
Fast and Accurate Vision-Based Pattern Detection
and Identification

James Bruce Manuela Veloso
(jbruce@cs.cmu.edu) (mmv@cs.cmu.edu)

Computer Science Department
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh PA 15213, USA

Abstract— Fast pattern detection and identification is a fun-
damental problem for many applications of real-time vision sys-
tems. The desirable characteristics for a solution are that it takes
little computation, localizes a pattern robustly and with high ac-
curacy, and can identify a large number of unique pattern iden-
tifiers so that many patterns can be tracked within a field a view.
We will present a system that can accurately track a broad class
of patterns both accurately and quickly, when using a suitable
low level vision system that can return calibrated coordinates of
regions in a image. Both pattern design and the detection al-
gorithm are considered together to find a solution meeting the
above criteria. Along the way, assumptions are verified to make
informed choices without relying on guesswork, and allowing
similar systems to be designed on a solid experimental and sta-
tistical basis.

I. INTRODUCTION

Object identification and tracking is one of the most im-
portant current applications of machine vision. While much
research has been directed to the topic of object detection and
tracking for general objects, such as faces, cars, and doors.
While much progress has been made, many of the algorithms
require substantial amounts of processing and are less accu-
rate than can be achieved with patterns specifically designed
for detection. Thus many of the current applications of object
detection and tracking using machine vision use customized
patterns, such as factory automation or package routing sys-
tems. Although the use of customized patterns prevents the
system from being usable in every environment, in many en-
vironments specifying a pattern to be used is not a major lim-
itation. Of course, if the pattern can be specified in order
to suit the capabilities and limitations of the machine vision
system and detection algorithm, in return we expect high per-
formance from the system. Specifically, the detection for the
pattern should be fast and highly accurate; especially when
compared to more general object detection and tracking sys-
tems. For low level vision, we will employ the freely avail-
able[1] CMVision[2] library we have developed for earlier
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projects. It performs color segmentation and connected com-
ponents analysis to return colored regions at real time rates
without special hardware or dedicating the entire CPU to the
task.

Fig. 1. The CMDragons’02 Robots. Note the tracking and identification
pattern on the top of each of the robots.

The environment in which most of this work has been done
is the RoboCup[8] F180 ”Small Size” League, where robots
up to 18cm in diameter play soccer on a 2.8m by 2.3m car-
peted soccer field. The game is played with two teams with
five robots each, and uses an orange golf ball for the ball. One
team must have a 40mm blue colored circle centered on the
top of its robot while the other team must have a 40mm yel-
low patch. Teams may add extra patches and colors to the
top of their robot to aid in tracking, so long as those colors
are differentiable from the three standard colors (orange golf
ball, yellow team patch, and blue team patch). The robots
from our team, CMDragons’02[3], can be seen in Figure1.
Each team can control its robots either onboard, or offboard,
and cameras are allowed to be placed above the field. Thus,
most teams use a single overhead camera, with an offboard
PC interpreting the camera signal and sending commands to
the robots via a radio link.

This environment thus poses a tracking problem for up
to 11 small objects in known planes (in this case the possi-
bly different, but known, heights above the ground plane).
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Few other environments currently demand accurate, multiple
pattern detection at very high speed, one such environment
is Virtual or Augmented Reality. For these environments,
patterns are tracked in order to localize head mounted dis-
plays and locate objects in the physical environment that are
mapped into the virtual environment[5], [4]. Detection must
be fast and accurate to minimize observable lag and jitter in
the visualization. Due to work in these two environments,
fast, accurate, multiple pattern detection has become better
understood and more practical. Thus we expect many more
applications for such tracking systems in the future.

Another aspect that makes the RoboCup F180 environment
challenging is the high speeds of the tracked objects, since the
robots move quite quickly relative to their size. Robot speeds
peaking in excess of 2m/s are not uncommon, and ball speeds
(via robot kicking mechanisms) can reach up to 5m/s. Thus
we feel this is a good testbed for a tracking system. Two other
vision tracking and identification systems for the F180 league
have been described in [9] and [7]. Each describes a working
system used by a team, but neither motivates the choice of
pattern by a thorough analysis of the underlying feature error,
or attempts to generalize detection to other similar patterns
in order to compare their performance. In this paper we will
outline the choices and trade-offs made in designing an iden-
tification and tracking pattern by gathering real and simulated
data at each step so that informed tradeoffs can be made. We
hope that this will help others to implement similar high per-
formance tracking systems both within RoboCup and in many
other environments where a similar problem exists. Such de-
signs should not have to rely on any guesswork.

