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Abstract— This paper describes a framework for sensor fusion
of navigation data with camera-based 5 DOF relative pose
measurements for 6 DOF vehicle motion in an unstructured
3D underwater environment. The fundamental goal of this work
is to concurrently estimate online current vehicle position and
its past trajectory. This goal is framed within the context of
improving mobile robot navigation to support sub-sea science
and exploration. Vehicle trajectory is represented by a history
of poses in an augmented state Kalman filter. Camera spatial
constraints from overlapping imagery provide partial observation
of these poses and are used to enforce consistency and provide a
mechanism for loop-closure. The multi-sensor camera+navigation
framework is shown to have compelling advantages over a
camera-only based approach by 1) improving the robustness of
pairwise image registration, 2) setting the free gauge scale, and
3) allowing for a unconnected camera graph topology. Results
are shown for a real world data set collected by an autonomous
underwater vehicle in an unstructured undersea environment.

Index Terms— navigation, sensor fusion, ego-motion, structure
from motion, simultaneous localization and mapping, Kalman
filtering

I. INTRODUCTION

Robotic exploration of remote environments extends our
reach to areas where human exploration is considered too
dangerous, too technically challenging, or both. The 2004
Mars exploration rover mission is one such example, another
is deep ocean science. Deep ocean science has been an
environment where humans have demonstrated that though
they have the ability to build vehicles which can carry them to
the deep, like the deep sea submersible Alvin [1], the human
risk, operational cost, and limited availability prevent its wide
spread use. Therefore, out of necessity deep ocean science and
exploration has become an arena where the presence of mobile
robotics is pervasive and their utility revolutionary [2]–[4].

The advent of the Global Positioning System (GPS) allows
surface and air vehicles to know their position anywhere on
the globe to within a few meters via triangulation of satellite
transmitted radio signals. However, these radio signals do not
penetrate sub-sea [5], underground [6], or even indoors. There-
fore, typical methods for underwater navigation have focused
on beacon-based navigation networks, such as long baseline

acoustic systems (LBL), which offer bounded error position
measurements, but require the predeployment and calibration
of the beacon network. In this navigation scheme, position
updates are confined to an area of acoustic network cover-
age and require line-of-sight. Accuracies for low-frequency
systems (12kHz) hover around meter level precision while
higher frequency systems (300kHz) can obtain centimeter
level performance at the expense of network range [5]. An-
other popular navigation strategy is to use inertial navigation
systems (INS) and dead-reckoning (DR). These systems are
accurate in the short-term, but exhibit an unbounded growth
in error essentially as a function of time. With a DR navigation
methodology, improved positional accuracy requires more
precise, but increasingly expensive, INS sensors which in the
end only slow down and do not stop the unbounded error
growth.

Within the past decade, the mobile robotics community has
turned to environment based navigation methods which exploit
perceptual sensing capabilities; a robot measures “features”
in the environment and uses them to help localize. The
question of how to use such a methodology for navigation and
mapping began being theoretically addressed in a probabilistic
framework in the mid 80’s with a seminal paper by Smith, Self,
and Cheeseman [7]. The feature based navigation and mapping
methodology has since been coined SLAM – simultaneous
localization and mapping. The SLAM problem statement is
deceptively simple, however much theoretical work has gone
into how best to solve it. The problem is stated as: given uncer-
tain vehicle pose measurements and uncertain measurements
of features relative to the vehicle, concurrently estimate a map
of features in the environment and the vehicle’s location within
that map.

Depending on the perceptual sensor of choice and character-
istics of the typical operating environment, it may be difficult
to define “features” to build a map with. In man-made struc-
tured environments, typically composed of planes, lines and
sharp corners, features can be more easily defined [8]. Outdoor
unstructured environments pose a more challenging task and
many approaches have focused on techniques such a “scan-
matching” [9] which do not require an explicit representation



of features, but do require an accurate perceptual sensor (e.g.
a laser range finder) so that raw data can be matched directly
(for example in an iterative closest point sense).

