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Abstract
In this paper we present a probabilistic framework for the
reduction in the uncertainty of a moving robot pose during
exploration by using a second robot to assist. A Monte Carlo
Simulation technique (specifically, a Particle Filter) is em-
ployed in order to model and reduce the accumulated odo-
metric error. Furthermore, we study the requirements to ob-
tain an accurate yet timely pose estimate. A team of two
robots is employed to explore an indoor environment in this
paper, although several aspects of the approach have been
extended to larger groups. The concept behind our explo-
ration strategy has been presented previously and is based on
having one robot carry a sensor that acts as a “robot tracker”
to estimate the position of the other robot. By suitable use
of the tracker as an appropriate motion-control mechanism
we can sweep areas of free space between the stationary and
the moving robot and generate an accurate graph-based de-
scription of the environment. This graph is used to guide
the exploration process. Complete exploration without any
overlaps is guaranteed as a result of the guidance provided
by the dual graph of the spatial decomposition (triangula-
tion) of the environment. We present experimental results
from indoor experiments in our laboratory and from more
complex simulated experiments.

1 Introduction
In this paper we consider the application of probabilistic
methods to the problem of exploration by a pair of robots
(i.e. collaborative exploration [11]). In particular, we con-
sider the particular parameters that allow us to efficiently
carry out collaborative exploration using a particle system
to model the robots pose and uncertainties. In the last sev-
eral years, particle filtering (also known ascondensation [6])
has been demonstrated to be an effective method for non-
parametrically estimating the parameters and uncertainty of
systems of moderate complexity, in particular but not exclu-
sively when the uncertainty of the system exhibits a multi-
modal probability distribution. While particle systems for
modeling uncertainty have clear theoretical advantages, they

Figure 1: The two robots exploring one side of an office
building. On the left a robot carries the three plane range
target, on the right a robot with a laser mapping a reflex cor-
ner (using sonar).

can be substantially slower than parametric methods such as
Kalman filters in practice. Further, while they are touted
as having better tracking and convergence properties than
Kalman Filters (for example) – a certainty in principle – in
reality with a finite number of particles this depends criti-
cally on suitable parameters that trade off this idealized ro-
bustness for some measure of efficiency. These trade-offs
relate to the number of particles used, the resampling strat-
egy, and several related parameters.

In this paper we will present a case study that illustrates
the particular trade-offs necessary to achieve both acceptable
speed and good accuracy in the context of collaborative ex-
ploration. We also consider a simple yet non-standard model
of odometry error that appears more appropriate than those
usually employed.

This work builds on our prior results in which we define the
problem of collaborative exploration in which a team of two
or more robots coordinate their motion through a potentially
unknown environment to jointly estimate one another’s posi-
tion and, in so doing, estimate the layout of the environment
of any spatial parameter of interest. The key to collaborative
exploration is to have at least one “tracker” sensor that al-
lows a robot to estimate the positions of other robots in the
team. This allows inter-robot sensing to compensate for ar-
bitrarily large odometry errors, as well as presenting other
advantages [11, 13]. Our specific strategy for collaborative



Figure 2: The trajectories of the two robots with the laser
data also marked. Note the target pattern detected.

exploration as applied to a team of two robots is to have the
robots take turns moving so that any any time one is station-
ary and can act as a fixed reference point. While doing this
we estimate the positions of the robots using a particle filter
that combines an open-loop estimate of odometry error with
sensor data collected from the tracker, a LIDAR-based laser
range finder on one robot and a three plane target mounted
on top of the second robot (alternative implementations have
been used in prior work). Figure 1a show the two robots dur-
ing the exploration of a simple environment; the three plane
target is visible from any orientation as can be seen in Fig-
ure 2 where the sensor data from the laser range finder are
recorded over time. Parts of the walls are also mapped by
the laser and provided ground truth for the cooperative ex-
ploration.

