
1

Automatic Detection and Response to
Environmental Change

Scott Lenser and Maneula Veloso
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213

{slenser,mmv}@cs.cmu.edu

Abstract—
Robots typically have many sensors which are underutilized.

This is usually because no simple mathematical models of the
sensors have been developed or the sensors are too noisy to use
techniques which require simple noise models. We propose to
use these underutilized sensors to determine the state of the en-
vironment in which the robot is operating. Being able to identify
the state of the environment allows the robot to adapt to current
operating conditions and the actions of other agents. Adapt-
ing to current operating conditions makes the robot robust to
changes in the environment by constantly adapting to the cur-
rent conditions. This is useful for adapting to different lighting
conditions or different flooring conditions amongst many other
possible desirable adaptations. The strategy we propose for uti-
lizing these sensors is to group sensor readings into statistical
probability distributions and then compare the probability dis-
tributions to detect repeated states of the environment.

I. I NTRODUCTION

It is important that robots be able to identify the state of the
environment in which they are operating. Without this abil-
ity, the robot is unable to use information that has been ac-
quired previously about the environment (through instruction
or learning) to improve its behavior. While the robot may be
able to re-adapt to the revisited environmental state, this will
almost certainly take longer than identifying that the state has
re-occurred. Identifying the current environmental state (in-
cluding the state of other agents) allows the robot to adapt
to the behaviors of other agents by recognizing repetition in
their actions.

In the trivial case, the current state of the environment can
be determined from a single observation. This case is not
very interesting and is handled well by current techniques. In
many systems, however, a single observation contains very
little information about the current state of the environment.
Even all of the observations at a single point in time are likely
to be insufficient to determine the current state. This is usu-
ally due to each individual sensor reading providing only a

This research was sponsored by Grant No. DABT63-99-1-0013 and by
generous funding by Sony, Inc. The content of this publication does not
necessarily reflect the position of the funding agencies and no official en-
dorsement should be inferred.

Fig. 1. Robot used in testing.

small part of the information and/or being subject to large lev-
els of noise. For instance, a single pixel from a camera image
(or range from laser range finder/sonar) gives very little in-
formation about the state of the world. A complete image (or
range scan) provides a treasure trove of information if it can
only be extracted. Both of these problems can be overcome
by aggregating the individual sensor readings into probability
distributions (over time or space). These probability distri-
butions must then be compared to detect similar distributions
if repeated states are to be identified. Since the robot should
generalize over nearby states when possible, it is not enough
to simply use statistical tests to determine similarity. This is
due to the nature of statistical tests in merely determining dif-
ferent/same rather than giving an indication of the degree of
difference thus preventing the robot from identifying nearby
states.

We applied this thinking to the problem of adapting to
changing lighting conditions. The robot used in this work
was built by Sony and is pictured in Figure I. Many practical
color robotic vision systems rely on consistent pixel readings
that allow colors to be segmented without reference to the
surrounding pixel context. We use the free CMVision vision

system to perform image processing [3], [2]. Since actual
pixel readings vary with lighting conditions and the separa-
tion between colors is often small, these systems are highly
dependent on consistent lighting conditions. Changing the
lighting conditions involves recalibrating the vision system
for the new conditions. We propose a solution to this problem
which automatically detects the current lighting conditions
and switches to a corresponding human or machine supplied
calibration.

We begin by describing related work in Section II. In Sec-
tion III, we describe the algorithm for segmenting the data
into different states. In Section IV, we describe the algorithm
we use for converting segmented data into class labels that
identify the current state of the environment. We describe
how this knowledge is used to improve the performance of
robotic vision by adapting to the current environmental state
in Section V. We also describe testing procedures and results
in this section. We finish with a discussion of future work and
our conclusions in Sections VI and VII, respectively.

II. RELATED WORK

There is a large body of work devoted to the analysis of sig-
nals. Basseville [1] has created an overview of change detec-
tion methods. This work varies in the number of assumptions
made in the detection of changes. Most of the work is fo-
cussed on the case where strong knowledge about the state of
the system before the change is available. This work does not
address the problem of grouping the segmented signal into
states, detecting repeated states, or adapting to states.