Defining and acquiring features in the unstructured undersea
realm is an even more challenging task since sharp corner,
line, and plane primitives do not naturally exist and accurate
perceptual range sensors like laser range finders have limited
applicability. However, when navigating near the seafloor we
can use a camera as an accurate and inexpensive perceptual
sensor which can measure “features” in the environment. A
camera encodes information about the scene, and indirectly, its
pose relative to that scene. Point features in an unstructured
environment naturally fit into a camera feature-based regis-
tration framework and allow for “zero-drift” measurements of
pose referenced to the scene. When point features in the scene
are not explicitly known (i.e. 3D structure is not recovered)
pair-wise registration allows for “zero-drift” measurements
of relative pose between camera frames. That is, registering
an image taken from time ti to an image taken at time
tj provides a measurement of relative pose whose error is
bounded regardless of time or distance traveled between those
instances.

The rest of this paper presents our framework and method-
ology for incorporating camera based relative pose measure-
ments with vehicle navigation data in a SLAM based context.
Camera measurements are shown to enforce consistency and
provide a mechanism for loop closing in a 3D unstructured
undersea environment exercised over 6 DOF vehicle motion.
We show that a multi-sensor approach has compelling advan-
tages over a camera-only based navigation system. Results are
presented in the context of a real-world data set collected by an
autonomous underwater vehicle (AUV) in a rugged undersea
environment.

II. PLATFORM

Our application is based upon using a pose instrumented
AUV equipped with a single down-looking calibrated camera
to perform underwater imaging and mapping [3]. The vehicle
makes acoustic measurements of both velocity and altitude
relative to the bottom. Absolute orientation is measured to
within a few degrees over the entire survey area via inclinome-
ters and a flux-gate magnetic compass. Bounded positional
estimates of depth, Z, are provided by a pressure sensor.
Table I characterizes the navigation sensor capabilities in our
application.

TABLE I
POSE SENSOR CHARACTERISTICS.

Measurement Sensor Precision
Roll/Pitch Tilt Sensor ±0.5◦

Heading Flux Gate Compass ±2.0◦

3-Axis Angular Rate AHRS ±1.0◦/s
Body Frame Velocities Acoustic Doppler ±0.2cm/s
Depth Pressure Sensor ±0.01m
Altitude Acoustic Altimeter ±0.1m

Power budget constraints force AUVs to use strobed lighting

for image acquisition. Energy consumption is proportional to
the number of images taken. Therefore, in practice overlap is
typically minimized so that survey range can be maximized
[10].

III. TRAJECTORY ESTIMATION

In structure from motion (SFM) approaches, both camera
motion and scene structure are recovered from a sequence
of video frames. However, in our application the low degree
of temporal image overlap (which is typically on the order
of 25% or less) motivates us to instead focus on recovering
pair-wise measurements of relative pose from image frames.
Trajectory estimation is formulated within the context of
SLAM, however in our implementation we do not keep an
explicit representation of 3D features in the environment.
Instead, a history of uncertain camera poses is maintained and
defines our “map”. Pair-wise registration of images Ii and Ij
therefore corresponds to a measurement of vehicle state at time
tj relative to its previous state at time ti.

Fleischer [11] proposed a similar undersea mosaic based
navigation strategy for the problem of 2D translation-only
navigation over a planar seafloor. His estimation framework
combined 2D relative displacement measurements within the
context of an augmented state Kalman filter (ASKF). Our
work adopts his original idea of an ASKF for navigation and
camera sensor fusion, but extends the incorporation of camera
based relative pose measurements to a fully unstructured 3D
undersea environment and 6 DOF vehicle motion.

A. Augmented State Kalman Filter

We begin by describing our representation of vehicle state
and a general system model for state evolution and observa-
tion. This model is used as the basis for trajectory estimation
within the context of an extended Kalman filter (EKF) [12].
We then show how to incorporate camera based relative
pose measurements by augmenting our state representation to
include a history of vehicle poses.