2 Particle Filtering

Different methods have been employed in the past in or-
der to estimate and reduce the uncertainty of a moving
robot [8, 14]. One approach that has gained popularity of
late falls under the category of Monte Carlo Simulation (see
[4] for an overview) and is known under different names in
different fields. The technique we use was introduced as
particle filtering by Gordonet al. [5]; in mobile robotics,
particle filtering has been applied successfully by different
groups [3, 7, 15]. In vision this technique was introduced
under the name of condensation [6] and particle filtering [1].
The general outline of this approach is described bellow.

The main objective of particle filtering is to “track” a vari-
able of interest as it evolves over time. A series of actions
are taken, each one modifying the state of the variable of in-
terest according to some model. Moreover, at certain times
an observation arrives that describes the state of the variable
of interest at that time.

Multiple copies (particles) of the variable of interest are

used, each one associated with a weight that signifies the
quality of that specific particle. A description of the variable
of interest is obtained by the weighted sum of all the parti-
cles. After each action, each particle is modified according
to the existing model (prediction stage), including the addi-
tion of random noise in order to simulate the effect of noise
on the variable of interest. Then, each particles weight is re-
evaluated based on the latest sensory information available
(update stage). At times the particles with infinitesimally
small weights are eliminated, a process called resampling.

More formally, the variable of interest (in our case the pose
of the moving robot�� � ���� ��� ���� ) at time � � � is
represented as a set of N samples (usually called “particles”)
(��

� � ���� � �
�
� � � 	 � � 
 
 
� ) 1 each one consisting of a

copy of the variable of interest and a weight (� �
� ) that de-

fines the contribution of this particle to the overall estimate
of the variable. The particle filter algorithm is recursive in
nature and operates in two phases:prediction andupdate.
Algorithm 1 presents a formal description of the particle fil-
ter algorithm and the next two subsections discuss the details
of prediction and update.

Require: A set of Particles for Robot� at time�: ��� �
��� � �� � 	 � � 
 
 
� �.

 � �� � 	 � � 
 
 
�

while (Exploring)do
� � � � �;
if (ESS�
 	 � � � � ) then �Particle Population De-
pleted (Equation 7)�

Index=Resample(
 );
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� ������	;
end if
for (	 � � to � ) do �Prediction after action��
�
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end for
s=Sense()
for (	 � � to � ) do �Update the weights�
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end for
for (	 � � to N) do �Normalize the weights�
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end for
end while

Algorithm 1: Particle Filter Algorithm; functions are noted
as underlined text, Comments are inside curly brackets.

2.1 Prediction

If at time � � � we know the probability distribution func-
tion (pdf) of the system with respect to position at the pre-
vious instant (time� � � � �) then we model the effect

1The index� denotes the particle and not the robot.



of the action� to obtain a prior estimate of thepdf at time
� � � (prediction). In other words, theprediction phase uses
a model in order to simulate the effect an action has on the
set of particles with the appropriate noise added as in equa-
tion 1.

�� � ������� ���	 (1)

where� is the added noise.

In our case the variable of interest is the pose of the mov-
ing robot and each action� is a motion by (�����); such a
motion could be performed as a rotation followed by a trans-
lation. If the robot’s initial pose is��� �� ��� , then the robot
first rotates byÆ� � �� � �, where�� � �
����������	
to face the destination position, and then it translates for-
ward by distance� �

�
��� ���� 2. If the starting pose

is ��� �� ��� , the resulting pose���� ��� ���� is given in equa-
tion 2. Consequently, the noise model is applied separately
in each of the two types of motion since they are indepen-
dent. �

�
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� �

�
�
� � � ��� ���	
� � � ��� ���	
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�
� (2)

When the robot performs a relative rotation byÆ� the noise
from the odometry error is modeled as a Gaussian with mean
���� experimentally established and sigma proportional to
Æ�. Therefore, to model the rotation ofÆ� the orientation� �
of each particles	 is updated by addingÆ� plus a random
number drawn from������� ����Æ�	.