Several techniques based upon prototypes have been pro-
posed for grouping data into states. These techniques all
create a set of prototypical sensor readings that new sensor
readings are compared against. Linåker and Niklasson [9]
propose the adaptive resource allocating vector quantiza-
tion(ARAVQ) method for segmenting and clustering sensor
data. This method learns a segmentation of robotic sonar data
on-line into regions of similarity. Updates to prototypes are
conditioned on the prototype being a good fit to the data. Pro-
totypes are added when the distance of the sensor data from
existing prototypes exceeds a threshold. A moving average
of the input vectors is used to help combat noise. Like most
techniques, this technique lacks a proper model of the amount
of noise in the sensor readings and must resort to an ad-hoc
averaging of the input vectors to combat noise. Also like most
techniques, it is incapable of noticing differences in the dis-
tribution of sensor readings that don’t affect the mean. Mars-
land [10] proposes the Grow When Required(GWR) network
for segmenting data. The technique focuses on the problem
of novelty detection. This technique is a topology preserving
prototype method similar to Kohonen maps. Nodes are habit-
uated when they are chosen as most similar to input patterns.
New nodes are created when no existing node is nearby and
are not familiar based on habituation. The technique has been
used successfully on real robotic data from sonar sensors and
a camera with an attentional model. The novelty detector has

also been extended to the problem of detecting environments.
This is done by training a novelty detector on each environ-
ment that should be identified later. Environments are then
identified based on which novelty detector is detecting the
least novelty. This technique is trained off-line on the envi-
ronments. Likhachev, Kaess, and Arkin [8] group data into
states in a case-based reasoning framework for robot naviga-
tion. Cases are created on-line based upon spatial/temporal
similarity of the current situation to prototype cases and the
performance of the current cases. Case parameters for the
matching case/prototype are adjusted by a learning algorithm.
The technique is used to choose behaviors from a behavior
library to navigate a robot towards a goal. All of these tech-
niques cannot handle general changes such as distributional
changes and changes in extremely noisy data.

Techniques that do not rely on prototypes have been de-
veloped by other researchers. Penny and Roberts [11] de-
scribe the way that Hidden Markov Model(HMM) autore-
gressive(AR) techniques can be used to segment data. These
techniques use EM to learn an HMM of the data with an
AR model for each state of the HMM. The techniques are
trained off-line and must be seeded with reasonable guesses
of the HMM in order for the training algorithm to converge
correctly. Another class of techniques which are trained off-
line is switching state-space models. See Gharamani [5] for
an overview of these techniques. Kohlmorgen and Lemm [6]
have developed a technique for automatically segmenting and
clustering a time series. The input sequence is projected into a
higher dimensional space by including in each sensor reading
delayed values of previous sensor readings. A sliding win-
dow is then moved over the sensor values resulting in a series
of probability distributions. The probability distributions are
smoothed using a Gaussian kernel to generate a probability
density function(pdf). Distances between pdfs are computed
using theL2-Norm. A cost function is defined which takes
into account the ability of prototype distributions to explain
the data and the number of switches. Prototype distributions
are selected on-line in order to minimize the cost function.
The prototype distributions are then clustered using a simple
distance threshold. The technique was applied to EEG data.
It is unclear how this technique will perform in robotic do-
mains. This technique is non-predictive, has few parameters,
and is completely on-line. The problems with this technique
are the need to adjust the cost of a transition (effectively en-
coding the probability of a transition and the significance of
differences in probability distributions), the assumption of the
effectiveness of Gaussian smoothing the pdfs, and the poor
clustering method (which also influences the segmentation).

In the specific case of a known number of classes with data
available off-line, the state identification problem involves a
classification problem from regions of sensor data to classes.
Some classification techniques, such as k-nearest neighbor,
can be applied to the regions of sensor data if an appropriate
distance metric can be found. See Section III-C for one possi-
ble distance metric. The question of how to segment the data
into regions of sensor data must still be addressed in this case.

Deng, Moore, and Nechyba [4] used locally weighted classi-
fication techniques to identify data of driver performance into
drunk and sober classes. They used an ARMA model to rep-
resent the time series data. The parameters of the ARMA
model where then used to index into a map from ARMA pa-
rameters to classes built using training data and local learning
techniques. This system relies on the predictability of the data
by an ARMA model which limits its use to data series with
dynamics that can be approximately modelled with a linear
predictor. The method for segmenting the data is left open in
this work and the classified state is not used for adaptation.

