
Proceedings of the 1003 IEEE 
International Conference om Robotics & Aulomatim 

Taipei, Taiwan, September 14-19, 2003 

Abstraction and Control for Groups 
of bully-Actuated Planar Robots 

Calin Belta and Vijay Kumx 
GRASP Laboratoly, University of Pennsylvania 

Philadelphia, PA, 19104 
{calin, kumar}@grasp.cis.npenn.edu 

Abstracf-This paper shows how a large number of 
rohotc can he coordinated by designing control laws on a 
small dimensional manifold, independent on the number and 
ordering of the robots. The small dimensional description of 
the team has a product structure of a Lie group, which 
captures the dependence of the ensemble on world frame, 
and a shape manifold, which is an intrinsic description of 
the team. We design decoupled controls for group and shape. 
The individual control laws which are mapped to the desired 
collective behavior can he realized by feedback depending 
ody on the current state of the robot and the state on 
the small dimensional manifold, so that the robots have 
to hrnadeast their states and only have to listen to some 
coordinating agent with smaU bandwidth. 

I. INTRODUCTION 

We approach the problem of controlling a large number 
of robots required to accomplish a mission as a group. 
For example, consider the task of moving hundreds of 
robots from arbitrary initial positions through a tunnel 
while staying grouped so that the distance between each 
pair does not exceed a certain value. The simplest solution, 
generating motion plans or control laws for each robot, is 
obviously not feasible from a computational viewpoint. 
It is desired to have a certain level of abstraction: the 
motion generatiodcontrol problem should be solved in a 
lower dimensional space which captures the behavior of 
the group and the nature of the task. 

The robots can be required to form a virtual sfruciure. 
In this case, the problem is reduced to a left invariant 
control system on S E ( / )  ( I  = 1,2), and the individual 
trajectories are SE(1) - orbits [I]. The literature on 
stabilization and control of virtual structures is rather 
extensive. Most of the recent works model formations 
using formarion graphs, which are graphs whose nodes 
capture the individual agent kinematics or dynamics, and 
whose edges represent inter-agent constraints that must 
be satisfied [6]. Characterizations of rigid formations can 
be found in 141, [l]. The controllers guaranteeing local 
asymptotic stability of a given rigid formation are derived 
using Lyapunov energy-type functions [61. Examples of 
such functions include positive definite convex formalion 
funclions [3] and biologically inspired arfijicial pofenfial 
functions [ 5 ] .  The global minima of such functions exhibit 
% ( I ) ,  I = 1,2,3 symmetry and also expansiodcontraction 
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symmetries, which can be used to decouple the mission 
control problem into a formation keeping subproblem and 
a maneuver subproblem [5 ] .  

The virtual structure approach is not appropriate for 
many applications, including obstacle avoidance, tunnel 
passing. etc. Also, the rigid formulation is based on 
identified robots, which makes the obtained control laws 
and motion plans invalid in the case of individual failures. 
Moreover, the rigidity constraint induces an inherent cou- 
pling between the control systems on the symmetry group 
and the shape space. For example, in [5],  the authors have 
to limit the speed of convergence on the symmetry group 
so that, while moving as a group, the individual agents 
do not leave the local regions of attractions guaranteeing 
convergence to the desired shape. 

We propose an abstraction based on the definition of 
a map q4 from the configuration space Q of the robots 
to a lower dimensional abstract manifold A. We focus 
on planar kinematic fully actuated robots and require the 
abstract manifold to have a product structure A = G x S, 
where G is a Lie group which captures the dependence of 
the problem on the chosen world coordinate frame and S 
is a shape manifold, which is an intrinsic description of 
the team. We also impose that the map @ is so that each 
abstract variable can be controlled independently, so that 
the user can easily design controllers to only change the 
shape for example, and keep the group variable fixed. In 
this paper, G is S E ( 2 )  and S gives a description of the 
distribution of the robots along the axes of a virtual frame 
whose pose on the world frame evolves on G. The task to 
be accomplished by the team suggests a natural feedback 
control system on the abstract manifold. We show that the 
individual control laws which are mapped to the desired 
abstract behavior can be realized by feedback depending 
only on the current state of the robot and the state on 
the abstract manifold, so that the robots have to broadcast 
their states and only have to listen to some coordinating 
agent with small bandwidth. 

