Proceedings of the 2003 IEEE

Interaational Conference on Robotics & Automation

Taipei, Taiwan, September 14-19, 2003

Interactive rendering of deformable objects based on a filling sphere
modeling approach

Frangois Conti
conti@robotics. stanford. edu

Robotics Laboratory
Computer Science Department
Stanford University
Stanford, California 94305, USA

Abstract

Mass-spring systems have widely and effectively been
used for modeling in real-time deformable objects. Easier
to implement and faster than finite elements, these sys-
tems, on the other side, suffer from several drawbacks
when coming to render physically believable behaviors.
Neither isotropic or anisotropic materials can be con-
trolled easily and the large number of springs and mass
points composing the model makes it fastidious to define
parameters to control elongation, flexion and torsion at a
macroscopic level. Another weakness is that most of the
materials found in nrature maintain a constant or quasi-
constant volume during deformations; unfortunately,
mass-spring models do not have this property.

In this paper, we extend the current state-of-the-art in
Soft tissue simulation by introducing a six-degree of free-
dom macroscopic elastic sphere described by mass, inertia
and volumetric properties. Spheres are placed along the
medial axis transform of the object whose centers are con-
nected by a skeleton composed of a set of three-dimen-
sional elastic links. Spheres represent internal mass,
volume and control the global deformation of the object.
The surface is modeled by setting point masses on the
mesh nodes and damped springs on the mesh edges. These
nodes are connected to the skeleton by individual elastic
links, which control volume conservation and transfer
Jorces between the surface and volumetric model. Using
this framework we also present an efficient method to
approximate collision detection between multiple bodies
in real-time.

1 Introduétion

Rendering deformable objects in a realistic manner is a
challenging task in computer simulation. While rigid bod-
ies can be accurately described with a limited number of
parameters, deformable objects, on the other side, due
their internal structure, require a much larger set of num-
bers to express their state. During these last two decades, a
wide variety of approaches have been presented in soft tis-

0-7803-7736-2/03/$17.00 ©2003 |IEEE

Oussama Khatib
ok@robotics.stanford. edu

Charles Baur
charles.baur@epfl.ch

VRAI Group
IPR - LSRO
EPFL
CH - 1015 Lausanne, Switzerland

sue simulation. Mass-spring system techniques have
widely and effectively been used for modeling deformabie
objects where described by a set of mass points dispersed
throughout the object and interconnected with each other
throngh a network of springs. These systems are easy to
model, to construct and have well understood physics.
They are also well suited for paralie] computation, making
it possible to run complex environments in real-time for
interactive simulations. (A surgery simulator for instance).
On the other side, mass-spring systems have some draw-
backs. Incompressible volumetric objects and high stiff-
ness materials have poor stability requiring small time
steps during the numerical integration process, which con-
siderably slows down the simulation. A second category
of techniques is finite elements methods, which offer a
method with much higher accuracy to solve continuum
models. In FEM, unlike mass-spring methods where the
equilibrium equation is discretized and solved at e¢ach
finite mass point, objects are divided into unitary surface
(2D) or volumetric (3D) elements joined at discrete node
points where a continuous equilibrium eguation is approx-
imated over each element. While finite element methods
generate a more physically realistic behavior, at the same
time they require much more numerical computation and
therefore are difficult to use for real-time simulations.

Designing an interactive hapti¢ simulator is a difficult
challenge. If physical accuracy is a key factor towards ren-
dering physically believable scenes, nevertheless, real-
time control remains indispensable to produce interactive
simulation; users will be disturbed if latencies or interrupts
are introduced to the user input.

In this work, we extend the state-of-the-art in mass-
spring concepts, by proposing an altemative method to
model deformable objects. This method generates and
connects together both a surface and volumetric represen-
tation based on the medial axis skeleton of a solid. This
new algorithm is appealing because it decouples local and
global deformation and renders them together with vari-
able levels of resolution.

3716

The paper is organized as follows. In paragraph 2, we
introduce the different aspects and details of the algorithm.
Collisions between multiple bodies and point-contact hap-
tic interaction are discussed in paragraphs 3 and 4. Imple-
mentation of our system and experimental results are
showed in paragraph 5 and 6 and finally a description of
our future work and a conclusion are presented in para-
graph 7.

