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Abstract-This paper discusses a design methodology of 
cooperative trajectory generation for multi-robot systems. 
The trajectory of achieving cooperative tasks, i.e., with 
temporal constraints, is constructed hy a nonlinear trajectory 
generation (NTG) algorithm. Three scenarios of multi-robot 
tasking are proposed at the cooperative task planning frame- 
work. The NTG algorithm is, then, used to generate real-time 
trajectory for desired robot activities. Given robot dynamics 
and constraints, the NTG algorithm first finds trajeclory 

in a lower dimensional space and parameterizes the 
curves by a set of B-spline representations. The coefficients 
of the B-splines are further solved by sequential quadratic 
programming to satisfy the optimization objectives and 
constraints. The NTG algorithm has been implemented to 
generate real-time trajectories for a group of cooperative 
robots in the presence of spatial and temporal constraints. 
Finally, an illustrated example of cooperative task planning 
with temporal constraints is pmeuted. 

I. INTRODUCTION 

For large-scale autonomous multi-agent systems, sev- 
eral distributed, hierarchical decompositions of controller 
algorithms have been proposed to overcome the problems 
in design complexity and computational limitation. The 
key feature of decomposing large-scale agent systems into 
a hierarchical architecture is that it translates a compli- 
cated controller design problem into several computation- 
ally tangible control sub-problems. Research on Advanced 
Highway Systems (AHS), for example, proposes a hier- 
archical control architecture of five layers which decom- 
poses a complicate problem into several manageable units 
[I]. The five layers and their key functionalities are (1) 
Network for deciding routes, (2) Link for assigning paths 
and target speeds, (3) Planning for managing maneuvers, 
(4) Regulation for completing tasks, and (5 )  Physical 
for controlling a vehicle itself. Vehicle control engineers 
can easily and systematically specify design requirements 
and goals, and design different controller algorithms for 
each individual layer. Similarly, a multi-layer planning, 
assessment, and control architecture of distributed semi- 
autonomous forces with collective objectives has been 
studied in the Mixed Initiative Control of Automa (MICA) 
program of DARPA. Conceptually, the MICA hierarchy 
includes Operations and Resources Supervisory (ORS) 
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for resource planning and human interaction, Team Com- 
position and Tasking (TCT) for specifying group-level 
tasks, Team Dynamics and Tactics (TDT) for tasking 
team activities, Cooperative Path Planning (CPP) for gen- 
erating feasible vehicle missions, and Vehicle Dynamics 
and Control (VDC). Planning and Control algorithms are 
accordingly designed to achieve functional goals specified 
at each layer [2]. The layer decomposition of both AHS 
and MICA is summarized in Fig. 1. 

Based on the above-mentioned hierarchies, a complex, 
difficult control problem can be properly decomposed into 
several sub-problems. Individual control algorithms can 
then be systematically designed to fulfill the sub-prohlem 
goals of one specified hierarchy, and the overall goal can 
be achieved by proper decomposition and construction 
techniques. For example, in a robot-routing case, one 
upper-layer controller might plan a grouping sequence of 
available robots and an assignment of feasible routes, and 
then generate an optimal activity for individual robots. 
Based on the planned activity received from the upper 
layer, the controller at lower layer is responsible for 
generating feasible trajectories in real time for each robot 
to follow. Therefore, multiple robots can utilize available 
resources and individually follow their own trajectories to 
achieve the overall system goal. 

At the robot trajectory planning layer, i.e., the Regula- 
tion layer of AHS and the CPP layer of MICA, one of the 
challenging problems is to plan and follow a trajectory 
in the presence of uncertainty and limited information. 
Limited information is due to the distributed nature of 
a multi-robot system and the range limitation of robot 
sensing and communication capabilities. To effectively 
control such systems, a two-degree-of-freedom design 
technique with a feedforward compensator and a feedback 
controller, as shown in Fig. 2, may be adopted. Based 
on the pre-defined goal, the feedforward compensator 
generates a nominal trajectory for the feedback controller 
to follow and produce proper actuation to the system input. 
Furthermore, the trajectory should be generated in real 
time and customized for the changes in mission, condition, 
and environment. 

In this paper, we focus on the discussion of the de- 
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AHS MICA 

Fig. 1. 
functions. 