11. DEFINITIONS AND PROBLEM FORMULATION 

Consider N kinematically controlled robots with states 
qi belonging to manifold Qi and control spaces Ui. For 
planar fully actuated agents, the states are position vectors 

mailto:kumar}@grasp.cis.npenn.edu


qi E Q,  = R2, i = 1,. . . , N  with respect to some world 
frame { W } ,  and the controls U ,  E U, = RZ: 

(1) q. = U .  

Collecting all the robot states together, we get a 2N- 
dimensional control system 

I I  

4 = U  (2) 

where q E Q = nf"=, Qi = I?", U E U = nf"=, U, = RZN 
and the canonical projections: 

(3) n,(q) = q,, dni(u) = U ,  

The motion (behavior) of the ensemble of robots is  deter- 
mined if the corresponding velocities are specified 

Definition 1 (Behavior): Any vector field XQ E T Q  is 
called a behavior. 
Given a large number of robots evolving on the configura- 
tion space Q,  we want to solve motion generation / control 
problems on a smaller dimensional space, which captures 
the essential features of the group, according to the class 
of tasks to be accomplished. We want the dimension of 
the control problem to be independent of the number 
of agents and also independent on possible ordering of 
the robots. These requirements will provide control laws 
which are robust to individual failures and also good 
scaling properties. We also need to make sure that, after 
solving the task on the small dimensional space, we can go 
back and generate control laws for the individual agents. 
All these ideas lead to the following definitions: 

Definition 2 (Abstraction): Any submersion 

0 : Q + A ,  $(q) = a (4) 

is called an abstraction if it is invariant to permutations 
of the robots and the dimension n of A i s  not dependent 
on the number of robots N .  A and a are called abstract 
manifold and abstract state, respectively. 

We require that A have a product structure 

A = G x S ,  a = k, 4, 4 = (&, $J ( 5 )  

where G is a Lie group. An arbitrary g E G is called group, 
or pose and an s E S is called shape. The main idea is to 
have a control suited description of the team of robots a in 
terms of the pose g of a virtual structure, which captures 
the dependence of the team on the world frame {W}, plus 
a shape s, which is decoupled from g, and therefore, an 
intrinsic property of the formation. In other words, if g is 
an arbitrary element of G, we require the map $ to satisfy 

$(4)  = (g,.) * O(84) = (@> .) (6) 

where gq represents the action of the group element g 
on the configuration q E Q and gg represents the left 
translation of g by g using the composition rule on the 
group G. Since we only approach planar robots in this 

paper, G is SE(2) .  gq represents a rigid displacement of 
all the robots by g. (6) is a left invariance - type properly 
of the map $, which gives invariance of our to be designed 
control laws to the pose of the world frame { W } .  Indeed, 
if the world frame { W }  is displaced by g, the shape s is 
not affected while the pose g is left translated by g. 

Instead of designing high dimensional behaviors XQ, we 
want to he able to describe collective behaviors in terms 
of time ~ parameterized curves on the small dimensional 
abstract manifold A.  

Definition 3 (Abstract behavior): Any vector field 
X, E TA is called an abstract behavior. 

Let d$ denote the differential (tangent) of the map 
$. Note that the submersion condition in Definition 2 
guarantees the sujectivity of the differential d e  at any 
q E Q,  which will guarantee the existence of vector fields 
XQ pushed forward to any abstract behavior X,. 

The abstraction $ gives a decomposition of the space of 
behaviors on Q into behaviors which can be "seen" in the 
abstract manifold A and behaviors which cannot be seen 
in A .  

Definition 4 (Detectable behaviors): A behavior XQ E 
T Q  which is mapped to a non-zero abstract behavior X, E 
TA is called a detectable behavior. A behavior which is 
not detectable is called non-detectable. 

