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Abstract- This paper addresses the problem of registering 
the hexapedal mho4 RHex, relative to a known set of beacons, 
by real-time visual servoing. A suitably constructed navigation 
function represents the task, in the sense that for a completely 
actuated machine in the horizontal plane, the gradient dynamics 
guarantee convergence to the visually cued goal without ever 
lasing sight of the beacons that define it. Since the horizontal 
plane behavior of RHex can be represented as a unicycle, feeding 
back the navigation function gradient avoids lass of beacons, 
hut does not yield an asymptotically stable goal. We address 
new problems arising fmm the configuration of the beacons 
and present preliminary experimental results that illustrate the 
discrepancies between the idealized and physical mho1 actuation 
capabilities. 

I .  INTRODUCTION 
This paper reports on our progress in adapting the fixed 

camera, moving beacon visual servoing algorithms of Cowan 
et al [I] to the beacon ”inside out” version of the problem 
- a moving camera reacting to a fixed beacon - that arises 
when attempting to register a mobile robot vehicle relative to 
some effective landmark in its visual field. Specifically, we 
we interested in applying these ideas to the hexapedal robot, 
RHex [Z], [3] considered as operating in the (three degree of 
freedom) horizontal plane. The lower level controls presently 
operative in our legged machine result in horizontal plane 
behavior nicely modeled by a unicycle [41. The reduced affor- 
dance of this nonholonomically constrained model precludes 
the possibility of point stabilization by any smooth feedback 
law [ 5 ] ,  and the navigation function will eventually play the 
role of a control Lyapunov function [6 ]  in this research. In 
the present paper, we illustrate the interplay between the 
navigation function (our task model), its realiration in physical 
hardware, and the preliminary navigation results that we have 
obtained to date both in extensive simulation studies and on 
the physical RHex platform. 

A. Background Lirerarure 
Several authors have dealt with the problem of vision based 

navigation [7], [SI, almost exclusively, to date, in indoor 
environments. Ostrowski 191, [lo] uses a blimp equipped with 
a camera that implements a diffeomorphism between image 
plane features and robot pose to maintain a constant distance 
from the beacon. Ezio and Chaumette [ I l l  decouple the 
rotation and translation degrees of freedom to position a fully 

actuated camera arm in relation to a collection of features. 
Cowan [I], [121, 1131 servos a 6 dof arm to a predefined 
pose, by introducing a Navigation function that guarantees the 
features stay in the field of view (FOV) of the camera at all 
times. 

The problem to be solved in this paper entails navigation of 
an autonomous hexapod robot in an environment with known 
beacons using vision. The paper is an extension of Cowan’s 
work [I21 in the sense that it generalizes the configuration of 
the beacons (landmarks) in the planar version of the problem 
and implements the controller on a legged platform, main- 
taining the same emphasis on convergence to the goal with 
no FOV violations, modulo the reduced control affordance 
introduced by the kinematic constraints of the mobile platform. 

The mobile platform of present interest is RHex, [2], [31, 
(illustrated in figure I), a hexapedal machine with passive 
compliant legs that afford impressive mobility. Much of the 
theoretical inquiry into this machine has been confined to its 
behavior in the sagittal plane [31, [141, leaving a significant gap 
in the characterization of its operation in the horizontal plane. 
For present purposes, when only small accelerations of the 
body are required, we will find it acceptable to characterize 
RHex’s horizontal plane mechanics via the standard quasi- 
static “unicyle” model - a nonholonomically constrained 
machine whose velocity can he commanded in the fore-aft 
and heading directions relative to the body. The efficacy of chis 
highly simplified model for the present quasi-static operating 
regime is documented by a comparison of simulation and 
experimental results, below. No doubt, extending these tech- 
niques to the full dynamical regime of which RHex is capable 
will require a plant model far more accurately informed about 
its complex Lagrangian mechanics. 

B. Organizarion of rhe paper 
Section I1 describes analytically the generalization of the 

visual servoing algorithm developed by Cowan [ 131. In section 
U1 it is shown that different configurations of beacons yield 
different pose measurement error for a given location and 
therefore, a proper choice of beacons may help improve the 
accuracy of the pose. Simulations of the globally convergent 
controller are made for a fully actuated rigid body and for a 
unicycle. Finally section IV describes the implementation on 
RHex. 
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Fig. 1. RHer - Robot hexapod 

11. 2D VISUAL SERVOING 

Throughout this paper we assume a perfectly calibrated 1 
dimensional pinhole camera, and our robot model assumes 
motion in only the horizontal plane. We further assume that 
the geometry of the beacons is known and the correspondence 
problem is solved. The algorithm presented here uses 3 
beacons to extract and regulate full relative pose. In [I21 it is 
shown that an algebraic inverse of the camera map is obtained 
for 3 collinear points in SE(2). Although this result may be 
sufficient for some applications, for real environments it will 
become important for the robot to be able to handle more 
general configurations of beacons. With appropriate image pre- 
processing one can assign signatures to natural elements like 
trees, stones, etc. but natural beacons are, in general, non- 
collinear. We now generalize the methods of 1121, [131 to 
accommodate arbitrary beacon configurations. 

