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Abstract- In order to reach  optimal drill 

penetration  using a rotary hammer, it is necessary to 
control the two variables, rotational speed and strike 
rate, of the rotary hammer in such a way that by 
applying minimal guidance and recoil power, a 
maximum drill penetration rate  can be achieved in the 
rock. An optimal drill penetration rate is attained 
through using a given combination of rotational speed 
and strike rate. Changes in the drill diameter and/or 
material hardness lead to a false adjustment of the 
system which has to be re-optimized by an intelligent 
re-adjustment of the two servo-controlled drives. To 
achieve a flexible and automatic adaptation of 
rotational speed and strike rate of the rotary hammer 
to different material and tool types, an adaptive multi-
sensor drive control  based on a self-learning neuro-
fuzzy component has been developed by IITB in 
cooperation with an industrial partner. 

I. INTRODUCTION 

Mechatronics is becoming ever more widely used 
in the products on the consumer goods markets, 
where efficient control and guide processes can be 
implemented using very inexpensive sensors, 
processors, and actuators. This is particularly true 
for the market in semi-professional products, where 
an increasing client base is prepared to spend money 
on  products that  combine novel, useful functions 
and characteristic features. The rotary hammer is 
representative of this product group. 

To achieve  optimum drill performance, it is 
necessary to set the two variables ‚rotational speed 
of the drill’ and ‚strike rate of the hammer’ of the 
tool, whether guided by human hand or robot, in 
such a way that, with a minimum of guidance and 
recoil power,  maximal drill penetration can be 
achieved in the rock. The ‘mechanics’ of a system 
consisting of the guiding human (or robot), the 
rotary hammer, and the rock create a complete multi- 
body system during the drilling process, which, at 

any given combination of rotation rate and strike 
rate, delivers an optimal drill penetration rate. 
Changes in the drill diameter, the type of rock, or the 
drilling pressure result in a false adjustment of the 
multi-body system, which needs to be re-optimized 
by an intelligent re-adjustment of the two servo-
controlled drives. 

To achieve a flexible and automatic adaptation of 
the strike and rotation rate of the rotary hammer to 
different material and tool types, the IITB in 
cooperation with an industry partner developed and 
built a prototype of an adaptive, multi sensor drive 
control. The proposed solution envisages a self-
learning neuro-fuzzy component which can identify 
the given parameters from the sensory signals of the 
integrated system of ‘operator-rotary hammer-wall’.  
The optimal strike and rotation parameters can then 
be read from a look-up table and adjusted 
automatically [9]. The multi-sensor intelligent rotary 
hammer is thus capable of determining the optimal 
operating parameters for each type of rock and tool 
and to adjust them automatically. In addition to 
maximizing the drill capability, other quality 
requirements such as the minimization of energy 
consumption of battery-driven tools can be 
integrated into the optimization considerations.  The 
adjustment of the drill and strike rate of the rotary 
hammer can be done using two independently 
controllable drives or manually (using guidance 
display). 

II. SOLUTION CONCEPT 

The neuro-adaptive concept is based on the 
following steps (cf. fig. 1): 

In the first step of the multi-sensory real time 
process diagnosis, drill diameters and rock types are 
diagnosed quickly and accurately from a variety of 
available sensor signals using self-learning neuro-
fuzzy real time diagnostic processes. It is assumed 



 

that the rotary drill is equipped with the suitable 
sensors to measure the strike rate, the rotation rate, 
the vertical and lateral acceleration as well as the 
electrical output, the cost of which is acceptable in 
the semi-professional market. Information from the 
real time diagnosis, the process mode and the 
deviations from the planned process, respectively, 
serves as input data for the optimization of the rotary 
drill operating parameters. The real time diagnostic 
process consists of two sequential steps: the 
generation of characteristic features and the 
interpretation of characteristic features.  Similar 
neuro-fuzzy based real time diagnostic processes 
have been used successfully at the IITB for the 
surveillance of other mechatronic systems [3, 4] and 
operational processes in industry [1, 2]. 

In the second step, the optimal operating 
parameters are determined for the given drill 
diameter and rock type. The characteristic diagrams 
necessary for the optimization of the operating 
parameters are determined through a series of tests 
and are then saved to look-up tables. The 
optimization includes the determination of the 
minimum or maximum values of the characteristic 
curves on the basis of optimization algorithms. This 
results in optimal strike and rotation rates, i.e. the 
optimal performance of the rotary hammer. This 
optimization can be achieved in various ways 
depending on the type of rotary hammer. On a 
system with two separately guided electrical drives,  

optimized strike and rotation rates can be set 
automatically using conventional drive controls. On 
the traditional single-motor rotary hammers with 
multi-stage or continuous drives, the optimal 
operating parameters can be set manually, if 
necessary, using guidance displays. 