III. A LGORITHM

In order to understand the on-line algorithm, it helps to start
by considering the off-line version. The basic problem is to
identify the current lighting conditions from data summariz-
ing what the camera is seeing. It is desirable to use a small
amount of information to summarize the overall lighting of
the scene captured by the camera to reduce memory and com-
putation requirements. Simply using the average luminance
(or brightness) of the scene is sufficient for separation and
economical in representation. Of course, the average lumi-
nance of a scene depends highly on what is being looked at.
Therefore, instead of relying on a single measure of average
luminance, a distribution of luminance values over the recent
past is considered. The basic problem then becomes to seg-
ment the time series of average luminance values into distinct
regimes (or regions) which have similar distributions of aver-
age luminance measurements.

Having decided to look for similar distributions of mea-
surements, it is now necessary to have a way to determine
whether two distributions are in fact the same distribution
and how similar they are. Since the shape and form of the
distribution is unknown, a non-parametric distance metric is
used. The particular distance metric used affects the decisions
of the clustering algorithm. The distance metric controls the
bias of the learning algorithm. Note that statistical difference
tests such as the Kuiper test [7] or Kolmogrov-Smirnov are
inappropriate as they measure the probability of difference
between two distributions but not the distance between them.

Now that the form of the input data has been determined,
it is necessary to consider the form of the output and the al-
gorithm to use to produce it. For simplicity, the input data is
split into equal size windows of sizew. The window size is a
parameter of the system and affects the latency and robustness
of the resulting detection. Larger window sizes are more ro-
bust but have higher latency. The basic idea for representing
the output is to avoid making binary decisions until the last
possible moment. This is done by representing the division
of the input space by a binary tree where each leaf represents
a region of the input space. Regions which are similar are
stored close to each other in the tree and have common an-
cestor nodes. Each internal node stores the distance between
its two children (as reported by the statistical test). Internal
nodes which have internal nodes as children use the union of

ProcedureSegment(input space)
Split input spaceinto n non-overlapping windows

of sizew.
Create a leaf node for each window.
Initialize the setSto contain all of the leaf nodes.
while(|S| > 1)

Calculate distance(dist()) between all pairs
of elements ofS.

Choosep,q such that
dist(p, q) <= dist(i, j)∀i, j ∈ S.

Create new internal noder with
p andq as children.

S= S− {p, q}+ {r}.

Fig. 2. Off-line Segmentation of Data

all the data in the leaves when performing comparisons. The
resulting tree can be used to determine the number of modes
of the data by applying a threshold split criterion to the tree.
Alternatively, if the number of different modes is known, the
tree can be used to select a segmentation of the data into the
different modes. Thus the tree can be used for determining
the location and number of modes of the data and, as will be
shown later, determining the current mode of the system and
relating it to available calibrations.

A. Off-line Segmentation

The tree is easy to construct with a simple but slow off-line
algorithm. The algorithm starts by dividing the input space
into n non-overlapping windows of sizew. Each window
is compared to every other window to get a distance value.
The two most similar windows are joined together by creat-
ing a new internal node with the two windows as children.
This new internal node is treated as a mega-window which
replaces the two original windows. This leavesn − 1 win-
dows. The process is repeated until all of the windows have
been joined. The pseudo-code for this algorithm is shown in
Figure 2.

B. On-line Segmentation

The main obstacle to building the tree on-line is to find an
efficient way to insert a new window into the growing tree.
The first strategy tried was to simply start at the root and fol-
low the branch with which the new window was most similar.
This was done recursively until a leaf node was reached or
the two children of the node were more similar to each other
than to the node being inserted. This algorithm works rea-
sonably but sometimes fails to find the best place in the tree
to insert the new window. This usually happens because the
top levels of the tree contain mixtures of very different modes
and the new window tends to look very different from all of
them. This inherently has a lot of noise compared to the dis-
tance signal produced by the actual similarity. A more robust
algorithm has been developed which improves on the naive
algorithm by trying a few different branches of the tree to

ProcedureInsert(T:tree,w:window)
let n← root(T).
let S← {n}.
let done← false.
while(¬ done)

let R ← ∅.
foreachs∈ S

let c1,c2 ← children(s).
let d1 ← dist(c1,c2).
let d2 ← dist(c1,w).
let d3 ← dist(w,c2).
if d2< d1∨ d3< d1

if d2< d1
R ← R+ {c1}.

if d3< d1
R ← R+ {c2}.

elseR ← R+ {s}.
done← (R=S).
S ← R.