In this paper, we will not allow individual motions 
which cannot be captured in A .  However, non-detectable 
behaviors can be useful to accommodate other specifica- 
tions. For example, an abstract behavior X, could specify 
the time - evolution of the pose (group part g) and semi- 
axes (shape part s) of an ellipsoid with the guarantee that 
all the robots are inside it. The behavior XQ could be the 
sum of the detectable behavior which produces the desired 
X, plus a non-detectable part (not affecting the abstract 
behavior) which could accomplish the specification that 
the area inside the ellipsoid is uniformly occupied by the 
robots. We are now able to formulate the main problem: 

physically 
meaningful formation abstractions $, abstract behaviors 
X,, and corresponding individual robot control laws U, 
satisfying the following requirements: 

(i) The abstract state a is at rest if and only if all the 
robots q, are at rest. 

(ii) The energy spent by the individual robots to produce 
a desired abstract behavior X, is kept to a minimum. 

(iii) The abstract manifold A has a product structnre ( 5 )  
and $ satisfies the left invariance property (6). 

(iv) The control systems on the group G and shape S are 
decoupled. 

(v) If the state a of the abstract manifold is bounded, 
then the state of each robot q, is bounded. 

(vi) The amount of inter - robot communication in the 
overall control architecture is limited. 

Problem 5 (Abstract conrml): Determine 
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Requirement (i) from Problem 5 guarantees that each 
individual motion on Qj can be “seen” in the small 
dimensional manifold A and, therefore, can be “penalized 
by control. This is equivalent to the detectability of the 
corresponding behavior XQ. If requirement (iv) is satisfied, 
tbeu one can design control laws for the interest variables 
on a separately, e.g, change the pose of the formation g 
while preserving the shape s. The other requirements in 
Problem 5 are self-explanatory. 

111. APPROACH 
In this section we characterize tbe solution to Prob- 

lem 5. First, note that the map Q gives a foliation of 
the configuration space Q. We assume that the abstract 
manifold has the desired product structure A = G x S. Let 
a, be the codistribution spanned by the differential one 
forms obtained by differentiating each component of os. 
Similarly, a, is the codistribution determined by a$$. Let Ag 
and As denote the corresponding annihilating distributions, 
i.e., Qs(Ag) = 0, .Qs(As) = 0. Let A: and A$ he the 
orthogonal distributions (in some metric on Q) to Ag and 
4, respectively. If X, denotes the non-zero value of the 
vector field XQ at the point q E Q, then 

X, t A: (7) 

X, E A$ (8) 

guarantees that, on the abstract manifold, at a = g ( q )  = 
(g,s), g changes in time. Similarly, 

corresponds to a change in the shape variable s. The set 
of detectable behaviors at q f Q is given by A i @ A f ,  
Requirement (i) from Problem 5 can therefore be written 
as: 

X,E A;@A$ (9) 

In other words, system (2) is forbidden to move on a leaf 
q+ = const. (motion which could not be “observed on the 
abstract manifold A) if and only if (9) is satisfied. 

The decoupling between the control of tbe group G 
and the shape S of A (requirement (iv) of Problem 5) is 
achieved if the distributions A t  and A: are orthogonal. 
In this case, control vectors satisfying (7) will produce 
a change in the pose of the group g while the shape s is 
maintained constant. On the other hand, controls satisfying 
(8) will change the shape of a stationary formation. Com- 
plete decoupling of the control variables in A is guaranteed 
if, in addition, orthogonal control directions are chosen as 
basis for A i  and A;. 

For (v), note that Problem 5 can actually be seen as an 
input - output linearization problem for the control system 
( 2 )  with output a = @ ( q ) .  The vector field X, guarantees 
some desired behavior of the output a, which will, of 
course, guarantee its boundness. Now the hardest problem, 
as usual in input - output linearization, is calculating and 
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Fig. I .  Overall conhol architecture 

stabilizing the intemal dynamics. To avoid this, we define 
the output map so that bounds on output would easily 
imply bounds on the state, so it will not be necessary to 
explicitly calculate the internal dynamics. 