III. ROTARY HAMMER SYSTEM CHARACTERISTICS 

The characteristic movements of a rotary hammer, 
whose percussion drill penetrates the rock guided by 
humans, is extraordinarily complex. This complexity 
stems, on the one hand, from the elastic interaction 
of numerous partial masses consisting  of the rotary 
hammer, the human arm, and the rock to be worked 
(cf. fig. 2). On the other hand, the movement 
characteristics of the elastically-coupled system 
“operator-rotary hammer-wall” is characterized by 
considerable non-linearities, particularly because of 
the interplay and the friction of the tool parts hitting 
each other (floating piston, percussion piston, drive 
piston), the non-linear compression action of the 
electro-pneumatically driven percussion piston, and 
above all because of the hammering-cutting action 
of the drill in the borehole. 

The action of the complex, non-linear multi-body 
system is especially sensitive to changes in the 
parameters drill diameter, rock type, and contact 
pressure. If one of these parameters is altered, it can 
lead to considerable impairment of the drill progress 
and the vibration action. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Schematic representation of the neuro-fuzzy based drill control concept 



Numerous modeling suggestions have been 
published in an attempt to describe and simulate the 
movement characteristic. These can be divided into 
two groups according to the methods used: 
• Elastic multi-body models, which specify above 

all the simulation and optimization of the 
vibration characteristic features of the rotary 
hammer housing and the human arm.[5, 6] 

• Body shock models, based on  Shock-Wave-
Theory [11] , which focus on the description of 
the energy transmission during the impact of the 
drive piston from the  percussion and floating 
pistons to the drill bit [7,8]. 

Both types of models are each suitable only for the 
analysis of certain research questions and partial 
areas of the complex overall system. Generic 
models, which comprehensively describe and 
simulate the dynamic and stationary drill 
characteristics  of the complete system „operator-
rotary hammer-wall“ as a function of the drive 
controlled strike rate BPS [Hz] and rotation rate 
RPM [1/sec], have not been published to date. 
 

 
Fig. 2: Schematic representation of the complex multi-body operator-

rotary hammer-wall system 

As the neuro-fuzzy-based adaptation concept 
introduced in this paper is less concerned with the 
dynamic characteristics but is primarily interested in 
the stationary dependency of the drilling penetration 
p [cm3/min] on BPS and RPM, this family of 
characteristic curves was determined experimentally 
through a systematic series of tests. To this end, a 
test environment was created at the IITB, in which 

exactly-replicable drilling experiments can be 
carried out and measured using different BPS- and 
RPM-characteristic features with different drill 
diameters, rock types, and contact pressures.  

To determine the movement and power 
characteristic features as well as other relevant 
process information, the rotary hammer and rotary 
hammer guide were outfitted with different sensors.  
The sensors registered in particular the lateral and 
vertical acceleration, the strike rate BPM, the 
rotation rate RPM, the motor capacity and power 
requirements, the operating temperature and the 
bore penetration rate p. The BPM-and RPM- desired 
values were programmed in. 

 

  

  

  

Fig. 3: The measured drill penetration p, as a function of strike rate, 
BPS, and rotation rate RPM, using different (a) drill sizes (b) 
rock types and (c) contact pressures 

(a) 

(b) 

(c) 



 

To describe the system performance for the most 
representative spectrum of process parameters, 
drilling experiments were carried out for all relevant 
rotation rate and strike rate values by varying types 
of materials (concrete, granite, sandstone), drill 
diameters (8 to 30 mm), and contact pressures (110 
N to 200N). 

The families of characteristic curves shown in fig. 
3 indicate that the drill penetration p has a strong 
non-linear dependence on BPS and RPM. By 
varying the three dominant influence parameters of 
drill diameter, type of rock, and contact pressures, 
the family of characteristic curves and their maxima 
change considerably.  The nominal (rigid) 
parameters (BPS, RPM) can vary considerably from 
the respective optima. That is, a suitable 
optimization potential for a multi-sensor neuro-
fuzzy adaptation of the working parameters exists. 
To effect a practical realization of an adaptive real 
time optimization of the BPS- and RPM nominal 
values for the drive guides, the controlling 
parameters must be determined through a sensor 
based neuro-fuzzy classification. (cf. fig. 5). Then 
the optimal operating parameters are determined 
from the family of characteristic curves saved as a 
look-up table (cf. fig. 3) and transmitted to the drive 
control.  

IV. NEURO-FUZZY-CLASSIFICATION 

For the real time determination of the desired 
parameters –drill diameter, rock type, contact 
pressure- fuzzy-based diagnostic methods are 
particularly well suited because of the inherent 
fuzziness of the sensor characteristic features. The 
measurement data shown in fig. 4 of various tests 
(the drill diameter was varied here) illustrate this.  A 
self-learning neuro-fuzzy method is used because 
the ‘manual’ linking of the numerous sensor 
characteristic features using fuzzy rules can be very 
time-consuming, and because the required a priori 
information is not available. 