2 Object Modelling

Given a closed surface, defined by a set of triangle, we
construct the following attributes:
* A medial axis skeleton, obtained by using a valid
MAT on the original surface of the object. (Figure 1a).

A volumetric model, composed of filling spheres
placed along the medial axis skeleton and inter-con-
nected together via three-dimensional elastic links.
(Figure 1b).

A surface model, realized by setting point masses on
the mesh nodes and damped springs on the mesh
edges. Nodes are connected to the volumetric model
(skeleton composed of spheres and links) through
individual elastic links. (Figure 1c).

The following paragraphs (2.1, 2.2 and 2.3) describe in
detail the algorithms developed for each stage. Figure 1
illustrates the procedure on a 2D object. For the remainder
of the paper we will consider 3D objects,

Medal axis skeleton Filling sphere Elastic link
(b)
o Mesh node

Elastic link between
mesh and skeleton

{©)

Figure 1 - Medial Axis Skeleton and its corresponding sur-
face (a). Volumetric model composed of spheres and links
centered along the skeleton (b). Connections between sur-
faces nodes and skeleton (c)

2.1 Medial axis transform

The notion of skeleton was introduced by H. Blum [2]
as a result of the Medial Axis Transform (MAT) or Sym-
metry Axis Transform (SAT). The MAT determines the
closest boundary points for each point in an object. An

3717

inner point belongs to the skeleton if it has at least two
closest boundary points. A very illustrative definition of
the skeleton is given by the prairie-fire analogy: the
boundary of an object is set on fire and the skeleton is the
loci where the fire fronts meet and quench each other.

To approximate a skeleton we implemented a method
presented by Li and Al [7] based on an edge-coliapsing
algorithm. At every round the triangle edge (u,v} with
shortest Euclidean distance of the mesh and any associated
faces collapse into a point at the average location of its
endpoints u and v, and triangles incident to the edge are
removed. During the process, whenever an edge (,v) is
not incident to any triangle, it is designated as a skeletal
edge and vertices u and v maintain their positions until the
end of the process. The process iterates until all triangles
have been collapsed to edges or vertices. In other words,
we are left with only skeletal edges, whose union is the
skeleton of the mesh. This method was selected among
other skeletonization techniques for its performance in
speed and ease of implementation with surface based
objects. In figure 2, we illustrate a clapsing edge example
based on a 466 triangles mesh representing a gallbladder;
the generated skeleton is composed of seven nodes and six
links. By using a Pentium III - IGHz computer, the com-
plete skeletonization process took 1.5 seconds.

(d)

Figure 2 - Skeletonization of a triangle based mesh using a
clapsing edge algorithm. The original mesh is composed of
466 triangles and collapses into a skeleton composed of 7
nodes and 6 links

2.2 Volume Modeling

A set of filling spheres compose the volumetric model.
Spheres are placed inside the object, along the medial axis
transform, and are linked together via elastic links. A
sphere represents a portion of mass of an object and is
described by a reference frame R, mass m and radius r.
Spheres can freely translate and rotate in space unless con-
straints are applied; for instance, by constraining transla-
tion on certain spheres, it is possible to attach deformable
bodies to ground points. Elastic links, connecting adjacent
spheres together, are composed of six damped springs con-
trolling elongation, flexion and rorsion. They are described
by a centerline X going from sphere 0 to sphere 1; two per-

. - e
pendicular unitary vectors u; and v, are attached to both

spheres and lie in plane S,; planes S; are perpendicular to
centerline A and values o, and P, express the angles
between centerline A and vectors u, and v,. The different
degrees of freedom of a link are described here beliow:

Figure 3 - Two spheres connected with an an elastic link.

Elongation is controlled by an axial spring connecting
the centers of each sphere along centerline A. Compression
and elongation forces are applied on both spheres. See fig-
ure 4.

<

Sphere 0 %] e Sphere 1
k

] | =A-
; " — Ak =h~}g
—f F
iy Fy = F = —<-#}

Figure 4 - Axial damped spring controlling elongation,

Flexion is expressed for each sphere by angles o, and [,

- I = Bl
around axis v; and u;. Four angular springs control the

orientation of each sphere in relation with the centerline A.
Forces and torques applied on each sphere are illustrates in
figure 5.