The AHS and MICA hierarchies and their key elements and 

sign architecture and trajectory generation for cooperative 
robots. The proposed design architecture considers three 
scenarios of grouping and cooperation of multiple robots. 
Based on desired missions and available information, the 
real-time trajectory is generated by the Nonlinear Trajec- 
tory Generation (NTG) algorithm that has been developed 
at Caltech [3], [4]. In [8], we have discussed the case of 
including only spatial constraints in generating trajectory 
for the cooperative path planning of multi-vehicle systems. 
In order to satisfy temporal as well as spatial constraints 
in a cooperative multi-robot system, the NTG formulation 
has been further modified. Given system dynamics and 
state and input constraints, the NTG algorithm first finds 
trajectory curves in a lower dimensional space and. then, 
parameterizes the curves by B-splines. The coefficients of 
the B-splines are further solved by sequential quadratic 
programming to satisfy the optimization objectives and 
constraints. Finally, using the representation of these B- 
spline curves, the state and input trajectories are obtained 
to accomplish the designated activity. In order to incorpo- 
rate the timing requirements in task planning, the actual 
timing variable is then redefined to become a new state 
variable and can be arbitrarily designed to fulfill any 
required temporal constraint. The actual running time will 
then he recovered from the solution of the optimization 
approach adopted. 

This paper consists of five sections, including the In- 
troduction section. Section I1 describes the problem setup 
at the CPP layer. Section I11 outlines key components of 
the NTG algorithm. Section IV presents the integration 
of temporal constraints into the NTG algorithm. Sec- 
tion V provides an illustrated example of cooperative task 
planning in a three-robot system. Summary and future 
directions are provided in the final section. 
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Fig. 2. lko D e p e  of Freedom Design. 

11. PROBLEM FORMULATION AT CPP LAYER 

In this section, we describe the problem formulation 
of the CPP layer of the MICA hierarchy as shown in 
Fig. 1. At the upper layer, the TCT controller plans and 
teams available resources such as robots and munitions to 
achieve specified group-level tasks. Taking the teaming re- 
sults from the TCT controller as input, the TDT controller 
then generates a timing sequence of team activities. At the 
bottom, the CPP controller accepts the activity sequence 
from the TDT controller and generates feasible missions 
such as sets of waypoints and actions at these waypoints 
for individual robots. Operator commands and environ- 
mental uncertainty as well as the constraints of teaming 
and activity precedence, coordinated actions, and robot 
dynamics are also considered at the CPP layer. Hence, 
the controller design at CPP is to generate cooperative 
trajectories of one robot or a group of robots to support 
the desired activities as determined by the TDT controller. 
In the following, three scenarios of robot activities are 
discussed first, and the trajectory generation algorithm will 
he described in the next section. 

Fig. 3 shows three scenarios of robot tasking from home 
base ( B )  to target (T) .  In Fig. 3(a), a single robot is tasking 
from the home base position to the target position. The 
target position and the designated action at the position 
is simply instructed by an upper-level command unit such 
as a TDT controller. After taking off from the home base, 
the robot needs to compute real-time trajectories based 
on available information such as the target position, the 
positions of other adversarial entities and their threaten- 
ing factors, and its own state and input constraints. As 
shown in Fig. 3(a), rs denotes the safety region of the 
robot and r, represents the range of available sensing 
and communication information. For simplicity, we only 
consider the distance measures in two dimensional space. 
Having a relative distance larger than rs, the robot can 
safely move without causing any damage. Hence, in order 
to succeed the desired missions, this constraint should 
be strongly imposed. On the other hand, i-1 might be a 
combination of sensing capability to detect its neighboring 
environment, and communication capability of obtaining 
information from its neighboring robot. In general, rs < i-1, 
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Three scenarios of rohf tasking fmm home base (B)  to target 

safety radius, 7,: information radius. rr: target detection radius. 

otherwise, the robot might collide with other units before 
it detects them or is informed by other units. Similarly, 
the target unit has a working radius of rT that denotes a 
feasible detecting range if the target has a radar system or 
a threatening range if the target has a defensive capability. 