The vehicle state vector and its associated covariance matrix
are defined as:

xv =
[

x
>
p , x

>
e

]>
(1a)

Pv =

[

Pp Ppe

Pep Pe

]

(1b)

Here xp is a six element vector of vehicle pose in the
local-level reference frame where XYZ roll pitch heading
Euler angles are used to represent orientation [13], i.e.
xp =

[

x, y, z, θ, φ, ψ
]>

. Any extraneous state elements re-
quired for propagation of the vehicle process model (such as
velocities, accelerations, rates, etc) are represented by xe.

The vehicle state evolves through a time-varying con-
tinuous time process model f v(·, t) driven by white noise
w(t) v N(0,Q(t)), while discrete time measurements of ele-
ments in the vehicle state are observed through an observation
model hv(·, tk) corrupted by time independent Gaussian noise



v[tk] v N(0,Rk) where E
[

wv
>] = 0.

ẋv(t) = fv(xv(t), t) + w(t) (2a)
z[tk] = hv(xv[tk], tk) + v[tk] (2b)

The estimated vehicle state x̄v and its covariance Pv are
calculated using an extended Kalman filter whose equations
are provided here for the system given in (2) [12]:
Prediction

˙̄xv(t) = fv(x̄v(t), t) (3a)

Ṗv(t) = FvPv(t) + Pv(t)F>

v + Q(t) (3b)

Update

K = P−

v H>

v

[

HvP−

v H>

v + Rk

]−1
(4a)

x̄
+
v = x̄

−

v + K
[

z[tk] − hv(x̄−

v , tk)
]

(4b)

P+
v =

[

I − KHv

]

P−

v

[

I − KHv

]>
+ KRkK> (4c)

The EKF equations propagate linearized first order
estimates of the mean and covariance via Jacobians
Fv = ∂fv(xv(t),t)

∂xv(t)

∣

∣

x̄v(t)
and Hv = ∂hv(xv [tk],tk)

∂xv [tk]

∣

∣

x̄v [tk]
.

Camera based relative pose measurements however, cannot
be expressed with the fixed size state vector representation
given in (1a). This is because registration of an image pair re-
sults in a relative pose estimate and not an absolute observation
of elements in vehicle pose xp. We therefore must augment
the state vector to include a history of delayed vehicle poses
so that camera measurements can be incorporated.

When the first image frame is captured at time t1 we
augment our state vector with xp1

, i.e. the vehicle’s pose when
it took image I1. Therefore at time t1 the augmented state
vector and covariance matrix are:

xaug[t1] =

[

xv[t1]
xp1

[t1]

]

≡

[

xv[t1]
xp[t1]

]

(5a)

Paug[t1] =

[

Pv[t1] Pvp1
[t1]

Pp1v[t1] Pp1
[t1]

]

≡

[

Pv[t1] Pvp[t1]
P>

vp[t1] Pp[t1]

]

(5b)

This process is repeated for each camera frame which we
wish to keep in our trajectory history. After augmenting N
delayed states (one for each camera frame) and dropping the
explicit time notation for conciseness we have:

xaug =
[

x
>

v ,x
>

p1
, · · · ,x>

pN

]>
(6a)

Paug =











Pv Pvp1
· · · PvpN

Pp1v Pp1
· · · Pp1pN

...
...

. . .
...

PpN v PpN p1
· · · PpN











(6b)

Note that in (5b) the vehicle’s current pose xp is fully
correlated with xp1

by definition. Therefore when the N th

delayed state xpN
is augmented in (6a) its cross-correlation

with the other delayed poses in (6b) is non-zero since the
current vehicle state has correlation with each delayed state.

The system model given in (2) must be extended to incor-
porate the new augmented state representation. The process

model for xaug continues to evolve the vehicle portion of the
augmented state vector through the vehicle dynamic model f v

while the delayed state entries are unaffected, i.e.

ẋaug =

[

fv(xv(t),u(t), t) + w(t)
0[6N×1]

]

(7)

Similarly, the navigation sensor observation model contin-
ues to remain only a function of the current vehicle state xv .
However, camera based relative pose measurements between
image frames Ii and Ij are a function of delayed states xpi

and xpj
and are discussed in III-C.

