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Abstract. We propose a general framework for sam-
pling the configuration space in which randomly generated
configurations, free or not, are retracted onto the medial
axis of the free space. Generalizing our previous work,
this framework provides a template encompassing all possi-
ble retraction approaches. It also removes the requirement
of exactly computing distance metrics thereby enabling ap-
plication to more realistic high dimensional problems. In
particular, our framework supports methods that retract a
given configuration exactly or approximately onto the me-
dial axis. As in our previous work, exact methods pro-
vide fast and accurate retraction in low (2 or 3) dimen-
sional space. We also propose new approximate methods
that can be applied to high dimensional problems, such as
many DOF articulated robots. Theoretical and experimen-
tal results show improved performance on problems requir-
ing traversal of narrow passages. We also study tradeoffs
between accuracy and efficiency for different levels of ap-
proximation, and how the level of approximation effects the
quality of the resulting roadmap.

1 Introduction

Due to the computational infeasibility of complete motion
planning algorithms, recent attention has focused on prob-
abilistic methods which sacrifice completeness for compu-
tational feasibility. In particular, several algorithms, known
collectively as probabilistic roadmap methods (PRMs), have
been shown to perform well in a number of practical situa-
tions, see, e.g., [9]. The idea behind these methods is to cre-
ate a graph (or roadmap) of randomly generated collision-
free configurations. Connections between these nodes are
made by a simple and fast local planning method. Actual
global planning is then carried out on the roadmap. These
methods run quickly and are easy to implement. Unfortu-
nately, simple situations exist in which they perform poorly,
e.g., when paths are required to pass through narrow pas-
sages in configuration space.

The medial axis, or generalized Voronoi diagram, has a
long history in motion planning, see [2, 4, 5, 6, 11, 15].
This is because the medial axis MA(Cfree) of the free space
Cfree (the set of all collision-free configurations) has lower
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dimension than Cfree but is still a complete representation
for motion planning purposes. Paths on the medial axis have
appealing properties such as large clearance from obstacles.
However, the medial axis is difficult and expensive to com-
pute explicitly, particularly in higher dimensions. The Me-
dial Axis PRM (MAPRM) [16, 17] combines these two ap-
proaches by generating random networks whose nodes lie
on the medial axis of Cfree which yields improved perfor-
mance on problems requiring traversal of narrow passages.

Previous work developed MAPRM for two dimensional
C-spaces [16] and rigid, convex bodies in three dimensional
space [17]. In this paper, we present a general MAPRM
framework. Our generalized framework extends MAPRM
to arbitrary bodies and high DOF robots. The framework
enables sampling on the medial axis in high (> 6) dimen-
sional configuration space through the use of approximate
methods for computing clearance and penetration depth.

2 Related Work

PRMs are easy to implement, run quickly, and are applicable
to a wide variety of robots. Various sampling schemes and
local planners have been used, see [8, 9, 14]. A shortcom-
ing of these methods is their poor performance on problems
requiring paths through narrow passages in the free space.
This is a direct consequence of how the nodes are sampled
from Cfree. For example, uniform sampling over Cfree, is
unlikely to provide any samples in small volume corridors.
Intuitively, such narrow corridors may be characterized by
their large surface area to volume ratio. Several techniques
have been proposed to increase the number of nodes sam-
pled in such narrow corridors [1, 3, 7, ?, 17].

A PRM variant, MAPRM, was proposed in [16, 17].
MAPRM generates random networks whose nodes lie on the
medial axis of the free C-space. It is difficult and expen-
sive to compute the medial axis explicitly, particularly in
higher dimensions. As shown in [16, 17] for low dimen-
sional C-space, it is possible, however, to efficiently retract
any sampled configuration, free or not, onto the medial axis
of the free space without having to compute the medial axis.
Sampling and retracting in this way has been shown to give
improved performance on problems requiring traversal of
narrow passages for rigid bodies in two or three dimen-
sions. Even for 6D C-space, MAPRM uses an inefficient
brute force method to find penetrations between polyhedral
objects. The requirement for exact computation of clear-
ance and penetration depth in C-space is the primary rea-
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son MAPRM can not be applied in arbitrary dimensions. In
the following section, we introduce a general framework to
cope with these difficulties while still maintaining the good
properties of MAPRM.