In the first section, we will motivate the type of patches
chosen from which to build patterns, and examine their error
distributions when viewed from a camera. In the second sec-
tion, we will describe several common patterns and a broad
class that includes most of the patterns. We will motivate the
use of this most popular class for its simplicity and accuracy,
and for which an efficient generic detection algorithm can be
created. In the following section, the performance of sev-
eral such patterns will be examined in simulation. Finally the
best performing pattern from simulation will be evaluated on
a real-time vision system.

II. SINGLE PATCHES

In order to build up a detection pattern, we must have some
simpler building block on which to build. We will use simple
colored patches whose position can be calculated accurately.
To detect orientation, multiple patches can be employed. For
detection, the simplest approach to take for a single patch is
to use a simple regular geometric shape of a single color. De-
tection in the vision system can be carried out on a binary
or multiclass threshold image from which connected regions
of common color class can be extracted. This approach is
common, and is known to be quite efficient, so this is the
approach we will use. The next variable to determine for a
patch shape. We chose circles, because they guarantee rota-
tional invariance, and analytical corrections for the projective

distortions of their image centroids are known[6]. In addi-
tion, they are compact, minimizing the length of the border
with other regions, where thresholding is most difficult. In
experiments, other regular shapes such as squares, hexagons,
and octagons, perform roughly on par with circles, but they
do not offer any benefits in light of the analytical guarantees
outlined above.

The more difficult problem to answer is what size of patch
to use. When the dimensions of the overall pattern are known,
this still leaves the question of whether it is better to have a
pattern with a few large patches, or more patches where each
is of a smaller size. To address this, we created a test setup
where a small moving platform would carry three different
sized white patches 2 meters across the field of view of a
camera looking down from 3 meters. The platform moved
at a slow constant speed (about 23mm/sec) allowing large
amounts of data to be gathered from a variety of locations
across the field. Using this setup, we gathered positional at
30 samples/sec for 40mm, 50mm, and 60mm circles. A to-
tal of 5 runs were gathered, each one having about 2570 data
points. As a convention, we labelled the dimension along the
primary direction of travel as x, and the dimension perpen-
dicular to the direction of travel as y.

Although there is no ground truth from which to measure
true error, the error can be estimated by smoothing the data
with a large Gaussian kernel (σ = 10) and then compar-
ing single samples with the smoothed version of the signal.
The aggregate errors appear to follow a Gaussian distribu-
tions quite well, as can be seen in Figure 2. However, more
outliers occurred than would be expected in a pure Gaussian
distribution, and the variance seemed to change noticeably
between runs, and even varied over different segments in the
course of a single run. The most sup rising result, however,
is that the size of the patch had very little effect. The over-
all standard deviations were around 0.52mm in both x and y
for all sizes with only slight (although significant) variation.
The cumulative distributions of absolute error in x and y are
shown in Figure 3.

TABLE I
THE ESTIMATED STANDARD DEVIATIONS AND 95% CONFIDENCE

INTERVALS BY PATCH SIZE.

Diameter σx σy

40 mm 0.553, [0.546− 0.561] 0.473, [0.467− 0.480]
50 mm 0.543, [0.535− 0.550] 0.504, [0.497− 0.511]
60 mm 0.489, [0.482− 0.496] 0.533, [0.526− 0.541]

The estimated standard deviations for each patch size can
be found in Table I, along with 95% confidence intervals for
the standard deviation. For hypothesis testing, we used the
non-parametric Wilcoxon signed-rank test due to its robust-
ness to outliers and lack of strong assumptions about the dis-
tributions being tested. The significant results (in all cases,
p < 0.0001) were that along the direction of travel (x), the
60mm diameter circle had significantly less error than both
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Fig. 2. Aggregate error distribution for all samples including all three patch
diameters.

the 50mm and 40mm patches. Perpendicular to travel (y)
however, error increased with patch size, with all means be-
ing significantly different. Combined error in x and y indi-
cated that the 50mm patch was slightly worse than the other
two, with p = 0.02 against each of the other patches. Given
the number of data points (over 10,000) however, we do not
consider a difference at p = 0.02 ultimately conclusive. In
addition, the difference in error from best to worst is less than
5%, which is much less variation than we expected since the
largest patch has 2.25 times the area of the smallest patch.