From now on, we will assume that Q is equipped 
with an Euclidean metric. On the energy spent by the 
individual robots to realize a given formation behavior 
X,, (requirement (ii) in Problem 5 )  first note that since @ 
is a submersion, @, , . . . , gn are functionally independent, 
or, equivalently, d e  = (do,, . . . ,doN) is full row rank (doi 
should be interpreted as rows giving the coordinates of the 
corresponding differential one forms, and do is the row 
span of d&’s). Then, in the assumed Euclidean metric, the 
minimum norm vector X; which is pushed forward to an 
arbitrary X,, i.e., d@XQ = X, is given by 

On the other hand, if Q is equipped with an Euclidean 
metric, then A: and A: are spanned by vectors with 
coordinates given by the coordinates of the differential 
forms associated to do8 and dos. Therefore XL; satisfies 
(9). Moreover, if doj’s are orthogonal and X,, X; are 
written in coordinates, we have 

(11) 

from which the decoupling of the control variables on F 
is obvious. 

To limit the amount of inter - robot communication in 
the overall control scheme, we propose an architecture 
where the control law of a robot only depends on its own 
state and the low dimensional state of the team from the 
group manifold: 

ui = ui(qi ,a)  (12) 

Pictorially, the desired control architecture combining ab- 
straction and partial state feedback features is given in 
Figure 1. 
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IV. ABSTRACTION 

In this section we define a physically significant ab- 
straction (4) with a product structure (5 ) .  The proof of 
left invariance is omitted and can he found in [ 2 ] .  We 
first show that the abstraction satisfies requirements (iv) 
and (vi) from Problem 5. Then we construct individual 
control laws in accordance with requirements (i) and (ii). 
Satisfaction of requirement (v) is proved in Section V. 

For an arbitrary configuration q E Q, the group part g of 
the abstract state a is defined by g = ( R , p )  E G = SE(2) .  
Let 

(13) 

Define 

ri = [xi,yilT = R T ( q i - p ) ,  i = 1 ,..., N (14) 

The rotation part R E SO(2) is defined by the following 
equation 

N 

In this paper we restrict our attention to a 2 - dimensional 
shape s = [SI, s2] defined by 

Since SO(2) is I-dimensional, the dimension of the ab- 
stract manifold A is n = 5 ,  independent of the number 
of robots N. Also it is obvious that our definitions (13), 
(15), (16) of group and shape are invariant to permutations 
of robots, as required by Definition 2. The submerssion 
condition will be studied later in this section. 

Before we show that the abstraction @ defined above 
solves Problem 5 ,  we study its physical significance. 

A .  Significance 

There are two slightly different interpretations of the 
abstraction defined by (131, (14), (15), and (16). In this 
paper, we only discuss one of them. The interested reader 
is referred to [2]  for more information. Let 

p and E given by (13) and (17) can be interpreted as 
sample mean and covariance of a normally distributed 
random variable with realizations'q,. R in (15) is the 
rotation that diagonalizes the covariance and sI. s2 are 
the eigenvalues of the covariance matrix. This means that, 
for a large number of normally distributed robots, p ,  R, 
sI  and s2 give the pose and semi-axes of a concentration 
ellipsoid. Specifically, the contours of constant probability 

p for normally distributed points in plane with mean p and 
covariance Z aTe described by 

(1- p ) T ~ - l ( x -  p )  = c ,  c = -21n(l - p )  (18) 

The ellipse in ( I Q ,  called equiprobability or concen- 
tration ellipse, has the property that p percent of the 
points are inside it, and can he therefore used as a 
spanning region for our robots, under the assumption 
that they are normally distributed. Therefore we have: 
p percent of a large number N of normally distributed 
robots described by a 5 - dimensional abstract variable 
a = (g, s) = (R,  p ,  sI, s2)  is enclosed in an ellipse centered 
at p, rotated by R E SO(2) in the world frame { W }  and 
with semi-axes &and fi, where c is given by (18). 

Even though the normal distribution assumption might 
seem very restrictive, we show in [ Z ]  that it is enough 
that the robots be normally distributed in the initial 
configuration, Our controls laws will preserve the normal 
distribution. 