The error model for the translation is more complicated.
Two different sources of error are modeled, the first is re-
lated to the actual distance traveled and the second is related
to changes in orientation during the forward translation. In
particular, during the translation the orientation of the robot
changes constantly resulting in a deviation from the direc-
tion of the translation; such effect is called drift and is mod-
eled by adding a small amount of noise in the orientation of
the robot before and after each step. As well, if the intended
distance is�, the actual distance traveled is given by� plus
some noise. Experimental results provide the expected value
and the standard deviation for the drift and pure translation.
Because it is very difficult to analytically model the continu-
ous process, a simulation is used that discretizes the motion
to “�” steps. If ����	
�� ����
�� are the experimentally ob-
tained values per distance traveled then at each step of the
simulation the standard deviation is given in equation 3.

���� � ���	
�
�
�� and���
� � ����
�

�
�
�

(3)

Equation 4 presents the precise model for updating the pose
after one step in translation (out of a total of“�” steps).

2In our experimental setup the super Scouts robots used are controlled
by the same rules.
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Figure 3a presents a graphical illustration of the effect of the
two noise parameters (����� ���
�) in the predictive model.
In all cases the robot makes a single forward motion of
200cm. In the top left sub-plot of 3(a), the uncertainty at the
distance traveled is much higher than the drift uncertainty
and thus the particles spread a lot more in the direction of
the motion. In contrast, in the top right sub-plot, where drift
noise dominates, the particles spread along an arc. The bot-
tom left sub-plot presents the spread of particles for equal
high values of the noise parameters. Finally, the bottom right
sub-plot presents the spread of particles for noise parameters
collected in our laboratory.

The last two sub-figures of Figure 3 present examples of
complex motions and illustrates the performance of the pre-
dictive model. Sub-figure 3b presents experimental vali-
dation of our predictive model. In this case the predictive
model was guided by a set of motion commands that were
used in an experiment in our laboratory3. In short, the
experiment consisted of forward translations, each one fol-
lowed by four rotations by ninety degrees. The curved tra-
jectory in sub-figure 3b represent the uncorrected odometer
values. The odometry estimates deviated due to noise de-
spite the fact that the actual trajectory of the robot was kept
in a straight line as indicated by the lower straight line is
sub-figure 3b. The predictive model was constructed using
the noise statistical parameters collected in our laboratory
. The predicted cloud of particles can be seen around the
recorded odometry values following the trajectory with high
accuracy. In sub-figure 3c, the robot moves forward three
times, rotates ninety degrees, then translates forward three
more times, after which it rotates again by ninety degrees
and translates forward five times. As can be seen the uncer-
tainty grows unbounded.

2.2 Update

Theupdate phase uses the information obtained from sens-
ing to update the particle weights in order to accurately de-
scribe the moving robot’s probability distribution. A mea-
surement from the robot tracker sensor is guaranteed to exist
after each motion; for ease of reference we represent this

3For the full description of this experiment please refer to [10].
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Figure 3: (a) The effect of different noise parameters for a forward translation of 200cm. (b) Series of forward translations
and���Æ rotations. (c) Large trajectory, uncertainty build-up.
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Figure 4: The stationary robot with the robot tracker sensor
observes the moving robot that carries the target. Note that
the “camera” indicates the robot with theRobot Tracker; and

��� 
�� are angles in world coordinates.

measurement by the triplet� � �� � ��, where� is the dis-
tance between the two robots,� is the angle at which the
observing robot sees the observed robot relative to the head-
ing of the observing robot, and� is the heading of the ob-
served robot as measured by the observing robot relative to
the heading of the observing robot (see Figure 4). If the
stationary robot is equipped with the robot tracker, where
�� � ���� ��� ���� is the pose of the moving robot and
�� � ���� ��� ���

� is the pose of the stationary robot then
equation 5 returns the sensor output� . Different implemen-
tations of the robot tracker sensor are possible. Currently we
employ a combination of a laser range finder with a three
plane target (see Figure 1a). From any position around the
robot with the three plane target, the laser range finder al-
ways detects at least two planes, thus being able to recover
the pose of the target robot.
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where�� � �� � �� and�� � �� � ��.

Figure 5:The contribution of each measurement of the robot
tracker in the weighting pdf of the moving robot.

After the sensor measurement (�) becomes available the
weights of the particles are updated by
 �
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� where the probability of the sensor measurement
� given a particle�� is given by equation 6.
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Figure 5 illustrates the conditional probabilities used to com-
pute the pose updates as a function of the disparity between
prediction and observation. Equation 6 above presents the
composite formula.