A. Pose computation 

The first step is to define a parameterization of the beacons 
and find the camera map that relates  the projected beacon 
coordinates in the camera image line Z to the robot pose in 
SE(2) (the camera projection plane is reduced to a line in 
SE(2)) .  For any configuration of beacons in a plane, define the 
beacon parameter space B c R2 x S by fixing the world frame 
so that the second point is at the origin and the remaining 
points lie in lines going through the origin with congruent 
angles. Figure 2 illustrates the configuration of the beacons 
with parameters ( a , p l , p 2 ) .  

B : = { ( p 1 , p z , u ) E S E ( Z )  ( p 1 > 0 , p 2 > 0 , 0 5 a < ~ }  

The coordinates of each beacon b, in the world frame are: 

[ bi  b2 b3 ] = [ piR,Q, 0 p&QY ] 
To build the camera map it is convenient to use polar 

coordinates, in effect passing to a new space e, diffeomorphic 
to the robot configuration space. Q expresses in a computa- 
tionally tractable form the fact that the robot configuration 
space has the topology of a solid torus (after removing a disk 
enclosing the beacons from the robot's available workspace). 
The motivation to introduce such a coordinate system arises 
from the fact that in e the set of self-occlusions appears as a 

Fig. 2. The parameters ( a , p l , p z )  E B define the beacon configuration. 
The paramefen (4,$,0) define the coordinates in Q. the robot's configu- 
ration space. The dashed lines represent the FOV boundary with parameten 
(a,,,, Onaz). The line 1 represenis the camera projection line and the points 
(m , z2,  z3) are the projeciim of each beacon b; inlo 1. 

literal (2 dimensional) torus, providing significant geometrical 
insight into the self-occlusion problem. Figure 2 illustrates the 
parameterization of the space e with parameters (r$,$,/3). 

Having adopted a representation for the beacon configura- 
tion and the robot configuration space it is now necessary to 
determine for a given beacon the set of robot configurations 
for which occlusion-free servoing can be accomplished. Define 
the facing set 3 as the set of configurations for which the 
robot lies "in front" of the set of beacons, i.e. the beacons 
appear to face the robot sensor. Intuitively the beacons must 
keep a certain order in the camera projection line 1. Define 
the function f; that returns a vector that goes though beacon 
b, for a given configuration q = (4, pb, 0). 

f;(q) := R&bi +PR+QY 
The facing set if then defined by (1) where J is a skew 
symmetric matrix: 

Define the visible set V as the set of configurations for 
which the beacons are in the FOV of the camera sensor, where 
Om,,, 8,,, are the FOV camera parameters illustrated in figure 
2 and function "L" returns the angle of a vector. 

V := {q 6 Q 1 8,,, < L ( f , ( s ) )  < B,,,,i = 1,2 ,3)  

The previous sets arise from geometrical insight, necessary 
for the vision implementation, but are not sufficient to fully 
characterize the set of configurations for which pose computa- 
tion can be accomplished. In fact, as shown next, the camera 
map may not always be injective in F n  V.  This is due to the 
generalization of [ I31  by allowing any beacon configuration. 
It is shown here that the injectivity is lost at worst on the 
zero set of the function O b  (a factor in the determinant of 
the jacobian of CL,) in which set the inverse image can have 
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facing sets. Therefore cb is a local diffeomotphism in W :  

bj C) 

Fig. 3. illustration of 4. The lhick black lines represent the intersection 
of the visible set and facing set slicing e. a) convex configuration. b) linear 
configuration. e) concave configuration. For the concave configuration c) D 
disconnects P n V .  

cardinality 2. We then introduce the degenerate set D using 
the function Qb: 

%(q) : B X  Q - R  
q H pl sin(a - $) + pz sin(a  + $) + f l  sin(2u) 

{b E B ; q  E L? I %(q) = 0) D := 

If the configuration space is understood topologically as a 
thickened torus, then the degenerate set will in general be a 
thin toms that disconnects Q. If the three beacons are collinear 
then D becomes a cylinder. Figure 3 illustrates the solid toms 
sliced by the FOV of the camera sensor. One should notice 
that when the FOV slices the configuration space it may be 
the case that the degenerate set does not disconnect the facing 
set 3 n  V as in figures 3a) and 3b). In fact, only if the set of 
beacons is configured in a concave shape will D disconnect 
3 (figure 3c)j. Define the free configuration space W c Q 
by: 

W := (3n v) - D 

Proposition 1. There exists a smooth and smoothly invertible 
map from the free configuration space W into a subset of T3. 