Thus the conclusion we can draw are that patches should
be large enough they can be detected reliably, but need not be
made any larger for purposes of accuracy. This is important
in that it is contrary to conventional wisdom about region de-
tection. It seems that other factors, such as quantization due
to pixels, play a larger part in determining the error than the
area of the region. As we will show later, we can do some-
what better by adding more patches rather than using fewer
patches and increasing their size.

III. PATTERNS AND DETECTION

Now that the basis for choosing patches has been estab-
lished, we can use this knowledge to evaluate tracking pat-
terns. One source for many different ideas are the various
patterns used by the over 20 teams in the RoboCup F180
League. The rules for the patterns on the top of the robots in
that league has naturally led to many tracking and identifica-
tion patterns being tried. Examples of some of the more pop-
ular designs can be seen in Figure 4. The approaches taken
thus far generally fall into one of three broad categories. By
far the most common type is like that shown above, which we
call patch based, where in addition to the team marker patch
in the center, one or more additional circular or rectangular
patches are used to encode position and orientation. Patch
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Fig. 3. Cumulative distributions of absolute error. Note that patch size does
not have a large effect on error. Along the direction of travel, the largest
patch size decreases error somewhat, but does worse than the smallest patch
size perpendicular to the direction of travel.

based systems have the advantage that position and orienta-
tion detection can combine several features (patches in this
case) with sub-pixel accuracy. One alternative to this is to
have a key patch marking the center of the pattern, surrounded
by radial “pie slices” of two or more colors. Orientation and
identification can be performed by scanning at some constant
radius from the central patch [7]. Unfortunately, by depend-
ing on features (color edges in this case) that are difficult to
quickly detect with sub-pixel accuracy, it is difficult to get
very accurate orientation using this method. Another type of
tracking pattern that has been tried is to use a central patch
with an nearby line feature. By finding the edge points of
that feature, a least squares fit can be made to get an accurate
orientation measurement. Unfortunately, both these classes
of patterns do not offer a straightforward way to improve the



4

Butterfly Simple TriangleLinear

Fig. 4. Examples of common tracking patterns from the RoboCup F180
environment.

position estimate. For a given pattern size, we would like to
make the most of the space. Ideally, we would like all of the
patches to contribute to position, orientation, and identifica-
tion detection. In this regard, patch based systems tend to do
quite well, which has led to them becoming the most common
class of pattern used for tracking.

If we look again at Figure 4, we can notice similarities that
can aid in creating a generic detection algorithm. All are
keyed by a colored patch (in the center of the pattern) indi-
cating the presence of a pattern. Each patch occurs at some
unambiguous angle radially from the key patch. Thus there
is a distinct circular ordering of the non-key patches that can
be calculated even in the presence of moderate noise. This
means a generic detection algorithm can start by searching
for the key patch, and then detecting and sorting the addi-
tional patches radially. All that needs to be done after that is
to find the rotational correspondence of the additional patches
with the geometric model of the pattern. In the case of the
Simple pattern, the correspondence is trivial. For the Linear
and Triangle patterns, the colors of patches can be used to dis-
ambiguate geometrically similar correspondences. Finally, in
the case of the Butterfly pattern, geometric asymmetry can be
used to find the rotational correspondence, assuming the dis-
tances between patches can be measured accurately enough.
As shown in the previous section, this boils down to the dif-
ference of two Gaussians. When we consider the standard
deviations determined in the previous section, distances that
differ by over 10mm should be differentiated correctly with
very high certainty. Using geometric asymmetry offers the
benefit of freeing up the patch colors to encode only identi-
fication, rather that both identification and rotational corre-
spondence. This gives the butterfly pattern (or any other ge-
ometrically asymmetric pattern) an identification advantage
over symmetric patterns, as shown in Table II.