3 Generalized MAPRM Framework

In this section we present a general framework for MAPRM.
Let C be the C-space, Cobst be the C-obstacle, and Cfree

be C r Cobst. We begin by sketching the MAPRM strategy.
To retract any sampled configuration onto the medial axis
of Cfree, all that is needed is the closest point on ∂Cobst.
If the sampled configuration p ∈ Cfree, MAPRM computes
the closest point, q, on ∂Cobst to p, and pushes p away from
q until the nearest point on ∂Cobst is different. If p ∈ Cobst,
MAPRM first pushes the configuration to Cfree and then re-
tracts it to the medial axis as before. Figure 1 shows the
extended retraction map, r(p), for 2D C-space.
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Figure 1: The extended retraction map, r(p). p1 ∈ Cfree. q1 is
the witness for p1’s clearance, and q′

1 is the second witness when
p1 reaches the medial axis. p2 ∈ Cobst . q2 is p2’s witness for
penetration depth. When p2 is pushed into free space, q2 will be
clearance witness of p2 and q′2 is p2’s second clearance witness
when p2 reaches the medial axis.

Algorithm 3.1 Basic MAPRM Framework
Preprocessing:
Input. N, the number of nodes to generate.
Output. N nodes in Cfree connected into a roadmap.

1: repeat
2: Sample a configuration p from C-space.
3: if p ∈ Cfree then
4: q = NearestContactCfg Clearance(p)
5: Set retraction direction ~v = −→q p and start point s = p
6: else
7: q = NearestContactCfg Penetration(p)
8: Set retraction direction ~v = −→p q and start point s = q
9: end if

10: Starting at configuration s, move robot in direction ~v until
it has two nearest boundary points (i.e., is on medial axis).

11: until N nodes have been generated
12: Build connections between nodes using local planners.

The general MAPRM framework for roadmap construc-
tion is sketched in Algorithm 3.1. It involves uniform sam-
pling in C, followed by application of the extended re-

traction map. If the initial sample is free, we compute a
configuration q witnessing the minimum clearance using
the NearestContactCfg Clearance subroutine in Line 4. If
the initial sample is in collision, a witness q to the min-
imum penetration depth is computed by the NearestCon-
tactCfg Penetration subroutine in Line 7. Let `r(p) denote
the reaction distance of r(p). The cost of retracting p to the
MA(Cfree) is d `r(p)

d
e×NC(p), where d is the resolution of

the workspace and NC(p) is the cost of finding the nearest
contact configuration.

Note that Algorithm 3.1 makes no assumption about the
dimension of C, distance metrics, the robot, or the envi-
ronment (e.g., convexity, articulation). In fact, only the
clearance and penetration depth computations depend on
these properties. That is, the only steps of Algorithm 3.1
that depend on the problem instance are NearestCon-
tactCfg Clearance and NearestContactCfg Penetration.

For convex rigid bodies in two and three dimensions,
there exist algorithms and libraries [10, 13] to efficiently
compute clearance and penetration depth. Thus, in this case,
the clearance and penetration depth, and configurations re-
alizing them, can be computed exactly. Such methods were
discussed in [16, 17].

Unfortunately, computing clearance and penetration
depth for higher DOF robots is hard because it is difficult
to define good distance metrics. For example, the previous
approach [17] of defining the shortest distance between two
configurations as purely translation is not appropriate for
articulated robots. Indeed, to the best of our knowledge, no
efficient algorithms exist for finding penetration depth for
non-convex or articulated bodies. In this paper, we propose
the use of approximate methods for computing clearance
and penetration for high dimensional C.

The MAPRM algorithms proposed in this paper are clas-
sified in Table 1 according to their level of approxima-
tion. MAPRM [16, 17] uses exact computation for clearance
and penetration depth. MAPRM∼ uses exact computation
for clearance but an approximate approach for penetration
depth and can thus be applied to environments containing
non-convex rigid bodies1. MAPRM≈ uses an approximate
method for both clearance and penetration depth and can be
applied to arbitrarily high DOF robots.