B. Vehicle Process Model

In our particular application vehicle dynamics are typically
low, therefore we choose to approximate the plant with a
constant velocity process model.

xe =
[

u, v, w, θ̇, φ̇, ψ̇
]>

(8a)

w =
[

0[1×6], w1, · · · , w6

]>
(8b)

fv(xv(t), t) =





















R(θ, φ, ψ)





u
v
w









θ̇
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
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
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






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



(8c)

where u, v, w are body frame velocities, R(θ, φ, ψ) is an
orthonormal rotation matrix from vehicle to local-level, and
θ̇, φ̇, ψ̇ are angular rates. The process model (8c) is both time
varying and nonlinear, therefore the EKF prediction update of
(3) is solved between asynchronous navigation measurements
using a 4th order Runge-Kutta approximation [14].

C. Camera Based Relative Pose Observation Model

Pairwise image registration has the ability to provide a
measurement of relative pose between delayed state elements
xpi

and xpj
, provided images Ii and Ij have overlap. The

following camera observation model derivation uses homoge-
neous coordinate transform notation to derive the image based
measurement where b

aH =
[

b
aR b

tba

0 1

]

denotes a transformation
from frame a to frame b, b

aR is an orthonormal rotation matrix
from a to b, and b

tba is a vector from b to a as expressed in
frame b.

The delayed state pose elements xpi
and xpj

encode the ve-
hicle to local-level transformations `

vi
H and `

vj
H respectively.

Therefore using the static camera to vehicle frame transform
v
cH, we can express the transformation from camera frame i
to j as:

cj
ci

H =
cj

` H `
ci

H (9a)

= v
cH−1`

vj
H−1`

vi
H v

cH (9b)

The resulting cj
ci H can be decomposed into the 6 DOF relative

pose elements cj
ci R and cjtcjci

which we denote simply as
R, t.



However, what the camera actually measures is a 5 not
6 DOF relative pose measurement. Loss of scale in the image
formation process means that only the baseline direction t/‖t‖
is recoverable from image space. Therefore, the camera based
observation model between delayed states xpi

and xpj
is:

zji =
[

t
>/‖t‖, θji, φji, ψji

]>
(10a)

= hji(xaug) (10b)

=













t/‖t‖
atan2(R

1,3
sin(ψji) − R

2,3
cos(ψji),

− R
1,2

sin(ψji) + R
2,2

cos(ψji))
atan2(−R

3,1
,R

1,1
cos(ψji) + R

2,1
sin(ψji))

atan2(R
2,1
,R

1,1
)













(10c)

IV. PAIRWISE IMAGE BASED REGISTRATION

Having incorporated camera-based relative pose measure-
ments into our trajectory estimation framework, this section
focuses on explaining how we actually make the image-based
measurement. The core of our feature-based image registration
engine is built around making pairwise measurements of
relative pose. Pairwise wide-baseline registration is essential
in our methodology for two main reasons:

1) Low overlap imagery is common in our temporal image
sequences because of the nature of our underwater
application domain. Typically images in the temporal
sequence have 25% or less in common.

2) Loop-closing and cross-track spatial image constraints
are the greatest strength of a camera based navigation
system. It is these measurements which help to correct
dead-reckoned drift and enforce recovery of a consistent
trajectory. Wide-baseline viewpoints are typical in this
scenario and would arise even if temporal overlap were
much higher as with video-frame rates.

Our feature-based registration algorithm loosely follows the
“standard” computer vision approach presented in [15]. Fig. 1
illustrates the overall hierarchy of our feature-based algorithm
which is built around:

• Independently extracting features in each image using the
Harris interest operator [16].

• Establishing an initial putative correspondence set based
upon similarity and pose prior.

• Robustly extracting an inlier correspondence set using a
novel 6-point essential matrix algorithm [17] within the
context of LMedS [18].

• Solving for an initial relative pose estimate based upon
Horn’s algorithm [19] and regularized sampling from our
relative orientation prior.

• Refinement of the camera based relative pose estimate in
a two-view bundle adjustment step [15].