The second case considers a scenario where multiple 
robots are commanded to accomplish the designated ac- 
tivity. For example, Fig. 3(h) shows that t h e  robots 
are tasking from one home base to one target location. 
In this case, three robots might he instructed by the 
same activity command, and need to move together in 
a designated formation. Hence, the CPP controller at each 
individual robot should generate a set of feasible, real- 
time trajectories which guarantee the group of robot to 
move in the designated formation. A designated formation 
should keep the relative distance of any two robots be 
larger than rs for collision avoidance and smaller than rr 
for information sharing. Similar to the first case, rT should 
he further considered when the group of robots are moving 
within the adversarial area. 

The thud case considers a more general scenario where 
multiple robots from different home bases are commanded 
to either one common target or multiple targets. At some 
location, these robots are commanded to move together 

and have a certain level of formation interaction. Concep- 
tually, this scenario can be viewed as a combination of the 
first two cases. That is, when one robot just leaves its home 
base, its CPP controller works like that in the first case, 
and, when these robots are formed together, their CPP 
controllers work like those in the second case. However, 
more methodologies should be further developed in, for 
example, the merging and splitting of multiple robots. 

In the next section, we describe the problem setup and 
algorithm of the NTG software package. The integration 
of the NTG algorithm and the proposed CPP tasking will 
he presented in Section IV. 

111. THE NTG ALGORITHM 

In this section, we first outline the NTG algorithm 
and then describe its related constructing techniques in 
detail. For a given system dynamics and a set of state 
and input constraints, and to minimize a pre-specified 
cost function, the NTG algorithm first makes use of the 
differential flamess property to find a new set of outputs 
in a lower dimensional space and then parameterizes the 
outputs by the B-spline hasis representation. The coeffi- 
cients of the B-splines are further solved by a sequential 
quadratic programming solver to satisfy the optimization 
objectives and constraints. Finally, the trajectories for the 
vehicle controller to follow are represented by the B-spline 
curves with the obtained coefficients. In the following, 
we summarize the constructing techniques of the NTG 
algorithm presented in [31, [41. 

Consider a nonlinear control system described as fol- 
lows: 

2 = fk4 ,  (1) 

where x E W" are the states, U E Wm are the inputs, and all 
vector fields and functions are assumed to he real-analytic. 
The states and inputs in system (1) a~ also assumed he 
to constrained by the following inequalities: 

Ibo 5 Vo(x(to),dfo)) 5 ubo 
lbf 5 Wr(x(tr),u(tr)) 5 "bf (2)  
[bt < W&U) 5 ubi, 

where there are No initial constraints, N f  final constraints, 
and N, trajectory constraints. In the robot example, initial 
and final constraints might he imposed by the home base 
and target locations, and the trajectory constraints are in- 
duced from flight formation and adversarial environment. 
The problem is then to find a trajectory of system (1) that 
minimizes the following cost function: 

J = & O ( ~ ( ~ O ) , ~ ( ~ O ) ) + @ j ( ~ ( f f ) , ~ ~ ( f f ) )  

+ l L ( x ( f ) , u ( r ) ) d t ,  (3) 

where &(.,.) and @,(.;) are the costs associated with the 
initial and final locations, respectively, and L(.,.) is the 
instant cost at time f .  
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Fig. 4. A B-Spline represenlalion of zj . 

The first step of the NTG algorithm is to determine 
a feasible set of outputs such that system (1) can he 
mapped into a lower dimensional output space. That is, 
it is desirable to find a set of outputs z =  {zl, ...,zq} of 
the form: 

(4) 

such that (+,U)  can he completely determined by Eq. (4), 
i.e., 

(5 )  

where u ( ~ )  and di)  denote the ith time derivative of U and 
z ,  respectively. A necessary condition for the existence of 
such outputs can be found in [SI and such systems are 
called differentially flat systems. If no flat outputs exist 
or one cannot find them, (x ,  U )  can be still be completely 
determined by the following reduced-order form: 

(.,U) = H i ( z , z ( l ) ,  ..., &’I)) and (6) 

2 = G(x,u ,u( I )  ,..., u ( q ,  

(.,U) = H(Z,Z(I)  ,..., ,is)), 

0 = H*(z,z(’) )_..( z ( S 2 ) ) .  (7) 

In this case, an additional trajectory constraint, i.e., 
Eq. (7). needs to he included into the set of constraints (2). 