TABLE II
THE NUMBER OF UNIQUELY IDENTIFIABLE PATTERNS THAT CAN BE

DETECTED USING A CERTAIN NUMBER OF COLORS (EXCLUDING THE

KEY PATCH AND KEY PATCH COLOR)

Pattern 2 colors 3 colors 4 colors n colors
Butterfly 16 64 256 4n

Simple 2 3 4 n
Linear 1 3 6 n · (n− 1)/2

Triangle 2 6 12 n · (n− 1)

Once the correspondence is established, the position and

orientation estimates must be made. What we would like is
to get near optimal detection but without resorting to itera-
tive methods or other time consuming operations. Here we
take a simple approach that turns out to be not only fast but in
practice nearly indistinguishable from optimal formulations.
First, the mean location of the patches is determined. This
is an optimal estimate, although for many patterns this loca-
tion is offset from the actual location we want to report (so
it is not an optimal estimator of that point). After this mean
position has been determined, we get displacement vectors
between a pre-specified set of “orientation pairs” from the
patches. These pairs should be well separated (because er-
ror decreases with distance), and different pairs that share a
patch should be as orthogonal as possible (to avoid correlated
errors). For the butterfly pattern, we use vectors between the
four non-key patches. For the Triangle pattern we Similarly
take the triangle edges formed by the pattern’s three external
patches. For the Linear and Simple pattern, only one nearly
orthogonal pair exists. For the Linear pattern we choose the
longest option of the opposite patches because this will min-
imize the error compared to the two shorter vectors that in-
clude the central key-patch. After the separation vectors are
determined, they can be rotated into a consistent frame of ref-
erence because their angle relative to forward is known from
the model of the pattern. Once all the vectors are lined up by
the model, they can be added to form a single vector, and the
arctangent calculated to get the angle measurement.

The motivation for adding the vectors comes from the ob-
servation that the angular error of a vector is roughly propor-
tional to the separation of the patches when the separation
distance (d) is much larger than the positional standard devi-
ation (σ), or:

σθ ≈

√
2σ2

d

The term
√

2σ2 comes from the subtraction of two Gaussians
(since the separation distance is large this is roughly a 1D sub-
traction). The division by d is the result of arctangent being
linear near the origin. In practice, we’ve found this approx-
imation works well when d > 10σ. Finally, once the angle
estimate is made, we can use this to project the mean of the
patches to the coordinates of the patch that are to be reported
(normally the origin of the patch model coordinate system).

For comparison, we also derived an iterative Maximum
Likelihood (ML) estimation method that co-optimizes posi-
tion and angle estimates assuming Gaussian positional error
for the patches. Its full derivation is omitted here for brevity.
First, it is a well known fact that minimizing sum-squared-
error in 1D is identical to maximizing the log likelihood (and
thus likelihood) of samples from a Gaussian error distribu-
tion. Since in the 2D case variances can be added, this cor-
respondence carries over into the 2D case. Thus by minimiz-
ing the sum-squared-error of the measured position of patches
from their model positions given the estimated pattern posi-
tion and orientation, we can obtain an ML estimate. Thus for
a pattern with n patches, we define the current estimate of
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robot position as r, marker locations as vi . . . vn, and patch
locations from the pattern model as pi . . . pn. Then we have
following derivatives for sum-squared-error E:

s = sin (rθ)

c = sin (rθ)

xi = rix + cpix − spiy − vix

yi = riy + spix + cpiy − viy

∂E

∂rix

=
∑

i=1..n

2xi

∂E

∂riy

=
∑

i=1..n

2yi

∂E

∂rθ

=
∑

i=1..n

2xi · (−spix − cpiy) + 2yi · (cpix − spiy)

These partial derivatives, along with the obvious imple-
mentation of the error function itself, can be used to create
an iterative ML estimation method using Newton’s method.

IV. PATTERN COMPARISON

In order to evaluate the four patch based patterns intro-
duced earlier, a small simulator was created that would gener-
ate patch positions using a Gaussian error model for a pattern
at random positions and orientations. Then the detection al-
gorithm was run on the patches, and the resulting position and
orientation measurements compared to the true values used to
generate the input patches. The results for the simulation are
shown in Figure 5, plotted as pattern position and orientation
standard deviation vs. input patch positional standard devia-
tion. Each data point was generated from 100,000 simulated
detections. One can easily see that multi-patch patterns have a
distinct advantage for both position and angle measurements.
The Simple pattern can fair no better than a single patch us-
ing the generic detection algorithm described in the previous
section. It could perhaps benefit more from maximum like-
lihood detection, but this would make detecting the Simple
pattern slower than detecting the more complicated patterns.
The Butterfly pattern has the most accurate position estima-
tion, followed by Triangle and Linear at somewhat decreased
accuracy. For angular error, the Butterfly pattern again shows
the lowest error, with Triangle close behind. With their mul-
tiple patches allowing several well separated orientation pairs
to be used, they both perform much better than Linear or Sim-
ple, each of which only have a single orientation pair. Linear
fares better than the Simple pattern because the separation
distance for its orientation pair is twice that of the Simple
pattern.