The remainder of this section focuses on one of the more
novel aspects of the above approach, namely using our relative
pose prior to restrict correspondences.

A. Pose Restricted Correspondences

The problem of initial feature correspondence establishment
is arguably the most difficult and challenging task of a feature-

EKF
Pose Prior

Ri, ti

Pose Restricted
Putative Correspondences

Robust Correspondences
LMedS

6−pt Algorithm E

Horn’s Relative Pose Algroithm
with Regularized Sampling

of Orientation Prior

Two−View Bundle Adjustment

Relative Pose Prior
R, t

EKF
Pose Prior

Rj, tj

Ii

Feature Extract

Feature Encode

Ij

Feature Extract

Feature Encode

5 DOF
Relative Pose Measurement

& Covariance

Fig. 1. Overview of the pairwise relative pose estimation engine. Blue
dashed lines represent additional information provided by prior pose. Given
two images, we detect features using the Harris interest point detector. For
each feature we then determine search regions in the other image by using
prior pose and depth information. Putative matches are proposed based on
similarity and constrained by the search regions. We then use LMedS and a
6-point essential matrix algorithm to establish a robust inlier correspondence
set. Having established an initial correspondence set, an initial relative pose
estimate is obtained via Horn’s algorithm with regularized sampling from
our orientation prior. The initial pose estimate is then refined in a two-view
bundle adjustment step by minimizing the reprojection error over all matches
considered inliers.

based registration methodology. Having an initial estimate of
prior pose can be used to great advantage in solving for
correspondences and is something which is naturally available
in the instrumented ASKF framework. Given uncertain prior
motion knowledge, robustness to incorrect matches can be
achieved by restricting the correspondence search to localized
regions. Prior pose knowledge relaxes the demands on the
complexity of the feature descriptor since the descriptor is
no longer required to be unique globally, but only locally.

We use the epipolar geometry constraint expressed as a
two-view point transfer model to restrict the correspondence
search. Pose uncertainty is propagated through the model to
derive first-order estimates of the bounded search regions.
This region is used to restrict the interest point matching to
a set of candidate correspondences relaxing the demands of
and improving the robustness of the feature based similarity
matching.

1) Point Transfer Mapping: Zhang first characterized
epipolar geometry uncertainty in terms of the covariance
matrix of the fundamental matrix [20]. In [21] prior pose
knowledge is used to constrain the search space by propagating
pose uncertainty to the epipolar line. However, both of these
characterizations of uncertainty are hard to interpret in terms
of physical parameters. The following presents a point transfer
mapping which benefits from a more physical interpretation,



and an increased robustness by making use of scene range
data if available. Our pose constrained search methodology is
similar to [22], however, they assumed a CAD model of the
environment existed.

In this derivation of the point transfer mapping we assume
projective camera matrices P = K[I | 0] and P′ = K[R | t],
where K is the matrix of intrinsic camera parameters [15],
and R, t are the relative orientation parameters.

Given an interest point with pixel coordinates (u, v) in
image I , we define its vector representation u = [u, v]

>,
as well as its normalized homogeneous representation
u = [u>, 1]>. Likewise we define the imaged scene point as
X = [X,Y, Z]> and its normalized homogeneous represen-
tation X = [X>, 1]>. We note that equality in expressions
involving homogeneous vectors is implicitly defined up to
scale.

The scene point X is projected through camera P as

u = PX = KX (11)

which implies that including scale we have

X ≡ ZK−1
u (12)

This back-projected scene point can subsequently be repro-
jected into image I ′ as

u
′ = P′

X = K(RX + t) (13)

By substituting (12) into (13) and recognizing that the follow-
ing relation is up to scale, we obtain the homogeneous point
transfer mapping [15]

u
′ = KRK−1

u + Kt/Z (14)

Finally, by explicitly normalizing the previous expression
and defining H∞ = KRK−1 [15], we recover the non-
homogeneous point transfer mapping

u
′ =

H∞u + Kt/Z

H
3T
∞ u + tz/Z

(15)

where H
3T
∞ refers to the third row of H∞, and tz is the third

element of t .
When the depth of the scene point Z is known in camera

frame c, then (15) describes the exact two-view point transfer
mapping. However, when Z is unknown (15) describes a
functional relationship on Z (i.e. u

′ = f(Z)) which traces out
the corresponding epipolar line in I ′.