Clearance Penetration
Algorithm Computation Computation
MAPRM exact exact
MAPRM∼ exact approximate
MAPRM≈ approximate approximate

Table 1: MAPRM algorithms for various approximation levels.

4 MAPRM

MAPRM was first developed for a point robot in the plane

1MAPRM∼ uses the approximate method only if it is necessary. Thus
in some situations, e.g., the robot is entirely contained in an obstacle, pen-
etration depth can be calculated just like clearance.
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[16] and then extended to convex rigid bodies in 3D [17].

4.1 MAPRM for a Point Robot in 2D

When the environment is composed of polygonal ob-
jects, clearance or penetration depth for a given config-
uration is just the shortest distance from this point to
the boundary of the polygons. This algorithm plays the
roles of both NearestContactCfg Clearance and Nearest-
ContactCfg Penetration in the framework (Algorithm 3.1).
For 2D C-space, MAPRM has been shown, theoretically and
empirically, to increase sampling in narrow corridors [16].

Algorithm 4.1 NearestContactCfg in 2D
Preprocessing:
Input. A configuration p.
Output. The nearest contact configuration q from p.

1: Find nearest configuration q on ∂Cfree to p by computing the
distance from p to ∂Cfree

2: return q.

4.2 MAPRM for a Rigid Body in 3D

In MAPRM for convex rigid bodies in three dimensions [17],
the objective is to compute the nearest contact configuration
in ∂Cobst without explicitly computing Cobst.

Let p be a sampled configuration. If p ∈ Cfree, then
the nearest contact point is a witness realizing the clearance
(Algorithm 4.2), which is provided by several algorithms
and collision detection packages [10, 13].

Algorithm 4.2 NearestContactCfg Clearance in 3D
Input. A collision-free configuration p.
Output. The nearest contact configuration q from p or failure.

1: Find a point, b, on B and a point, r, on Robot such that
dist(b, r) is smallest.

2: return p +
−→
r b .

If p ∈ Cobst, we compute the nearest contact point by
computing its penetration depth (Algorithm 4.3). If all ob-
jects in the environment are convex, the penetration can
be computed efficiently [12, 13]. Otherwise, a brute force
method which tests all feature pairs is applied. Clearly, the
brute force approach is not practical for large complex envi-
ronments. MAPRM for a convex, rigid body in 3D has been
shown to increase sampling in narrow corridors [17].

Algorithm 4.3 NearestContactCfg Penetration in 3D
Input. An in-collision configuration p.
Output. The nearest contact configuration q from p or failure.

1: if Robot and Obstacles are all convex objects then
2: Use Lin-Canny closest features algorithm [12].
3: else
4: Use brute force method [16, 17].
5: end if

5 Approximate Variants of MAPRM

In this section, we present an approximate approach which
enables us to apply the MAPRM philosophy in more gen-
eral situations, such as high DOF robots. There are several
complications with extending the strategy for 2D and 3D
MAPRM to high DOF robots. For instance, finding the near-
est contact configuration requires the ability to compute wit-
nesses for clearance and penetration depth. Unfortunately,
the exact closest contact configuration in C cannot be com-
puted without computing the ∂Cobst, a computationally ex-
pensive process which PRM methods are designed to avoid.

We are able, however, to approximate the C-space clear-
ance (or penetration) of a configuration without comput-
ing ∂Cobst. Let Cl(p,~v) be the C-space clearance of con-
figuration p in direction ~v. Then the approximate clear-
ance is defined as: Cl(p) = min({Cl(p, ~vi) : i =
1 . . . N}). To compute Cl(p,~v), we walk out from p to-
wards ~v until the collision state changes. As we increase
N , the approximate clearance approaches the actual clear-
ance. Penetration is defined in the same way; i.e., Pt(p) =
min({Pt(p, ~vi) : i = 1 . . . N}). Algorithm 5.1 describes
the process. It can be used to implement the NearestCon-
tactCfg Clearance or NearestContactCfg Penetration sub-
routines in Algorithm 3.1. The time complexity of Algo-
rithm 5.1 is O

(

N × d `
d
e
)

× T(CD), where ` is Cl(p) or
Pt(p), d is the resolution of the workspace, and T(CD) is
the cost for collision detection. The accuracy of the approx-
imation depends on N and d. However, while N has a more
profound effect on accuracy, Cl(p) and Pt(p) using large d
can be refined by the bisection search.