B. Group and shape control 
In this section, under the assumption that the config- 

uration space Q is equipped with an Euclidean metric, 
we construct detectable behaviors and decoupled control 
systems for group and shape, in accordance with require- 
ments (i) and (iv) from Problem 5.  The calculations are 
rather involved and are omitted. The interested reader is 
referred to [ 2 ] .  Let 

and 

(20)  
H,=12+RZE, ,  H -12-R2E2,  

H3 = R 3 -  E ,  

where I2 is the 2 x 2 identity matrix. Assume R E SO(2) is 
parameterized by 8 E ( - n / 2 , n / 2 ) .  Then, in coordinates, 
a = ( p ,  8 ,  sl, s2 ) .  The control distributions corresponding 
to group A i  and shape A: as defined in Section 111, are 
given by 

A: = span{X[,x,B}, A$ = span{x;l,xp} (21) 

where 

Hd41 - P )  

and 

H, (41 - P )  

HI ( 4 N  - 

H2(41 - P )  

HZ(4.N - !J) 

XsI 4 = [ ; 1 ,  X,""= [ i ] (23) 

Therefore, in accordance with (9), requirement (i) of 
Problem 5 is satisfied if we restrict the behaviors to the 
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detectable set A i @ A f  given by (21), (22),  and (23) .  It 
can be shown that the control distributions A i  and A$ are 
orthogonal, so decoupled control systems can be designed 
for group and shape, in accordance with requirement (iv) 
of Problem 5. The minimum norm vector q on T Q  which 
is pushed forward to a vector field d in TA (as described 
in (1 1)) is given by 

Note that the controls p, 6 ,  SI, Si act on orthogonal di- 
rections so one can explicitly control each of the formation 
variables without affecting the others. 

We define the invidual controls as projections dz i  of 
the minimum norm vector (24): 

Remark 6: The overall control architecture implement- 
ing (25) fits the structure in Figure 1. Each robot i needs 
to implement controller Ci, which is only dependent on its 
own state qi and the small dimensional abstract state a. 
Also, each robot has to send its own state to the abstract 
control system, which calculates and then broadcasts the 
updated abstract state. Therefore, robot i only has to 
broadcast its 2-dimensional state qi and listen to a the 5- 
dimensional abstract state a, independent on the number 
of robots N .  

Remark 7: It can be shown that the submersion condi- 
tion in Definition 2 is equivalent to s, # 0 and s2 # 0, 
which is also equivalent to the well definition of the 
control laws (25). The abstract behavior on A should be 
designed so that s, > 0 and s2 > 0, for all 1 .  s, = 0 and 
s2 = 0 physically correspond to degenerate situations when 
all the robots become collinear. 

Remark 8: Control law (25) corresponds to an affine 
transformation. Therefore, properties like collinearity, ra- 
tios of distances on lines, and parallelism are preserved 
and control law (25) can be used for formations in which 
these are desired. Even more interesting, it is  known that 
affine transformations preserve the normal distribution. 
This means that if the robots are initially normally dis- 
tributed, hy applying the control laws (25), they remain 
normally distributed. The 5 - dimensional abstract state, 
interpreted as sample mean p and sample covariance Z, 
gives us control over the pose, aspect ratio and size of the 
concentration ellipsoid as defined in Section IV-A. 

V. ABSTRACT BEHAVIOR 

Assume the goal is to move the robots from arbitra.ry 
initial positions qi(0) to final rest positions of desired 
mean hd, orientation Od, and shape sf, 4. 

An obvious choice of the control vector field a = 
[p ,  6 ,  SI, 4 on the abstract manifold A is 

(26) 

where K,, E RZy2  is a positive definite matrix and k,, 
k,, > 0. 

More generally, the task might require the robots to fol- 
low a desired trajectory ad(!)  = [ p d ( t ) ,  O d ( t ) ,  s f ( t ) ,  4(t)] 
on A.  A control vector field on A can be of the form: 

p = K J p d  - ,U), e = ks(ed - e) 
= k , , ( S ; ‘ - s , ) ,  s 2 = k s l ( 4 - s 2 )  

p = Kp(Pd@)-h ( t ) )+ f id (d  
e = k s ( e d ( t )  - e( t ) )  + e d ( t )  
s, = k,(sf@) -s , ( t ) )  +SId@) 
s2 = k 3 , ( 4 ( r )  - s 2 ( f ) )  + i Z d ( t )  

(27) 