-
Sphere 0 l:"1 F() T Sphere | |—>‘ T
T = Kai'(ai_i)

-

.

- - il = 7

TO 1:1 A

5
Figure 5 - Illustration of flexion arround axis u

Finally, torsion is managed by an individual angular
spring around centerline A. Torsion angle y is measured by

L — — . s
projecting vectors u, and u; on plane Sr as illustrated in

3718

figure 3. Torques issued from torsion are applied on center
of both spheres.

2.3 Surface Modeling

The surface model is created in two stages. First, point
masses are set on the mesh nodes (vertices) and damped
springs on the mesh edges, Secondly, all the nodes are
connected to the skeleton by searching for the nearest link
or nearest sphere. Two types of connections may occur:

» If a sphere center happens to be the nearest skeleton
point, the surface node is directly attached via an elas-
tic link to the reference frame R of the corresponding
sphere. When the sphere rotates or translates, the sur-
face mesh automatically follows the motion,

If the nearest skeleton point happens to be located on
a link, the surface node is projected and attached onto
the centerline A. During the deformation of a link,
length A is modified due to elongation or compres-
sion; nodes connected along the link are simply redis-
tributed along the link. During torsion, the surface
nodes rotate around the centerline depending of their
position along A a torsion angle y.

Any forces applied on the surface triangles first generate
a local deformation; afterwards, thanks to surface-skeleton

links, forces propagate to the global model and affect the
overall shape of the object.

vertices

damped springs

triangles

surface-skeleton elastic links

surface nodes \

sphere-link skeleton

Figure 6 - The surface model is formed by a network of
springs located at each triangle edge of the object. The sur-
face nodes are connected to the skeleton via elastic links.

3 Multiple Body Collision

Fast and accurate collision detection between general
polygonal models is a fundamental problem in computer-
simulated environments. Most of the previous work in col-
lision detection between polygonal models has focused on
algorithms for convex polyhedra. However, they are not

applicable in the case of deformable objects, since these
structures are generally non-convex, and deform over
time. Among the collision detection methods that are
applicable 10 more general polygonal models, almost all of
the optimizations rely on a pre-computed hierarchy of
bounding volumes. The solutions range from axis-aligned
box trees, sphere trees, to BSP trees. All these techniques,
which perform very efficient rejection tests, may consider-
ably slow down when objects are very close, causing inter-
active applications to become unresponsive and thus
ineffective.

In our framework, we simplify collision detection
between deformable objects by only considering impacts
between filling spheres. This method requires much less
computation compared to other techniques searching for
collisions between triangles. Elastic collisions are com-
puted between colliding spheres and directly influence the
volumetric model. Since no collision detection is per-
formed directly on the object's mesh, inaccuracies may be
observed depending of the resolution of the skeleton. Fig-
ure 7 illustrates two cbjects in contact with each other; the
contour of objecr 1 slightly interpenetrates object 2. Even
if inaccuracies are noticeable, this method does not
degrade the overall performance of the simulation. This
method will not perform correctly for skeletons that do not
enclose the overall volume of the object (See Dolphin in
figure 10); in these cases, objects may intersect via the
empty gaps contained between adjacent spheres.

Complex scenes, containing several dozens of objects,
may require computing hundreds or even thousands of col-
lision checks between spheres, thus affecting the overall
performance of the simulation. To reduce computational
time during collision checking, we can consider for certain
applications (i.e. a surgery simulator), that some objects or
bodies only move in a limited range of space. Given this
condition we can draw, for each object, a limited list of
neighbors with whom potential collisions may occur and is
waorth checking.

surface mesh

\ object ‘B’

interpenetrarion between mesh ‘A’ and mesh ‘B’

Figure 7 - Collision detection between two objects using the
spherical representation.

4 Haptic Interaction

Early haptic rendering systems modeled surface con-
tacts by generating a repulsive force propertional to the
amount of penetration into an obstacle. While these pen-
alty-based methods work well to model simple obstacles,
such as planes or spheres, a number of difficulties are
encountered when trying to extend these models to display
more complex environments.