Proof Consider the map: 

Cb(q) : W i T 3  ( 2 )  

q H  [ 4f1(q)) L(fz(q))  L(f3(q))  1’ 
Smoothness is easily verifiable. It is sufficient to show that 
the map cb is a local diffeomotphism in the neighborhood of 
a point in W and that the cardinality of the inverse image in 
the co-domain is unity. This is necessary since D disconnects 

The determinant of the Jacobian of the camera map degen- 
erates only on the degenerate set and outside the visible and 

Fnv. 

Now suppose that there exist two configurations q‘ and q” 
such that cb(q’) = cb(q”). This is equivalent to saying that 
each of the points fi(q“) and f,(q“) are in a line that goes 
through the origin, i.e.: 

fdq”) x fdq”) = 0 (3) 

For i = 2 we get (L7’R+rB,)T.7(/3”R~6,) = 0 which 
simplifies to b’”‘sin(# - @’) = 0. Since 0‘ and 0” cannot 
be null this results in # = r,V + kr with IC E W. For i = 1 ,3  
equation (3) simplifies to: 

(4) 

Eliminating 0b(q‘ )  and Qb(q“) from the previous equations 
we get: 

@b(q”) sin($’ + a )  - Qb(q’) sin($” + a)  = 0 { Ob(q’’) sin($’ - a )  - Ob(q’) sin($” - a)  = 0 

sin(2a) sin($‘ - $”) = 0 + i‘ = $” + kr, k E W 

Finally using equation (4) with $“ = $‘ = $ completes the 
result: 

0 
Call cb the camera map and define the set Y = cb(W).  To 

find the inverse camera map the same constructive method is 
used as in 1121. Let the projection of the beacons in the camera 
projectionline be (81,82,83) t T 3  (i.e. 0s = arctam(zi)+ii/2 
as illustrated in figure 2) and let Y and Y‘ be: 

3 Y = [  cos(O1) cos(O2) cos(O3) 

Y’ = [ 
sin(.%) sin(02) sin(&) 
p1 cos(O1 - a)  0 pz cos(83 + a) 
pi COS(8i - a)  0 pz CoS(03 + a)  1 

The robot’s pose is computed by the following expressions, 
where Y t  is the pseudo-inverse of Y T  and YL is the orthog- 
onal complement of the subspace generated by the lines of 
Y’: 

?i 
4 = O z f -  

$ = L(6R;JY’Yl) 
2 

Having an explicit closed form expression for the camera map 
and its inverse parameterized by the beacon configuration, 
one may now address the question: how does the beacon 
configuration affect the pose computation error? For convex 
and collinear beacons it is expected that the pose computation 
error grows with distance, but for concave beacon configu- 
ration a more complex error s t ~ c t u r e  is expected, due to the 
degenerate set D. Section I11 approaches this question through 
a numerical study. 
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For concave beacons the free configuration space W is 
disconnected. A new question arises: If the robot’s initial and 
goal pose lie in distinct connected components of W can 
occlusion-free navigation be accomplished? In other words, is 
it possible to “puncture” the disconnecting degenerate set ’D? 
In section 111-B numerical simulation suggest that in general 
it is possible to accomplish global convergent occlusion-free 
navigation even in the presence of a disconnecting degener- 
ate set ’D. 

B. Navigation function 

Since the camera map is a diffeomorphism between the 
free configuration space W and the projected beacons on the 
camera projection line 1, one can build a potential function 
p so that the system y = -Vp(y )  is globally asymptotically 
stable in Y .  Next, we use the camera map cb to pull back the 
velocities from a known globally convergent system into &. 
Let p he a potential function: 

1 .. 

p(8) : T3 + [0,1] 

By construction the function p equals unity on the boundary 
of Y and has a global minima at the goal configuration. p 
is also continuous and differentiable and therefore it is a 
navigation function in Y as defined in [15]. The parameters 
c , k  and m shape the function p to allow fine tuning of 
the resultant velocity vector field, ( O ; ,  S;, 8;)  represent the 
robot goal configuration in T3 and (8,,,, 8,,,) are the FOV 
parameters described in figure 2. 
The final ingredient is to pullback the gradient vector field 
Vp into the world space. Two new maps are introduced to 
accomplish that: B maps coordinates in & into SE(2)  in 
the local robot frame. T maps local robot coordinates into 
world coordinates. See the appendix for details on these maps. 
Define the full camera map cb = cb o B o T(x,), Writing the 
gradient system in the world space we get 7, then apply the 
chain rule on c;. 