Note that (26) (or (27)) only guarantees the desired 
behavior on the abstract manifold A .  If the imposed 
trajectory ad@)  is bounded at all times, it is easy to see that 
a(?) is bounded. For the problem to be well defined, we 
still need to make sure that the internal states are bounded 
(requirement (v) of Problem 5).  We have: 

Proposition 9: If a is bounded, then so are qi. 
Proof The proof is based on the triangle inequality 

In the stabilization to a point case, the boundness and 
globally asymptotic convergence to the desired values of 
the abstract variables are guaranteed by (26). Proposition 
9 proves the boundness of the intemal dynamics. We still 
need to study the equilibria and regions of convergence 
for each robot. We have the following Proposition: 

Proposition IO: For any pd, B d ,  sf, &. the closed loop 
system ( 2 3 ,  (26) globally asymptotically converges to the 
equilibrium manifold p = hJ, 0 = Bd. sI = sf, sz = 4. 

Proof The proof, given in [2], is based on the Global 
Invariant Set Theorem (LaSalle) and the triangle inequality 
for norms. 

VI. SIMULATION RESULTS: TUNNEL PASSING 

Consider the task of driving “almost all” of N = 100 
robots through a tunnel of given geometry, and spread 
out at its end. Assuming that the robots are normally 
distributed in the initial configuration, then they remain 
normally distributed by applying the control laws (25),  
according to Remark 8. If 99 percent is an acceptable 
quantization of “almost all”, according to Section IV-A, 
the problem can be reduced to a 5-dimensional control 
problem for a concentration ellipsoid of probability p = 
0.99. We divide the tunnel passing task into three subtasks: 
(1) gather the robots in front of the tunnel, (2) drive the 
robots through the tunnel, and (3) spread out at its end. 

For subtask (I), we use the globally stabilizing con- 
trollers ( 2 3 ,  (26). We chose f ld = [3 231, ed = 0,  .;‘ = 
10.8574, s$ = 0.3518. The shape corresponds to semi-axes 
of @= 10 and @ = 1.8 along x and y ,  respectively. 

for norms and can be found in [Z]. 
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Fig. 2. 
ellipse. Pose and shape can be conuolled separately. 

99 of 100 normally diswibuted robou are driven throwh a tunnel by designing 5 - dimensional conmls for &e corresponding quiprobability 

The ahstract controller parameters were K p  = 212, k ,  = 2, 
k,, = kS2 = 2. Note that in this first subtask both shape and 
pose are controlled. The produced motion is shown in the 
first row of Figure (2). 

No shape and orientation control is necessary to accom- 
plish subtask (2). We use trajectory following controllers 
of type (27) on A to move the ellipse through the tunnel. 
If we want to uniformly move the ellipse at [50 231 in I 
second while keeping shape and orientation constant, we 
only have to control px, therefore fly = 6 = S - S2 = . 

The second row of Figure (2) shows four instants of the 
generated trajectories. As expected, shape and orientation 
is preserved, therefore illustrating the control decoupling 
proved in Section IV-B. 

For the third suhtask, we illustrate control of shape 
decoupled from pose. which is maintained constant. We 
again use the globally stabilizing controllers (25). (26) 
with f l  = 0, e = 0, sf = 4 = 20, k,, = k,, = 2. The 
obtained expansion is shown in the last row of Figure 

We use p:(t) = (1 - t ) 3  +I50 (therefore f l x ( t )  a - -  - 47). 

(2). 

VII. CONCLUSION AND FUTURE WORK 

We propose a control method for a large number of 
robots based on an abstraction of the team to a small 
dimensional manifold with a product structure of a Lie 
group and a shape space. The task to be accomplished by 
the team suggests a natural feedback control system on 
the manifold. We focus on planar fully actuated robots and 
show that the group and shape variables can he controlled 
separately. The individual control laws which are mapped 
to the desired behavior of the team can he realized by 

feedback depending only on the robots’ current state and 
the small dimensional state on the ahstract manifold. 
Future work will be directed towards incorporating more 
shape variables, include under-actuation constraints in the 
abstraction, extending the results to 3-D environments, 
and implementing the obtained control architectures in our 
blimp - car experimental platform. 
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