MAPRM∼ approximates the penetration depth in the ba-
sic MAPRM framework (Algorithm 3.1) while clearances
are computed explicitly. This allows the extension to non-
convex rigid bodies.

MAPRM≈ approximates both clearance and penetration
depth in the basic MAPRM framework. By approximating
both clearance and penetration, we can apply the MAPRM
sampling strategy to arbitrary robots with high DOF.

Algorithm 5.1 NearestContactCfg in for general C-space.
Input. A configuration c.
Output. An approximately closest contact configuration c′.

1: Let CollStat() be the collision detection function.
2: Let ci = c, i = 1 to N .
3: Randomly create N normalized vectors, ~v1 to ~vN .
4: while true do
5: for i = 1 to N do
6: ci = ci + ~vi.
7: if CollStat(ci) 6= CollStat(c) then
8: if (c ∈ Cobst) then ci = ci − ~vi.
9: return ci.

10: end if
11: end for
12: end while
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Figure 2: (a) We approximate a configuration’s C-space clearance (penetration) by finding its clearance (penetration) in several random
directions. The configuration marked as “c” (“p”) is an approximate contact configuration witnessing the clearance (penetration). (b)
S-Tunnel is contained in a 6.5 × 6.5 × 14 bounding box. The robot is a cube with side lengths of 0.6; the obstacle is a solid box of size
6× 6× 9 with the indicated corridor cut through it. The corridor has a 1× 1 cross section. The obstacle is in wireframe with the indicated
corridor cut through it. An example of a roadmap generated by MAPRM∼ is shown. (c) Hook contains a hook-like rigid robot and an
obstacle (200× 150× 5) with a hole (100× 30× 5) inside. The robot is composed of 5 blocks (10× 10× 50) with different orientations.
The swept volume illustrates a solution path. (d) Walls contains six parallel walls (4× 4× 0.25). Each of the four walls in the middle has
a (1 × 1) hole. The robot is between the two leftmost walls. The goal is placed between the two rightmost walls.

6 Experimental Results

In this section, we show how the MAPRM variants perform
in practice. PQP [10] and V-Clip [13] are used to provide
collision detection and exact closest pair calculations. Op-
tions for sampling and connection are controlled under the
same condition unless stated otherwise. The execution of
each method was terminated when the roadmap contained a
component that reached from one mouth of the corridor to
the other. Experiments were carried out on an Intel Pentium
4 processor at 1.80 GHz.

We tested examples in 3D environments with a variety
of robots (Section 6.1). We also studied the tradeoffs be-
tween accuracy and efficiency of different approximate lev-
els (Section 6.2).

6.1 3D Environments

We tested three environments: s-tunnel, hook with a hook-
like rigid robot, and walls with both a stick robot and an
articulated robot; see Figure 2 (b), (c), and (d). In Table 2,
We present experimental results for MAPRM, MAPRM∼, and
MAPRM≈, and compare them with results from uniformly
sampled PRM. We averaged the results over 10 runs with
different seeds.

6.1.1 S-Tunnel environment

In Figure 2(b), the obstacle is composed of 6 convex pieces
which enables us to use V-Clip [13] to find exact contact
configurations. The robot must pass through the tunnel to
solve the query.