Chooseb∈ Sthat minimizes dist(b,w).
Create a new nodeo which has as childrenb andw.
Replaceb with o in the tree.
Update the similarity measurements of

all ancestors ofo.

Fig. 3. On-line Segmentation of Data

find the best place to insert the new window. The pseudo-
code for the insertion is shown in Figure 3. This algorithm
recurses down the tree like the simpler algorithm. The algo-
rithm behaves differently when the comparison is ambiguous,
however. If the new window to insert is more similar to both
children than the children are to each other, the algorithm tries
both branches. In this case, the comparison at the higher level
is not very informative about which branch to take and both
classes should be considered.

In practice this algorithm seems to only have to consider
about 10% of the nodes, since the nodes in the tree tend to
have very similar children after traversing a very short depth
down the tree.

C. Distance Metric

The distance metric used for measuring distances between
probability distributions requires some careful consideration.
The distance metric should reflect the degree of similarity of
the underlying process generating the data. The distance met-
ric should also make as few assumptions as possible. One
possibility is to use a non-parametric statistical test as the
distance metric. This makes for a very poor distance metric
because it doesn’t measure the degree of similarity between
the probability distributions. Instead, these tests measure the
probability that the distributions differ. This may seem simi-
lar to a distance measure but it is not. The problem is that two
distributions with low variance separated by a small distance
have the same probability of being different as two distribu-
tions with low variance separated by a large distance. Similar
problems occur in more general cases because these tests do

not take into account the magnitude of the change except in
how it relates to the variance of the data. Another possible
distance metric would be a measure of the difference between
the probability density functions. This has the same problem
as the statistical tests, namely that a small additive change ap-
pears to be a large change in distribution. The distance metric
should capture the amount of change required to make the
probability distributions the same.

The distance between the probability distributions can be
measured as the distance the point samples from the two prob-
ability distributions have to be moved to coincide. This dis-
tance metric captures the important features of similar prob-
ability distributions in that distributions which produce sim-
ilar samples are considered similar. The usual measure of
distance would be to use the sum of the squared distance
each point moves. Squaring the distance can lead to some
bizarre artifacts, however. If two distributions are similar ex-
cept for one point on completely opposite sides of the input
space, using squared distance will result in a large distance
between these distributions even though the probability dis-
tributions are similar. The usual motivation for using the dis-
tance squared is so that the resulting function can be easily
integrated. In this case, however, the probability distributions
are made of discrete samples so this criterion is not important
and the absolute value of the distance can be used instead.
The absolute value distance metric is a very simple measure
of the average distance the data points from one distribution
would need to be moved in order to match the data points
of a second distribution. This is the distance metric used in
this work. A cumulative probability distribution is formed for
both distributions, call themF (x) andG(x). Let F ′(p) and
G′(p) be the inverse ofF (x) andG(x) respectively. Then the
average distance points must be moved to make one distribu-
tion match the other is given by∫ 1

p=0

|F ′(p) − G′(p)|dp

IV. L ABELLING CLASSES

Next, the class of the current window must be determined
so that the robot can decide what the current state of the envi-
ronment is. This is done by labelling the class of every node
in the tree from scratch each time a window/node is added to
the tree (see Figure 4). The algorithm starts by labelling each
leaf with any labelled examples with the most common class
label in that leaf. Note that the may be many very different
states that correspond to the same label. These labels are then
propagated up the tree assigning each node the most common
label found in its subtree. The remaining unlabelled subtrees
are labelled with the label of their parent. The class of the
most recent window is taken as the class of the current state
of the environment.