2) Point Transfer Mapping with Uncertainty: The delayed
vehicle poses in our ASKF representation are uncertain and
are defined with respect to the local-level reference frame.
Therefore the relative pose measurement required in (15)
must be composed by going through this intermediate frame
as shown in (9). A first-order estimate of the uncertainty
associated with the point transfer mapping given in (15), is
computed as

Σu′ ≈ JΣJ> (16)

where J is the point transfer Jacobian matrix
J = ∂u

′

∂
h

x>
pi

,x>
pj

,Z
i

> , Z is the measured altitude to the

scene, and Σ =

[

Ppi
Ppipj

0

Ppjpi
Ppj

0

0 0 σ2

Z

]

is the covariance matrix

associated with the altitude measurement and pose prior
coming from the ASKF.

We use the Gaussian PDF as an analytical tool to compute
the search region bounds. Under the Gaussian model

(u′ − u
′)>Σ−1

u′ (u′ − u
′) = k2 (17)

defines an ellipse in (u′, v′) space and k2 follows a χ2
2

distribution. Thus, given a confidence level α, an appropriate
value of k2 can be chosen such that with probability α the
true mapping u

′
o will fall in this region.

We use Z as a convenient parameterization for controlling
the size and shape of the search region in I ′. In the case
where no knowledge of Z is available, choosing any finite
value for Z and in the limit letting σZ go to infinity recovers
a search band around the pose prior epipolar line in I ′ whose
width corresponds to the uncertainty in relative pose. In the
case where knowledge of an average scene depth does exist,
such as from an altimeter, then Zavg and an appropriate
σZ can be chosen to limit the search to a segment of the
epipolar line. Furthermore, in the case where dense scene
range measurements exist, such as from a laser range finder or
scanning pencil-beam sonar, the search region can be further
constrained to a very small local area.

Fig. 2 illustrates the 99.9% confidence level pose prior
restricted correspondence search regions for a pair of under-
water images. A sampling of interest points and pose prior
instantiated epipolar lines are shown in the top image; their
associated candidate correspondence search regions are shown
in the bottom image. The search regions are determined using
an altimeter measurement of the average scene depth and
setting σZ to the measured scene depth variance. Relative pose
uncertainty depends on which reference frame it is expressed
in, therefore, a consistent set of candidate correspondences
is found by applying the search constraint both forward and
backward. In other words, candidate matches in I ′, corre-
sponding to interest points in I , are checked to see if they
map back to the generating interest point in I . Fig. 3 also
shows the two-view bundle adjusted structure and recovered
relative camera pose for the same image pair.

V. RESULTS

Trajectory estimation results are presented for a real-world
underwater data set collected at the Stellwagen Bank National
Marine Sanctuary by a scientific AUV [3]. The vehicle has
a single down-looking camera and is instrumented with the
navigation sensor suite depicted in Table I. The AUV con-
ducted the survey over a sloping rocky ocean bottom. The
intended survey pattern consisted of 15 North/South legs each
180 meters long and spaced 1.5 meters apart while maintaining
an average altitude of 3.0 meters above the seafloor with
a forward velocity of 0.35 meters per second. Closed-loop
feedback on the navigation data was used for real-time vehicle
control.



 

 

Fig. 2. Prior pose restricted correspondence search on a pair of underwater
images (Note that these images have been color corrected using a novel
algorithm developed within our lab). (top) A sampling of interest points are
shown in the top image represented by circles along with their color coded
pose prior instantiated epipolar lines. (bottom) The bottom image shows 1) the
corresponding color coded 99.9% confidence search regions for the common
overlap interest points in the top image, 2) the pose prior instantiated epipolar
lines, and 3) the candidate interests points which fall within these regions.