Since the Butterfly pattern worked best for both positional
and angular error in simulation, we decided to make further
tests to evaluate its performance using the iterative maximum
likelihood detection and then measure the pattern’s perfor-
mance on a real vision system. To compare our generic de-
tection algorithm with the ML estimate, we ran each of the
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Fig. 5. Comparison of the positional and angular error of different patterns
as the error of individual patches vary. For relatively small patch standard
deviations, a linear relationship exists between the two, although the number
of patches and layout of the pattern vary the factor.

detection methods in simulation. Even after 100,000 sam-
ples, no statistically significant differences could be detected
with a Kolmogorov-Smirnov test, leading to the conclusion
that at least for complicated patterns, the simple detection al-
gorithm was indistinguishable in terms of accuracy from the
ML estimation.

Finally, we evaluated the Butterfly pattern on a real vision
system. We ran 5 runs similar to those for single patches
but this time with a pattern being tracked rather than indi-
vidual patches. The overall standard deviations were σx =
0.3766mm, σy = 0.3432mm, and σθ = 0.0070rad. This
was significantly better than a single patch (p < 0.0001),
although not as low as predicted by simulation. The error
was about 70% higher than predicted, which is most likely
explained by some correlation in the patches’ error (such as
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error from camera jitter). The pattern error was more con-
sistent with a patch standard deviation of around 0.8mm, and
thus could also have been due to outliers affecting the mea-
surements.

Another possible problem (but one that is easily measur-
able) is correlation of errors over time. Typically filters as-
sume that all readings are independent measurements, how-
ever this may not be the case for some sources of error. In
Figure6, we show 2D scatter plots of adjacent readings for a
single patch (top) and for a full pattern (bottom). The sin-
gle patch shows structure indicating that errors are likely to
repeat (the center diagonal stripe) or jump up or down by
a fixed amount (the upper and lower diagonal stripes). As
best we could determine, this appears to be due to the binary
color segmentation; As the patch moves across the camera
image, pixels switch from background color to patch color
(and back to background) abruptly, changing the location of
the centroid by fixed amounts. The full pattern (bottom) does
not display this structure (most likely because combining 5
patches made the structured error of individual patches small
enough to make it unnoticeable). However the plot is still
not an unbiased circular cloud, so adjacent readings are still
somewhat correlated. With a few time steps separating read-
ings, no observable correlations are present. Thus, assum-
ing measurements are independent for patterns seems to be
a reasonable simplification, although increasing the standard
deviation to a more conservative estimate may be prudent.
Assuming independence for patches may be more problem-
atic, so for tracking single patches the extra complexity of
modeling error correlation may be necessary.

V. CONCLUSION

We presented the derivation of an efficient and highly ac-
curate detection algorithm along with an analysis of the per-
formance of many different patch-based patterns. We first
looked at the performance of single patch detection, noting
that size, although important for robust detection, does not
have a large effect on the accuracy of the positional measure-
ment of a patch. We presented a fast patch based detection
algorithm along with an iterative ML variant, which perform
similarly in terms of accuracy. We compared several patterns
in simulation to find out how accurate their detection scaled
with the error of the patches form which they were made.
We then tested a pattern on a real vision system with pos-
itive results, and examined the assumption of independence
on which higher levels of an object tracking system rely.

We hope that this paper is informative for those construct-
ing similar high performance detection and identification sys-
tems. There are many future directions in which to explore,
such as a larger comparison of patterns on a real vision sys-
tem, trying non-binary color classification to improve single
patch location, and determining the individual sources of er-
ror for detection so that they may be reduced. We feel the
data and algorithms presented here offer a good starting point
for such work.
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Fig. 6. 2D scatter plots of adjacent readings for single patches (top) and for
a full Butterfly pattern (bottom). Uncorrelated readings would show up as a
circular 2D Gaussian cloud. Note the structure in the plot for a single patch,
and the unstructured but non-circular distribution for the full pattern.
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