2.3 Resampling

One of the problems that appear with particle filters in prac-
tice, especially with low particle densities, is the depletion of
the particle population in some regions of space after a few
iterations. As most of the particles have drifted far enough,
their weights become very small and they no longer con-
tribute to estimates of the position of the moving robot. Liu



et al. [9] propose two measures that estimate the number of
near-zero-weight particles: the coefficient of variation ! ��
and the effective sample size"��� (see equation 7).
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When the effective sample size ("��) drops below a certain
threshold, usually a percentage of the number of particles� ,
then the particle population is resampled, eliminating (prob-
abilistically) the ones with small weights and duplicating the
ones with higher weights. Different methods have been pro-
posed for resampling; we used the approach by Carpenteret
al. [2] that runs in linear time (see algorithm 2).

Input: double W[N]
Require:

��
���
� � �

Q = cumsum(W); �calculate the running totals$� ���
���
��

t = -log(rand(N+1));
T = cumsum(t); �calculate the running totals�� ���

��� ���
TN = T/T(N+1);�normalize T to TN;�
i=1; j=1; �Arrays start at 1�
while (� 	 � ) do

if � ��� � $�	� then
Index[i]=j;
i=i+1;

else
j=j+1;

end if
end while
Return(Index)

Algorithm 2: Linear Time Resampling Algorithm.

3 Experimental Results
The exploration algorithm used for the mapping of an in-
door environment is based on the triangulation of free space
by the two robots4. The line of visual contact is used to
“sweep” the space; in other words, if the two robots can ob-
serve each other then the space in between them is empty.
When one robot is stationary at a corner of the environment
and the other robot moves along a wall (without losing vi-
sual contact) then a triangle of free space is mapped. By con-
structing an on-line triangulation of the free space the robots
map the environment completely without any overlaps.

4The complete description of the algorithm is outside the scope of this
paper (please refer to previous work[12, 11]).

The positional error is maintained low throughout the ex-
ploration by the use of cooperative localization. Figure 6a,b
presents the pose estimates during the exploration when co-
operative localization was used (marked as a “+”) together
with the position of the robot estimated using the recorded
motion commands (marked as “*”); the map of the envi-
ronment is shown. The left figure presents the trajectory of
Robot 0 and the right figure presents the trajectory of Robot
1. Even though the actual trajectory of each robot was piece-
wise straight line and closely corresponds with the cooper-
ative localization estimates, the motion commands show a
systematic drift (marked as “*” in Figure 6a,b), the drift cor-
responds to the odometry error during the exploration.

Figure 7 presents experimental results from an indoor en-
vironment in the corridors of our building using two super-
scout robots. The posepdf of each robot is plotted along the
trajectory. At each step the set of particles has been spatially
integrated and then added to the plot (the higher the peak the
more accurate the pose estimate). Sub-figure 7a presents the
trajectory of Robot 0 which is equipped with the laser range
finder. Robot 1 is equipped with the three plane target, and
the pdf of the robot’s pose can be seen in Figure 7b. The
resulting map is shown in Figure 6c.

4 Conclusions
We have examined the details of a particle filter used to esti-
mate the pose of a pair of robots during collaborative explo-
ration. This detailed presentation has afforded us an oppor-
tunity to consider several subtleties that are typically omit-
ted in papers on the subject. In fact, these design choices
have a substantive bearing on the performance of such sys-
tems. Specifically, inappropriate choices of the number of
particles, the frequency of resampling and the choice of the
weighting function can lead to excessive computational bur-
den (if the number of particles is too large, for example) or
failure to accurately track the correct pose (if the number
of particles is too small or if frequent resampling rises the
variance of the particle population).

In ongoing work we are also considering more elaborate
particle resampling methods that dynamically trade off ef-
ficiency for potential robustness. By estimating the parame-
ters of the particle cloud, it seems possible to vary the model
complexity on an as-needed basis. Further work involves
the introduction of an additional weighting function based
on other sensory input, such as the sensor used for wall fol-
lowing.
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