Once a particular set of outputs are chosen, they are 
further parameterized in terms of the B-spline curves as 
follows 161: 

PI 

i=l 
1 2  

i=l 

ZI (f) = E B j , k ,  (r)C: for the knot sequence tl 

z2(f) = zB;,k.(f)C: for the knot sequence t2 

Pr 

i=l  
~ ( f )  = Z,B;,k,(t)CP for the knot sequence t,, 

where B ; , k j ( f )  are the B-spline basis functions for the 
output z j  with order k j ,  C i  are the coefficients of the 
B-spline, l j  is the number of knot intervals, mj is the 
number of smoothness condition at the knot point, and 
p j  = i j ( k j - m j ) + m j .  A B-spline representation of z j  with 
additional uniformly distributed breakpoints is pictured in 
Fig. 4. 

After the outputs have been parameterized in terms 
of the B-spline curves, the cost function (3) and 
constraints (2) can also be re-formulated in terms 
of the coefficients of the chosen outputs: that is, 
J ( x , u )  + F ( Y )  and {~ ro ( . , . ) , v l f ( . , . ) ,S ( . , . ) }  + C(YL 
wherey=(CI ,..., Cjl,Ct ,..., C& ,..., 6: ,..., q q ) e R M , M =  
xy=l pi. Note that c ( y )  might also include the additional 
trajectory constraints as a result of not choosing a set of 
flat outputs. Hence, the problem can be formulated as the 
following nonlinear programming form: 

min F(y) subject to Ib 5 c(y) 5 ub. 
Y € W  

In NTG, the coefficients, i.e., y, of the B-spline curves 
are further solved by a sequential quadratic programming 
package, called NPSOL [7], to satisfy the optimization 
objective F(y) and the constraints on c(y). Finally, the 
state and input trajectories can be described in terms of 
these coefficients, and are fed into the feedback controller. 

Iv. INTEGRATING TEMPORAL CONSTRAINTS IN NTG 
According to the NTG formulation, any spatial con- 

straints can be easily coded into the constraint set, &. (2). 
An example of NTG for the CPP of multi-vehicle systems 
with spatial constraints was presented in [81. In order to 
further include any temporal constraint associated to robot 
actions, we need to modify the original NTG formulation 
and augment one additional time variable into each robot 
dynamics [3]. We first define a new state variable T 
and let T = f / ~ ,  where t and z are “old” and “new” 
time variables, respectively. Hence, the augmented robot 
dynamics becomes: 

.r’ = f ( x , u , T )  (8) 
T’ = 0 (9) 

where (.)’ = d ( - ) / d z .  Furthermore, the set of state and 
input constraints and additional temporal constraints can 
he expressed by the following set of inequalities: 

/bo 5 V‘o(x(O),u(O),T) 5 ubo 
lbr 5 V’&(1),4l),r) 5 Ubf (10) Ib, 5 w&,u,T) 5 ube 
ibT 5 y r ( T )  5 ubr. 

The introduction of new time variables r and T could 
also change linear constaints into nonlinear constraints. 
For example, consider the following the constraints on 
initial velocity and acceleration: 

lb, 5 1 5 ub, 
ib, 5 x 5 ub,. 

Using the definitions of T = t / z  and ( . ) I  = d ( . ) / d r ,  the 
above two inequalities become the following nonlinear 
constraints: 

ib,  5 d / T  5 ub, 
ib. 5 .r’’/T2 5 ab,. 

2507 



Also, the cost function of the augmented systems can be 
modified as follows: 

J = h(xPJ), U@), T )  + @/f(x(l), 411, T )  
I + Jd L ( ~ T ) , u ( T ) , T ) T ~ T .  (11) 

Note that the initial and final times (of T )  of the integration 
have been changed from ( f ~ , f / )  to (0, l),  and the actual 
final time, 11, is equivalent to t f  = T since T = I / ?  and 
T = 1. After this modification, we can construct temporal 
constraints as well as spatial constraints in the NTG 
formulation directly. The cooperative trajectory can then 
be generated based on different pre-specified planning 
time horizons of each robot activity. 