An alternative is not to lcok at the penetration of the
user's finger into the object at all, but instead to constrain
the motions of a substitute virtual object. In the method
proposed by Ruspini et. Al [4], a representative object, a
"proxy," substitutes in the virtual envircnment for the
physical finger or probe. The "virtual proxy" can be
viewed as if connected to the user's real finger by a stiff
spring. As the user moves his/her finger in the workspace
of the haptic device he/she may pass inte or through one or
more of the virtual obstacles. The proxy, however, is
stopped by the obstacles and quickly moves to a position
that minimizes its distance to the user's finger position.
The haptic device is used to generate the forces of the vir-
tual spring which appears to the user as the constraint
forces caused by contact with a real environment. This
approach is similar to the method for the "gob-object” first
proposed by Zilles et. al [3] but does not require apriori
knowledge of the surface topology. In our framework, the
forces resulting from the finger-proxy model are directly
applied to the mass-points composing triangles in contact
with the finger. A weighted distribution based on the con-
tact position of the finger on the triangle determines the
amount of force applied to each vertex. An example of the
finger-proxy interacling with a deformable object is illus-
trated in figure 8.

Because virtual objects are normally constructed with a
large number of triangles, a naive test based on checking if
each primitive is in the path of the proxy would be prohib-
itively expensive. Instead a hierarchical bounding repre-
sentation for the object is constructed to take advantages
of the spatial coherence inherent in the environment. In
our framework, we make use of the filling spheres model
to generate a bounding box representation. Each sphere is
atrributed a second larger radius to contains all linked tri-
angles. During collision check, we first search for any
intersecting spheres. If one is selected we then check for
eventual collision with every triangle inside the sphere. By
directly using our spherical model for collision detection,
We remove any extra computation necessary for updating a
bounding box representation when an object changes
shape.

A cache is maintained to avoid calling the low-level
check multiple times for the same primitive during the
same iteration. Some spatial coherence, such as a list of
sphere or triangle neighbors, can be used to reduce the

3719

computation time between successive calls to the collision
algorithm.

@ finger position Q proxy position

.\ “\“‘W “\“w
2&\\‘“““‘ ol

\\\.. '\\\

A
R T >

%

Figure 8 - finger-proxy example on a deformable object

5 Implementation

Our current system runs on a Dual 1-GHZ Pentium ITT
Computer under Windows XP. Two main threads compose
the backbone of our application: the haptics engine and the
dynamics simulator. The separation of both processes was
first proposed by Adachi et al. [$3]. Decoupling the low-
level force servo loop from the high-level control is impor-
tant since the haptic servo loop must run at a very high
rate, typically greater than 1000 Hz, to achieve a high
quality force display. Our dynamics simulator typically
runs at a much slower rate (~20-100Hz). The haptics
engine uses the finger/proxy model, presented in para-
graph 4, to compute forces between user's fingers and vir-
tual objects; this information is transferred to the dynamics
engine to generate physical interactions. Since the physi-
cal models are only updated at 20-50 Hz, the haptics
engine performs a blending transition between the two Iast
computed frames to avoid user to feel discrete steps
between two iterations of the dynamics simulator . Even
though a small delay is introduced (< 50 ms) between the
user input and the simulation output, the effect is not per-
ceived if time-steps remain small enough {< 100ms).

All physical models are generated offline for each object
and loaded into memory during the startup process of the
application. An XML script file describes the position, ori-
entation and physical characieristics of each object in the
scene.

6 Results

We developed several applications to demonstrate each
component of the framework, some of which are available
on opur website.