We processed a small section of the data set corresponding
to 100 images from a South/North trackline pair and the
results are shown in Fig. 5. The plot on the right depicts
the ASKF estimated camera trajectory and its 99% confidence
bounds. Successfully registered image pairs are indicated by
the red and green links connecting the camera poses. The green
links indicate temporally consecutive image frames while red
links indicate cross-track spatial image frames. For comparison
purposes the plot on the left depicts both the dead-reckoned
(DR) trajectory and the ASKF estimated XY trajectory. Note
that the plots are in meters where X is East and Y is North.

Our feature-based registration algorithm was successful in

Fig. 3. Texture mapped recovered structure and relative camera pose for the
image pair shown in Fig. 2. Normalized units of baseline magnitude 1 are
shown. The pose and triangulated 3D feature points are the final product of
a two-view bundle adjustment step. The 3D triangulated feature points have
been gridded in Matlab to give a coarse surface approximation which has
then been texture mapped with the common image overlap. The triangulated
feature points are shown superimposed on the surface as red dots.

automatically establishing putative correspondences between
temporal (green) image links corresponding to consecutive
camera frames. However, the current version of our feature
matcher does not deal successfully with cross-track images
due to significant lighting variations. These variations are a
result of the vehicle having to carry it’s own light source
to illuminate the scene since ambient light is non-existent
at the survey depth. Therefore, to illustrate the advantages
of the ASKF framework and to highlight the importance of
being able to make spatial cross-track camera measurements,
putative correspondences were manually established between
19 cross-track image pairs. The red spatial links in Fig. 5
indicate these pairs.

A number of important observations in Fig. 5 are worth
pointing out. First, note that the uncertainty ellipses are smaller
for camera poses which are related by spatial links. Spatial
links provide the mechanism for relating past vehicle poses to
the present allowing for correction of DR drift error. Trajectory
uncertainty in a DR navigation system is unbounded and is
essentially a function of time, in contrast, the error growth in
a visually augmented navigation (VAN) system is a function of
both distance and time. The network topology associated with
camera measurement links allows error accumulated over time
to be “reset” and essentially become a function of distance
away from the reference network node.



A second observation to point out is the delayed state
smoothing which occurs in the ASKF. Spatial links not only
decrease the uncertainty of the image pair involved, but
also decrease the uncertainty of delayed state poses which
share cross-correlation. Fig. 4 shows the effect of spatial
link measurements and the associated state smoothing. In this
figure we see the trace of the XY sub-block for a sampling of
delayed state elements plotted as a function of image frame
number. Note the behavior of the plot at image frame 754
associated with establishment of the first cross-track spatial
link. Information from that spatial measurement is propagated
via the network topology down the image chain updating
estimates of vehicle poses which are cross-correlated.

Thirdly, referring back to Fig. 5 note that a temporal (green)
link does not exist between consecutive image frames near
XY location (-4,0). In a vision-only based navigation system,
such a break in the temporal image chain would prevent
concatenation of measured camera poses which would cause
algorithms which rely on a connected camera topology to fail.
It is a testament to the robustness of the VAN approach that a
disconnected camera topology does not present any significant
issue. The key is that navigation allows correlation to be built
between the two poses even though a camera link measurement
does not exist.

Finally, an additional point worth mentioning is that the
VAN system results in a self-consistent estimate of the ve-
hicle’s trajectory. Initial processing of the image sequence
resulted in a VAN estimated trajectory that did not lie within
the 99.9% confidence bounds predicted by DR. The VAN
estimate showed a crossing trajectory like in Fig. 5 while the
DR estimate showed the trajectory as consisting of two parallel
South/North tracklines. Upon further investigation it became
clear that the cause of this discrepancy was due to a significant
nonlinear heading bias in the magnetic flux gate compass. An
independently collected data set was used to calculate a bias
correction curve which was then applied to the data set used in
this paper. The bias corrected heading measurements result in a
DR trajectory which now agrees well with the VAN estimate as
seen in Fig. 5. Essentially VAN camera derived measurements
had been good enough to compensate for the large heading
bias allowing recovery of a consistent vehicle trajectory (recall
that in a KF update the prior will be essentially ignored if the
measurements are very certain).