In practical design situation of a multi-robot system, the 
number of robots could be large and the total dimension 
of robot dynamics (9) could he big. Also, each robot 
might have multiple tasks that need to be coordinated 
with those of other robots. Hence, the computational 
complexity in the robot-task space could be in the order 
of n x N x L, where n is the dimension of robot dynamics, 
N is the number of robots, and L is the number of tasks 
of each robot required to perform. If the total number 
of robots involved in the task planning is too large, 
the NTG algorithm might spend longer computational 
time to find an optimal solution. This drawback can be 
overcome by imposing planning time window for each 
robot-task, that is, adding one extra timing constraint 
in the fourth inequality of Eq. (IO). Therefore, the task 
planning and trajectory generation of each robot can done 
separately. However, a high-level task planner is needed 
to generate the time window for each robot-task, and the 
temporal constraints in this case will he more conservative 
compared with the previous case. 

In next section, an illustrated example of the cooperative 
trajectory planning of three robots is presented. 

v. ILLUSTRATIVE EXAMPLE 

In this section, we use the scenario of activity coordina- 
tion of different robots, to describe the integration of NTG 
algorithm into the MICA-CPP framework. As shown in 
Fig. 5, three robots are routed in a manner to achieve a set 
of coordinated activities (ai;, denoting the jth activity of 
ith robot). In this example, two scenarios are considered: 
The Look, al2, of Robot 1 on Object h must happen after 
the Strike, azl,  of Robot 2, and there is a simultaneous 
strike by Robots 1 and 3 on Object c. The two sets of 
coordinated activities can be formulated as the following 
temporal constraints: 

T" + T I 2  2 T2' (12) 
T " + T I 2 + T l 3  = T 3 1 + T 3 2 ,  (13) 

where Ti' denotes the planning time horizon of the jth 
activity of the ith robot. 

Fig. 5 .  Activity coordination of three mbots (this example is fmm ET. 
A. Khalak of Alphatech. Inc.). 

For the ease of presenting the design procedure, in this 
example, we consider a simplified 2-D robot dynamics 
described as follows: 

(14) 
U?, i =  1,2,3,  (15) 

x" - - ,,;I 

j i j  = 

where 2J and $1 are the coordinate of the jth activity of 
Robot i, and U:' and U:' are its corresponding inputs. 

Additional state and input constraints can he further 
expressed as follows: 

rs 5 J ( X . j - & ) 2 +  ( $ j  - p ) 2  5 r, 

where i , k  = 1,2,3,i  # k, and the first inequality is for 
collision avoidance and obtaining information from its 
neighboring robots. The goal is assumed to task robots 
to the target by using minimal fuel and time. Hence, one 
choice of the cost function is as follows: 

L ( ~ , ~ )  = c a ; ( ( T i j ) 2 + a ~ j ( u ~ + u ; i ) z ,  (17) 
i , j  

where a's are weighting factors, (x$,#) is the reference 
trajectory specified by the upper-layer activity controller. 

For this system, it is easy to find,.one set of flat 

each output zk, we let 'the number of intervals of knot 
points', 'the degree of smoothness at each knot point', 
and 'the polynomial degree' be 4, 3, 6,  respectively. 
Hence, the number of coefficients of each output is 15 
(= 4(6-3) +3), that is, ~ ( t )  = X?l Bi,&)C: and y = (6) 
in the nonlinear programming formulation. 

The simulation result of activity coordination of three 
robots in two-dimensional space is shown in Fig. 6.  

outputs, z ~ ,  such that ( 2 j , y i j , ~ i j , u ~ , u ; ! )  = (zk,ik). FOI 
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VI. SUMMARY AND FUTURE WORK 

In this paper, we described the hierarchical design of 
large-scale multi-robot systems and discussed the scenario 
of robot tasking at the CPP layer of MICA. Based on a 
pre-designed robot activity, the trajectory for each robot to 
follow is then generated by the NTG algorithm. The con- 
structing techniques of NTG was discussed in detail, and 
the integration of NTG into the MICA-CPP framework 
was also presented by an illustrative example. In addition 
to the spatial constraints, the incorporation of temporal 
constraints such as activity coordination was discussed in 
this paper. Our future work will focus on the study of 
the impact of using multiple distributed NTG modules on 
the coordination performance of multi-robot systems, and 
compare that of using one centralized NTG module. 
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and e(50,lOO). At each target point, three circles of differ- 
ent radii are depicted to schematically indicate different 
activities occurring at the target point, Fig. 6(a) shows 
the scenario that Robot 1 looks at Object h after Robot 2 
strikes it and Fig. 6(b) shows the scenario that Robot 1 
and Robot 3 strike Object c simultaneously. 
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