X, = U = -V (p 0 ci) (x,) = -DciT . Vp(z,) (7) 

C. Unicycle model 

In the previous sections it is assumed that the robot is 
fully actuated. In reality the dynamical model of RHex, used 
in the experiments, is not yet fully modeled in all gaits 
and terrains of interest. Several assumptions are made in 
order to implement the algorithms previously described. Most 
importantly, on the strength of empirical experience and the 
longer term theoretical perspective of [4], we adopt for RHex’s 
horizontal plane behavior the model of a quasi-static unicycle. 
The motion control software written for RHex implements a 
tripod gate for a normal walk. At any time 3 legs always touch 
the ground. The ”walk mode” used in the experiments has the 

Fig. 4. Illu~tration of simulated pose computation error. a) Convex beacons; 
b) collinear beacons; e) Concave beacons. Darker values mean larger emor 
Beacons are represenled by the small circles and the image of the degener- 
ate R L  D is represented by lhe dashed CUIWE. 

control inputs of forward velocity and turn velocity, therefore 
the unicycle model is the natural choice to implement. The 
input velocity vector of the robot is computed by projecting 
the desired velocity vector given by equation (7) into the y 
axis of the local body frame (6’ ) The turn velocity is applied 
directly. Let [U u#IT = -V (p ci). Then the unicycle model 
equation becomes: 

Local minima are introduced when the projection of the 
velocity vector yields a zero vector and the turn velocity is 
null. Numerical simulations verify this fact in section 111-C. 

111. SIMULATIONS 
A. Pose computation ermr 

For concave beacon configurations the degenerate set dis- 
connects the free configuration space W .  Therefore, it is 
expected that in a small neighborhood of ’D the camera map Ja- 
cobian is small potentially introducing large numerical errors. 
To visualize the extent and magnitude of this problem, pose 
computation error equation (9) was simulated for intervals 
of x, and y, with 8, = 0. A random noise vector 6 
with Gaussian distribution is added to the computation of the 
inverse camera map to simulate the noise from the camera. 
The simulated error is computed by: 

(9) 

One can notice that the error increases with distance from the 
beacons as expected. In figure 4 c) the pose computation error 
increases when the robot is close to D. This clearly suggests 
that concave beacon configurations are not desirable. 

B. Fully actuated rigid body 
Figure 5 illustrates the simulation of a fully actuated body 

using equation (7). The initial conditions range from x E 
[ - 5 , 5 ]  meters, y = -5 meters and B E [0, $1. The goal 
location is at (0, - 2 , O ) .  In section 11-A the possibility of 
puncturing the degenerate set is contemplated. Figure 5 shows 
that in simulation, using a concave beacon configuration, 
the algorithm converges successfully in all the trials. This 
suggests that in theory it is safe to puncture the degenerate set. 

e6 = //xw - ~ ‘ ( 6  + ci(x,))ll 
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Fig. 5. Simulation of a fully actuated body with a concave beacon 
configuration. The degenerate set V is represented by the large ~ircb. On 
top of the trajecroties represented by the solid lines, the pose of the mbOt is 
plotted for fined time intervals to give a crude idea of the robot’s velocity 

-4  

- 5  

-4  - 2  0 2 4 

paper. The robot’s body frame contains 2 PC104 stacks, a 
motor drive hoard, a camera, accelerometers and a gyroscope. 
The first stack is equipped with i/o hoards to read the motor 
encoder information, motor temperature, etc. It runs the robot’s 
controller using a supervisor implemented with the RHexLih 
library [161, (171. The 2nd stack, connected to a digital camera 
through a FireWire port, does all of the image processing. To 
implement the low level image processing functions a new fast 
vision library (SVision) was written. A discretized version of 
equation (7) is implemented. In order to accommodate for the 
input velocities allowed in the robot’s walk mode the function 
wi. defined in the appendix, is introduced. We then get the 
discretized equation of motion: 

where W(ZI,ZZ) = (mi(zi),m~(zz)) with w, defined in the 
appendix, He is the “non-holonomic projection matrix”, Ah 
is a gain factor and U is the input velocity vector obtained in 
equation (7). 