VI. CONCLUSIONS AND FUTURE WORK

We have presented results for a visually augmented navi-
gation system which fuses both camera and navigation sen-
sor measurements within the context of an augmented state
Kalman filter. Trajectory estimation results were presented for
a 100 image real-world underwater data set. Key strengths of
the VAN framework were shown to be

• Self-consistency. Camera measurements forced the VAN
trajectory shown in Fig. 5 to “cross-over” despite previ-
ously unmodeled compass heading biases.

• Robustness. Trajectory estimation gracefully handles hav-
ing a disconnected temporal image chain since navigation

builds correlation between camera poses.
• Smoothing. Information from camera spatial measure-

ments not only improves the estimates of the image pair
involved, but also improves all other states which are
cross-correlated.

• Improved error. Uncertainty in a DR system grows un-
bounded as a function of time while in the VAN system it
is a function of network topology. Essentially VAN allows
error to be a function of space and not time – space being
distance away from the reference node.

Future work will address known issues with the VAN
methodology. First, the large area scaling issues associated
with the O(N2) computational complexity of the ASKF
update will need to be addressed to make it computationally
feasible in a real-time implementation. Second, image feature
registration must be improved to handle the significant lighting
and viewpoint variations associated with cross-track spatial
image pairs. Being able to automatically register cross-track
images is crucial since spatial camera links provide very
powerful spatial constraints and are the mechanism which
forces consistency and provides smoothing.
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Fig. 4. (top) Time evolution of the XY uncertainty for delayed state elements
in the ASKF corresponding to the trajectory shown in Fig. 5. For each delayed
state entry in the ASKF, i.e. for each vehicle pose xpi

, the trace of its [2 × 2]
XY covariance matrix is shown plotted against image frame number. The
colored dots in the plot depict the vehicle uncertainty versus image frame
number. The lines in the plot show the time evolution of uncertainty for a
sampling of delayed state vehicle poses. A few key events are worth pointing
out. First note the monotonically increasing uncertainty in XY position
between frames 700–753. This period corresponds to when only temporally
consecutive image frame measurements could be made. Second, notice the
regional smoothing and sharp decrease in uncertainty for correlated state poses
at frame number 754. Frame 754 corresponds to the first cross-track spatial
measurement made by the camera. Finally, note that the uncertainty in XY
pose continues to decrease from frame number 754–763 as more cross-track
image measurements are made. From frame 764 onward uncertainty begins to
increase as no more cross-track spatial measurements can be made. (bottom)
Bar graph of the number of successfully registered image pairs for each frame
number. Temporally consecutive frame camera measurements are shown in
green, and the number of spatial cross-track measurements shown in red.
Notice the decrease in uncertainty in the top plot with the first cross-track
measurement by the camera which occurs at frame number 754.

−4 −2 0 2

0

10

20

30

40

50

N
or

th
 [m

]

East [m]

A

B

−4 −2 0 2

0

10

20

30

40

50

N
or

th
 [m

]

East [m]

A

B

Fig. 5. (left) Shown in blue is the plan view XY plot of the 100 ASKF
estimated camera poses with 99.9% confidence ellipses. For comparison,
overlaid in brown is the DR estimated trajectory (also with 99.9% confidence
ellipses). Notice that the DR error increases unbounded, while in contrast, the
VAN error is bounded for cameras in the vicinity of the cross-over point where
spatial image measurements are being made. The trajectory starts at A and
ends at B. (right) The same 100 ASKF estimated camera poses, but with image
measurement links superimposed. The green links in the recovered trajectory
indicate that a relative pose image based measurement was made between
temporally consecutive image pairs, while the red links represent that a cross-
track spatial measurement was made between the indicated image pairs. In
all 19 cross-track spatial measurements were made. Notice the absence of
a temporal camera measurement near (-4,0). The VAN framework gracefully
handles having a disconnected temporal image chain topology since navigation
sensors continue to build correlation between camera poses.