Uniform random sampling in Table 2 was unable to
solve the query with a roadmap size of 64000 nodes and
11 hours of execution time. In contrast, all MAPRM varia-
tions were able to produce a valid solution path. MAPRM∼

takes slightly longer than MAPRM, because the approxima-
tion calculation in MAPRM∼ requires more time than the
exact calculation. This can be seen in the longer aver-
age node generation time of 749.83ms versus 41.01ms for

EXPERIMENTAL RESULTS FOR MAPRM ALGORITHMS

Samp. Connect Total Sol-
Env. Method time(s) time(s) time(s) ved
S-Tunnel Uniform 155 35570 39744 N

MAPRM 14 9 22 Y
MAPRM∼ 19 5 26 Y
MAPRM≈ 45 53 213 Y

Hook Uniform 686 97014 99869 N
MAPRM∼ 33 74 120 Y
MAPRM≈ 44 45 105 Y

Walls Uniform 2 161 162 Y
(Stick) MAPRM∼ 11 30 40 Y

MAPRM≈ 25 35 61 Y
Walls Uniform 2 119 121 Y
(Articulated) MAPRM≈ 47 51 99 Y

Table 2: For the S-Tunnel environment, MAPRM∼ uses N = 4
and MAPRM≈ uses N = 100 for penetration and N = 4 for clear-
ance. For the Hook environment, MAPRM∼ uses N = 20 and
MAPRM≈ uses N = 4 rays for penetration and 20 rays for clear-
ance. For the Walls environment with the stick robot, MAPRM∼

uses N = 4 and MAPRM≈ uses N = 20 for clearance and pen-
etration. For the Walls environment with an articulated robot,
MAPRM≈ uses N = 4 for clearance and penetration.

MAPRM. MAPRM≈ is the slowest of the MAPRM algorithms
because both clearance and penetration calculations are ap-
proximated, requiring more time during node generation.

6.1.2 Hook Environment

In the hook environment (Figure 2(c)), the robot starts from
the left side of the environment and the unique solution path
requires it to twist through the hole to reach the goal in the
right side of the environment.

In Table 2, uniform random sampling was unable to solve
the query with a roadmap size of 128000 nodes and 28
hours of execution time. MAPRM could not be used because
the environment contains non-convex objects. In contrast,
MAPRM∼ and MAPRM≈ were able to solve the query with
only 2815 nodes in just a couple minutes. For environments
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like this, it is critical that nodes are generated in the narrow
corridor. The results demonstrate MAPRM’s ability to in-
crease sampling in narrow corridors, even when clearances
and penetrations are only approximated.

6.1.3 Walls environment

In our third example (Figure 2(d)), the robot must pass
through the holes in the walls to reach the goal at the other
end of the environment. We tested both a rigid robot and a
4-link articulated robot.

In Table 2, MAPRM could not be used because the en-
vironment contains non-convex objects. Both MAPRM∼

and MAPRM≈ out-perform uniform sampling. Although
MAPRM∼ finds a solution faster than MAPRM≈ the differ-
ence is not as pronounced as in the s-tunnel experiment.
This is because constraints on rotation decrease the perfor-
mance of MAPRM∼.

The articulated robot has high DOF, so only MAPRM≈

could be applied. MAPRM≈ again beat uniform random
sampling by solving the query with a roadmap half the
size. The speedup is not as great as the roadmap size re-
duction because MAPRM≈ requires more time to generate a
node (30.69ms on average) than uniform random sampling
(0.72ms on average). Note that the time MAPRM≈ lost dur-
ing node generation was more than made up for during node
connection. This shows MAPRM≈’s nodes to be of higher
quality than those from uniform random sampling.

6.2 Approximation Study

The efficiency of the approximate methods, MAPRM∼ and
MAPRM≈ depends on the efficiency of computing the ap-
proximate clearance and penetration; e.g., N × dCl(p)

d
e for

C-space clearance. In this section we study how N relates
to the minimum time required to find a solution path and
how this varies between environments. We are interested
in questions such as what environment properties indicate a
need for greater clearance accuracy and greater penetration
accuracy. To investigate these issues, we varied the value of
N for both clearance and penetration calculations.

6.2.1 Accuracy and Computation Time

First, we studied accuracy and computation time by varying
N for both clearance and penetration depth. Accuracy is
based on the normalized distance between the exact and ap-
proximate contact configurations. Larger distances indicate
a less accurate result. The computation time is measured
based on mean time to generate one contact configuration.