Fig. 6. Simulation of the non-holonomic constrained unicycle with a linear The robot is positioned approximately 2 meters away from a 

beacons recorded in the snapshot’s image plane is fed into 
beacon COnfiguration. The goal p% is represented by UlC gray rectangle. set of beacons and a “snapshot” is taken, The location of the 

I 

Nevertheless, as shown previously, the pose computation error 
increases close to D and therefore, although puncturing is safe 
in theory, it should he avoided in practice. 

C. Unicycle model 

Figure 7 illustrates the same simulation of figure 5 hut now 
using the unicycle model. Figure 6 illustrates a simulation for 
a linear beacon configuration. For both figures 6 and 7 the 
non-holonomic constraint predictably introduces local minima 
and, in general, as expected, the robot does not reach the goal. 
As figure 7 illustrates, the degenerate set 2) does not perturb 
the robot’s motion. 

IV. EXPERIMENTS 
This section describes the experiments performed with 

RHex in order to validate the algorithms developed in this 

0 

-1  

- 2  

- 3  

- 4  

- 5  

-4 - 2  0 2 4 

Fig. 7. Simulation of the non-holonomic constrained unicycle with a concave 
beacon configuration. The degenerate set V is represented by the large circle. 
The goal pose is represented by the gray rectangle. 

- .  
the navigation function as the goal pose. The robot is then 
moved into different initial conditions and it is released as 
represented by the triangles in the right side of figures 8 and 
9. In general it is not expected that the robot will get hack to 
goal point, only to the apparent curve of equilibrium points 
suggested in the numerical simulations. Due to the differences 
between the presumed quasi-static unicycle model and RHex’s 
true locomotion behaviour, some failures occurred as reported 
in the following table. A trial is considered a failure if the 
beacons leave the FOV of the robot’s camera. 

experiment I failure rate 
I 5 out of 23 #I  

#2 I 0 out 18 

For experiment # I ,  illustrated in figure 8, a linear beacon 
configuration is used. Experiment #2 verifies the results oh- 
tained in simulation suggesting that it is safe to puncture the 
degenerate set D: figure 9,shows that the robot successfully 
reaches a small neighborhood of the goal pose and it is not 
petturbed by the singularity ’D represented by the large circle. 
One can notice that in experiment #I the number of failures 
is higher then experiment #2. This is due to the more careful 
selection of the scaling, saturation and dead zone parameters of 
function wi. used in equation 10 and defined in the appendix. 

V. CONCLUSIONS 
The experiments in section IV reveal that navigation us- 

ing visual servoing can he accomplished for the 3 beacon 
algorithm. It is verified experimentally that the algorithm is 
fairly robust to parameter uncertainty. By taking a snapshot of 
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Fig. 8. Experiment #I. Linear beacon configuration. The picture on the 
right represents a view of the hall: the circles represent the beacons. the 
triangles represent initial conditions and the thick rectangle represents the 
goal pose. The picture on the leh is a detailed view of the 6nal pose for all 
the experiments. The units are in meters. 

Fig. 9. Experiment #2. Linear beacon configuration. The picture on the 
right represents a view of the hall: lhe small circles represent the beacons, 
the large clrcle represenor 2) the triangles represent initial conditions and the 
thick rectangle represents the goal pose. The picture on the left i s  B deliled 
view if the tinal pose for all the experiments. The units are in meters. 

the goal location the parameter uncertainty error is implicitly 
subtracted during the trial run, as discussed at greater length 
in [l]. The simulations reported in section I11 qual i ta t ive ly  
resemble the results obtained in the experiments and serve 
to validate the modeling assumptions used for the robot's 
dynamics. However, ultimately, the known limitations in the 
quasi-static model, built into the present version of these 
algorithms, limit the achievable accuracy. 

A. Future work 

Naturally, the next step is to modify the 3 beacon algo- 
rithm to account for the non-holonomic model of the robot. 
Following that, a better dynamical model for RHex should 
be developed. In the longer term, we seek to replace the 
current bright red beacons with landmarks derived from natural 
elements of the scene, allowing the robot to use trees, rocks, 
and other objects to navigate the real world. 
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APPENDIX 

Define Q as the map from local body coordinates in SE(2) 
into &: 

@ ( z b , Y b , a b )  : SE(2) + & 

1 arctan( - x b / y b )  

@a - arctan(--zb/yb) (Xb, yb, ab) H [ 
Define T as the map from world coordinates to body coordi- 
nates: 

Define the function wi(z) with saturation ri, scaling ni and 
dead zone U, as: 

if z E [ -Ui ,U;]  
max(min(Kix,ri),-r;) if x # [-vi,vi] W I ( X )  := 
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