V. A PPLICATION

The algorithm was applied to the task of automatically
selecting vision thresholds by automatically identifying the

ProcedurePropagateClassesUp(n:node)
if leaf(n)

for c ← 0 to numclasses− 1
n.ClassCnts[c] ←

count(n.Examples.hand label=c).
n.class← argmaxc(n.classcnts[c]).

else
foreachchild of n.Children

PropogateClassesUp(child).
n.ClassCnts← 0.
foreachchild of n.Children

n.ClassCnts← n.ClassCnts+
child.ClassCnts.

n.class← argmaxc(n.classcnts[c]).

ProcedurePropagateClassesDown(n:node,last:class)
if n.class=UnknownClass

n.class← last.
foreachchild of n.Children

PropogateClassesDown(child,n.class).

ProcedureDetermineClasses(T:tree)
Clear class label of all nodes inT.
let n← root(T).
PropagateClassesUp(n).
PropagateClassesDown(n,UnknownClass).

Fig. 4. Labelling Classes

current state of the lighting and using the matching thresh-
olds. Robots are usually limited to working in a specific
lighting condition for which they are trained. This occurs be-
cause thresholds are often used in robotics because they are
fast, leaving more processing available for other non-vision
tasks. By automatically selecting amongst several pre-trained
thresholds, a robot can better adapt to the current lighting
conditions of the environment it finds itself in. Rather than
have to find a set of thresholds that generalize across all light-
ing conditions, by applying the state identification technique
described above, the robot can have several thresholds each
of which generalizes over a much smaller region of the state
space of all possible lighting conditions. Since it is possible
to find thresholds which generalize over reasonable amounts
of the lighting state space, this allows the robot to adapt to
a large variety of situations. The resulting more specialized
thresholds also give better performance than the more general
thresholds at any given lighting level.

We measured the ability of a robot to correctly identify col-
ors in an image under different lighting conditions using both
the algorithm described above and simply using one set of
thresholds throughout.

A. Test Methodology

The robot was placed in front of a set of objects with easy
to confuse colors (red, pink, orange, and yellow) which we
are interested in segmenting. The robot was started with
lighting conditions matching the thresholds used to allow it

50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100
Percent Pixels Classified Correctly

time (sec)

pe
rc

en
t c

or
re

ct
 (

%
)

with adaptation
no adaptation

Fig. 5. Image Segmentation Results. The results with adaptation are shown
in solid black. The results using only the bright thresholds are shown with
dashed lines.

to auto-center the camera on the objects. The robot recorded
the colors it saw every fourth frame to a log file along with
a few raw images from the camera. The lighting conditions
were changed between three different brightness levels on a
schedule timed by a stopwatch. The baseline (no adaptation,
always use bright thresholds) and the test case (adaptation via
algorithm above) had to be run in two separate trials due to
hardware limitations. One of the raw images was selected
from the log and hand labelled by a human. The robot’s per-
formance was then graded based on the number of pixels that
robot classified correctly out of the pixels labelled as a color
by the human. The robot was not penalized for the few pix-
els that were not colored that the robot thought were one of
the colors. This is because most of these misclassifications
are easily filtered out and the threshold generating algorithm
tends not to produce many of these errors.

B. Results

The results of testing the robot on its image segmentation
performance are shown in Figure 5. In all cases, the algo-
rithm presented chose the correct thresholds after a small
delay (to collect enough data). The run with no adaptation
used bright thresholds throughout and so did very well in
bright conditions, fair in medium conditions, and poorly in
dim conditions. The sequence of lighting conditions used
can be seen clearly in the performance of the no adaptation
case (bright, dim, mid, bright, mid, bright, dim). There is a
small amount of registration error between the transitions of
the two runs due to starting the stop watch at slightly different
times. Notice that when the robot is adapting to conditions,
the robot performs poorly for a small period of time before
performance approves again. This corresponds to the robot
collecting enough information to determine that the lighting
conditions have indeed changed (enough time for a window

transition plus one full window’s worth of data). The strange
looking performance at the beginning of the adaptation run is
largely an artifact of the test setup. Performance starts high
(after the robot is well focused on the objects) and then drops
suddenly before improving again. This is due to the training
data being provided in the order bright, medium, dim so the
robot starts off thinking the lighting conditions were most re-
cently dim. The sudden drop is when the first radio packet
reaches the robot and switches the thresholds to dim. The de-
lay before switching back is due to the robot gathering data
which takes extra long since fewer radio packets are being
sent since the robot is still starting up.