Figure 3(a) shows the computation time for different
combinations of N for penetration and clearance. Since the
s-tunnel environment has little free space, the computation
for clearance is faster than that for penetration depth. It is
clear that the computation time grows linearly with N .

Figure 3(b) shows the error rates introduced by approxi-
mation. Let error rates for clearance and penetration depth
be ErrorRate =

∑

n

i=1
dist(cfge

i
,cfga

i
)

∑

n

i=1
dist(cfge

i
,cfgo

i
) . Then accuracy is

defined as the reciprocal of the ErrorRate. Here cfgo
i is

the i-th randomly sampled configuration, cfge
i is the exact

nearest contact configuration for cfgo
i , and cfga

i is an es-
timated contact configuration. Since dist(cfge, cfga) de-
pends on properties of the environment, such as the size of
the obstacles and the volume of the free space, we normal-
ize the distance by dividing by the exact retraction distance,
dist(cfge, cfgo). In the s-tunnel environment, large obsta-
cles will produce a large mean distance between the exact
nearest contact configuration and the configuration in colli-
sion, and small free space will have small mean exact clear-
ance. From Figure 3(b), one can notice that the error rates
drop significantly in the interval of 4 to 100, and little im-
provement is shown for > 100.
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Figure 3: Approximation study using S-Tunnel environment. Av-
erage over 55, 000 samples. (a) The computation time for finding
one nearest contact configuration for different N . (b) The error
rate for finding a nearest contact configuration for different N .

6.2.2 S-Tunnel

Figure 4 shows the results of the approximation study for
the s-tunnel environment (Figure 2). The larger N is, the
more accurate the contact configuration will be and the
more computation time it will take.

For MAPRM∼, the best value for N is 4. Due to the small
volume of the tunnel relative to the obstacle, the accuracy
of the penetration depth is important and larger values of N
should solve the problem faster. However, the robot is so
small that most of samples are contained inside the obstacle
completely. This is a case in which penetration depth can be
calculated exactly. Thus, the probability of using an approx-
imation is relatively small. This is why N = 4 is enough to
generate a good roadmap.

For MAPRM≈, the best combination was N = 4 for
clearance and N = 100 for penetration. A close second
was N = 20 for clearance and N = 100 for penetration.
Because the corridor is small compared to the surrounding
obstacle, accurate penetration calculations are critical to the
algorithm’s success. This is reflected in the fact that the
top two clearance/penetration combinations had N = 100
for penetration. Planning in the space outside the corridor
is trivial and the robot is small compared to the available
space. This is reflected in the coarser clearance approxima-
tion (N = 4 or 20).
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Figure 4: S-Tunnel approximation study.

6.2.3 Walls

Figure 5 shows the results of the approximation study for
the walls environment with a stick robot (Figure 2(a)).

For MAPRM∼, the best value for penetration was N =
20, and for MAPRM≈, the best clearance/penetration com-
bination was N = 20 for clearance and N = 20 for penetra-
tion. In this environment, the walls are thinner than in the
s-tunnel, so penetration calculations do not need to be ap-
proximated at as fine a detail. Also, the spaces between the
walls are not cluttered. Planning here is easy to moderate,
so only N = 4 or 20 is needed for clearance calculations.
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Figure 5: Walls with stick robot approximation study.

7 Conclusion

We have described a general framework for sampling con-
figurations on the medial axis of the free C-space. It en-
ables users to “plug in” appropriate retraction functions ac-
cording to the properties of given problem. In particular,
we propose using exact and approximate methods to im-
plement the retraction functions. Exact methods, MAPRM,
for convex rigid bodies in two and three dimensions, and
approximate methods, MAPRM∼ and MAPRM≈, for arbi-
trary configuration space are proposed. Both MAPRM∼ and
MAPRM≈ out performs uniform sampling in all studied en-
vironments. MAPRM≈out performs MAPRM∼ when rota-
tion is significant for rigid robots. Only MAPRM≈can be
used for high DOF robots. We observed the relationship be-
tween accuracy, i.e. number of approximate directions, and
properties of environments, e.g. clearance and penetration
depth.
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