In figure 10, we present a virteal Dolphin with its corre-
sponding skeleton generated by placing filling spheres
along the medial axis transform. Links interconnect neigh-
bor spheres together. The mesh is composed of 1120 trian-
gles and a connection between the mesh and the skeleton

is performed for every vertex. A dynamic behavior was
programmed for each Dolphin by controlling the leading
sphere, located in the head of the Dolphin, along a sine
wave function. The effects were propagated along the rest
of the body and gave the illusion of a Dolphin swimming
in an ocean. To demonstrate the low amount of computa-
tion required for this application, we performed a real-time
simulation on a Pentiuom Pro 200 MHz computer equipped
with an AceeiGraphics video card for fast OpenGL render-
ing. A second applicaticn was performed on a much faster
computer (Dual 1-GHz Pentium III), with a complete
medical landscape containing a liver, digestive system,
stomach and vesicle. 411 spheres composed the dynamic
skeletons of the organs. Surface and global deformation
were performed in real time, as well as haptic interaction
between the user and the virtual environment. Figure 11
presents a close view of the user grabbing the surface of a
gallbladder. We observe the local and global deformations
being rendered.

Figure 9 - Laparoscopic surgery simulator. (Left) Overall view
of the virtual organs. (Right) Workstation and force feedback
haptic device

7 Conclusion

In this paper, we presented a technigue to compute
deformations of virtual objects by decoupling surface and
volumetric representation. By introducing a new method
based on six degrees of freedom filling spheres, we gener-
ated realistic global deformarions on complex models with
minimal computation. We also presented a methodology,
based on the medial axis transform, to construct physical
models at adjustable resolutions. Finally, we combined the
global model with a surface spring model to handle local
deformations.

While this approach has shown promising resuits for
applications requiring real-time interactivity, nevertheless
many problems remain when cutting procedures are real-
ized. In these situations, updating the mesh and skeleton is
a complex task and often computationally expensive.

Future work includes an optimized mechanism to
update the model during cutting-procedures, volume con-
servation and comparison of this approach with finer
methods such as FEMs.

3720

Figure 11 - Surface deformation of a virtual vesicule composed of 466 triangles.
The skeleton is composed of 7 spheres and 7 links

References

[1] Francois Conti, “Deformation of virtual objects”, Masier
thesis, EPFL, Lausanne, Switzerland, 1999.

[2} H.Blum “A transformation for extracting new descriptors of
shape.”. In W. Wathen-Dunn, editor, Models for the percep-~
tion of Speech and Visuai Form, pages 362-380. M.L.T. Press,
Cambridge, MA, 1967.

[3] C.Zilles, J.Salisbury. “Constraint-based God-object Method
Jor Haptic Display”, ASME Haptic Interfaces for Virtual
Environment and Teleoperator Systems. Dynamic Systems
and Control, 1994, vol.1., pp 146,150.

[4] Ruspini, Diego, Krasimir Kolarov, Qussama Khatib, **The
Haptic Display of Complex Graphical Environments.” SIG-
GRAPH 97 Proceedings, (August 1997), pp. 345-352.

[5] Nina Amenta, Sunghee Choi and Ravi Kolluri. “The power
Crust”. ACM Symposium on Solid Modeling and Applica-
tions, 2001

[6] Hoppe H. “Progressive Mesh”, Proceeding of ACM SIG-
GRAFH, pp. 99-108, 1996

3721

[7] Xuaeto Li, Tong Wing Woon, Tiow Seng Tan and Zhiyong
Huang “Decomposing Polygon Meshes for Interactive Appli-
cations”

[8] David Bourguignon and Marie-Paul Cani. “Controlling Anis-
tropy in Mass-Spring Systems”

[9] Sarah F. F. Gibson and Brin Mirtich. “A Survey of Deform-
able Objects in Computer Graphics”

[10] A. Van Gelder. “Approximate Simulation of Elastic Me
branes by Triangulated Spring Meshes.”. Journal of Graph-
ics Tools, 3(2):21-41, 1998

[11]Kolja Kaehler, Joerg Haber and Hans-Peter Seidel
“Dynamic Refinement of Deformable Triangle Meshes for
Rendering”

[12] Jaso J. Corso, Jatin Chhugani and Allison M Okamura.
“Interactive Haptic Rendering of Deformable Surfaces
Based on the Medial Axis Transform”. Eurohaptics, UK, July
8-10, 2002 Eurohaptics Proceedings, pp. 92-98

[13] Adachi, Y., Kumano, T., Ogino K., "Intermediate Represen-
tation for Stiff Virtual Objects.” Proc. IEEE Virtual Reality

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