The multi-sensor real time diagnostic process 
developed at the IITB, which is also used in the of 
observation of industrial operating processes [10], is 
made up of two consecutive steps, the generation of 
characteristic features and the interpretation of those 
characteristic features. 

The generation of characteristic features serves in 
the processing of the measured process signals. 
From the multitude of available signals, the relevant 
signal characteristic features are extracted and 
summarized in a characteristic features vector of 
smaller dimensions. To generate characteristic 
features the following three processes are most often 
applied: signal-based processes (e.g. fuzzy-based 
limiting values, trend, and spectral or wavelet 
analyses), model-based processes (e.g. Kalman 
Filter) and knowledge-based processes (e. g. expert 
systems). 

 

 
Fig. 4: Measured sensor parameters for different drill diameter 

The second step, the evaluation of characteristic 
features, is a logical decision process which 
transforms quantitative knowledge into qualitative 
knowledge. The goal is to decide if and at what 
point a specific failure or a process phase occurred. 
To this end, static methods (e.g. generalized 
likelihood ratio test) and/or characteristic features- 
based pattern recognition methods (e.g. Bayes-
Classifiers, Fuzzy-Logic or neural networks) can be 
used. Because of the inherent fuzziness of the sensor 
information used here, neuro-fuzzy methods offer 
considerable advantages.  

On the one hand the association of a certain 
process phase in the form of association functions 



 

 

µ(x) is described fuzzily, on the other hand, the 
connection between the characteristic features and 
the process phases to be classified in the form of 
linguistic rules is defined; i.e.: 

if  (characteristic 1 = medium)  and 
  (characteristic 2 = large)  and …  
then (drill diameter = 12 mm) 
 

Another advantage is the interpretability of the 
fuzzy decision module; the characteristic features 
can be easily modified by the developer; besides, it 
is possible to simply integrate existing expert 
knowledge in the form of linguistic rules. 

To aid in the implementation of the fuzzy 
interpretation modules, the neuro-fuzzy formulation 
NEFCLASS (NEuro-Fuzzy-CLASSification) is used 
[10, 2]. This hybrid neuro-fuzzy model is based on 
the generic model of a three-layered FL Perceptron, 
permitting the interpretation of behavior in the form 
of linguistic rules.The observed learning algorithm 
of the NEFCLASS model is capable of both learning 
the rules as well as adapting the parameters of the 
association functions µ(x) underlying the rules. The 
formation of the rule basis can be made on the one 
hand based on expert knowledge, but it can also be 
generated incrementally without prior knowledge. 
The result of the learning process is an interpretable 
fuzzy interpretation module (cf. fig. 5). For optimal 
transparency, only the identification of drill 
diameters is illustrated here. 

V. IMPLEMENTATION AND RESULTS OF THE 
PROTOTYPE 

A prototype was built for the experimental testing 
and validation of the neuro-fuzzy based solution. 
The developed real time capable C-software was 
implemented on a PC-based real time capable rotary 
hammer control. The neuro-fuzzy classification 
modules are based on the training data of the three 
most important parameters:  drill diameter, rock 
type, and contact pressure. The parameter-specific 
family of characteristic curves and their optima were 
realized in the form of look-up tables. The strike and 
rotation values (BPS*, RPM*) were plugged in as 
desired values to the conventional PID and rotation 
rate regulators (cf. fig. 1). 

For the experimental testing and validation of the 
neuro-fuzzy software, which was developed in the 
IITB test environment on the basis of systematic, 
exactly-replicable test series, numerous manual drill 
test series were carried out with a variety of users 
(cf. fig. 6). Although the eight users differed 
markedly in both weight and method of guiding the 
drill, the neuro-fuzzy software developed under lab 
conditions achieved excellent classification results, 
as the representative measurement in fig 8 
illustrates. For approximately 160 drill actions with 
four different drill diameters, only very few mis-
diagnoses occurred; these are negligible as a 
diagnosis was made in each case only between 
adjacent drill diameters. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: Self-learning neuro-fuzzy interpretation module for the classification of drill diameters 



VI. SUMMARY 

This paper introduces a novel concept for the self-
optimizing movement control of a rotary hammer. 
The solution concept is based on a real time capable, 
multi-sensor neuro-fuzzy process diagnosis with 
resulting optimization of work parameters. The 

realization of the concept presupposes separately 
controllable strike and rotation drives with 
integrated sensors and a micro-controller. The 
efficiency and strength of the prototypically realized 
solution was successfully proven on the basis of 
numerous manual drill experiments. 

 

 
Fig. 6: Representative results in manual drilling tests 
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