because the 
scan may hit the ground as well. The DATMO algorithm 
adapts these false measurements implicitly without other 
pitch and roll measurement. First, the false measurements 
are detected and initialized as new moving objects by our 
motion-based detector. After data association and tracking 
are applied to these measurements, the shape and motion 
inconsistency is detected by our algorithm, which shows 
that these are false measurements. Also these false 
measurements will disappear immediately once the 
motion of the vehicle is back to normal.  
 

V. EXPERIMENTAL RESULTS 
 
     Currently the Navlab11 vehicle (See Fig. 1) is 
equipped with motion sensors (IMU, GPS, differential 
odometry, compass, inclinometer, angular gyro), video 
sensors (five video cameras, an omni-directional camera), 
three SICK single-axis scanning rangefinders, a light-
stripe rangefinder, and five 500-MHz Pentium computers. 
The results in this paper use data only from SICK laser 
scanners and the odometry. The images from the omni-
directional camera are for visualization. 
     One SICK LMS221 and two SICK LMS291 laser 
scanners were mounted in various positions on Navlab11, 
doing horizontal or vertical profiling.  Navlab11 was 
driven through the Carnegie Mellon University campus 
and around nearby streets. The range data were collected 
at 37.5 Hz with 0.5 degree resolution. The maximum 
measurement range of the scanners is 80 m. Fig. 4 and Fig. 
5 shows the results of SLAM with DATMO. The white 
dashed boxes present the predicted locations of the 
tracked moving objects from our tracking algorithm. The 
magenta points are previous data associated with the 
moving objects. In Fig. 4, two cars are detected and 
tracked. The speeds of these two cars are similar to the 
vehicle. Several false detections occurred at the top-right 
corner of the figure because online SLAM is performed 
and the confidence of that area is still low. But because 
the tracking algorithm indicted that the speeds of these 
objects are slow, the false detections will be removed and 
the map will be modified. In Fig. 5, two moving 
pedestrians are detected. The blur region in the unwarped 

Current Scan: 
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Green�Moving 

Map:
Red�Stationary

Gray�Moving



image shows the motion and location of these two moving 
pedestrians. Also on the right side of the vehicle, there is 
an intersection, which is uphill. A lot of magenta points 
are associated with this false detection. Fig. 6 also shows 
the effects of violent roll and pitch motions. The results 
show that our algorithm can survive under these critical 
situations. Fig. 7 shows the quality of our SLAM with 
DATMO algorithm. Another scanner was mounted on the 
top of the vehicle and performs the vertical profiling. A 
high quality 3D model is produced in a minute. More 
results and videos are available at http://www.cs.cmu.edu/ 
~bobwang. 
 

VI. CONCLUSION AND FUTURE WROK 
     We derived a Bayesian formula of the SLAM with 
DATMO problem. The formula provides a rigorous 
foundation to understand and solve the SLAM with 
DATMO problem. A probabilistic approach to this 
problem was implemented through the use of the Extend 
Kalman Filter. In the course of this research, our approach 
was exposed to data acquired over a total distance of 100 
miles. Even the assumption that the ground is flat is not 
valid and the vehicle has extreme roll and pitch motions, 
our system still survives and provides satisfying results. 

 
(a) The result of SLAM with DATMO 

 
 

(b) The unwarped image from the omni-camera  
Fig. 4: Detection and tracking of moving cars. The SLAM result shows 
that the vehicle was moving at 22.8 mph. 

     

 

 
 
 
Fig. 5: Pedestrian Detection. The SLAM result shows that the test 
vehicle was moving at 21.0 mph. 
 

 

 
Fig. 6: The effects of roll and pitch on SLAM with DATMO. The 
SLAM result shows that the vehicle was moving at 12.3 mph. 
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Fig. 7: 3D City Mapping 
     This paper raises several interesting topics. Maps of 
SLAM not only can be used for detecting moving objects 
but also can be constraints to improve the tracking 
performance. According to our experiment data, using 
cameras to detect moving objects is harder than using 
laser scanners. On the other hand, cameras provide very 
rich information about the global localization, which 
could benefit SLAM greatly. More experiments will be 
conducted using multiple laser scanners in different 
weather conditions for testing our algorithm.    
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