As can be seen in the figure, the adaptation dramatically
improves the performance of the robot in segmenting the
image without degrading the performance when the lighting
conditions are consistent. This improvement in color segmen-
tation of the image carries over to an improvement in object
identification which in turn improves the performance of the
robot in almost every task.

VI. FUTURE WORK

Now that we have made the important step of developing
a complete functional system which improves robot perfor-
mance, we plan on many improvements and extensions to the
algorithm. We plan to extend the algorithm to handle multi-
dimensional data in both the input space (the space that gets
divided) and the output space (the space that gets used for
comparisons). Although the algorithm is already quite fast,
we also plan to further improve the running speed of the al-
gorithm to ensure that the running time eventually reaches a
constant plateau. We would like to use the identified states as
input to a Markov Model learning algorithm to give the robot
an even better understanding of its world.

We plan on applying the framework to more tasks. In par-
ticular, we plan on applying the framework to automatic iden-
tification and recover from stuck states (falling over while
walking in particular). We also would like to apply the frame-
work to segmentation of images into regions with similar tex-
tures.

VII. C ONCLUSION

We have demonstrated a proof of concept system showing
that sensors can be used to identify the state of the environ-
ment and/or system and that this state identification can be
used to improve the performance of robots. This is an impor-
tant first step which will form a base for many future improve-
ments and advances. Naturally, as with any new line of work,
there are many improvements that can be made to the algo-
rithm to improve its performance and generality. Yet, despite
these possible improvements, the algorithm already performs
very useful tasks that are difficult, if not impossible, to do
with existing methods. The identification of repeated states
is also the first step in generating a Markov (or higher order)
model of the world. In particular, we have shown how the al-
gorithm can be used to improve the robustness/performance

of the robot in the face of varied lighting conditions. This is a
task that sorely needs to be solved to make robotics practical
since lighting conditions vary constantly as the robot moves
about any reasonably sized environment. The techniques de-
scribed in this paper demonstrate how the robot can usefully
adapt to its environment.

Acknowledgements: We would like to thank James Bruce
for many useful discussions during the development of this
work.

REFERENCES

[1] M. Basseville and I. Nikiforov.Detection of Abrupt Change - Theory
and Application. Prentice–Hall, Englewood Cliffs, N.J., 1993.

[2] J. Bruce, T. Balch, and M. Veloso. CMVision
(http://www.coral.cs.cmu.edu/cmvision/).

[3] J. Bruce, T. Balch, and M. Veloso. Fast and inexpensive color im-
age segmentation for interactive robots. InProceedings of IROS-2000,
2000.

[4] K. Deng, A. Moore, and M. Nechyba. Learning to recognize time
series: Combining arma models with memory-based learning. InIEEE
Int. Symp. on Computational Intelligence in Robotics and Automation,
volume 1, pages 246–250, 1997.

[5] Z. Ghahramani and G. E. Hinton. Switching state-space models. Tech-
nical report, 6 King’s College Road, Toronto M5S 3H5, Canada, 1998.

[6] J. Kohlmorgen and S. Lemm. An on-line method for segmentation and
identification of non-stationary time series. InNNSP 2001: Neural
Networks for Signal Processing XI, pages 113–122, 2001.

[7] N. Kuiper. In Proceedings of the Koninklijke Nederlandse Akademie
van Wetenschappen, ser. A, volume 63, pages 38–47, 1962.

[8] M. Likhachev, M. Kaess, and R. C. Arkin. Learning behavioral param-
eterization using spatio-temporal case-based reasoning. InProceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA), volume 2, pages 1282–1289, 2002.

[9] F. Linåker and L. Niklasson. Time series segmentation using an adap-
tive resource allocating vector quantization network based on change
detection. InProceedings of the IEEE-INNS-ENNS International Joint
Conference on Neural Networks (IJCNN 2000), pages 323–328, 2000.

[10] S. Marsland. On-line Novelty Detection Through Self-Organization,
with Application to Inspection Robotics. PhD thesis, University of
Manchester, 2001.

[11] W. Penny and S. Roberts. Dynamic models for nonstationary signal
segmentation.Computers and Biomedical Research, 32(6):483–502,
1999.

