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Abstract—Robots are useful tools in minimally invasive surgery, 
providing benefits such as reduction in hand tremor, navigation, 
and workspace scaling.  Unfortunately, minimally invasive 
configurations result in two likely sources of kinematic error: 
port displacement and instrument shaft flexion.  For a quasi-
static system, a measure is presented that relates the errors in the 
robot Jacobian to the angular difference between desired motions 
and actual motions.  Simulations and experimental data 
demonstrate this measure for a laboratory system.  One potential 
use for the presented measure is, for bounded errors, 
determining whether the system will monotonically converge for 
all initial and desired positions in the workspace.  In addition, the 
measure is useful for path planning, determining less error-prone 
paths. 

Keywords-surgical robot, image guidance, kinematic error 

I.  INTRODUCTION 
Minimally invasive surgery (MIS) uses long instruments 

inserted through small ports in the patient's body.  This 
technique greatly reduces patient trauma but increases surgical 
difficulty due to decreased dexterity and restriction of visual, 
tactile, and proprioceptive feedback.  Robot assistance can help 
offset such complications by providing instrument localization, 
image guidance [1], navigational tools (e.g., virtual fixtures [2, 
3]), dampening of hand tremor [4], and workspace scaling [5].  
Unfortunately, laboratory and clinical trials demonstrate that 
errors in the robotic system result from uncertain kinematics, 
unmodeled dynamics, and unmodeled forces [2, 6].  Internal 
mammary artery takedown is an example task that exhibits 
such errors.  To reach the surgical site near the chest wall, the 
instrument shaft applies significant torque to the port. The 
moments and forces created during the operation cause the 
patient’s ribs to flex, the port to move, and the instrument shaft 
to bend.  These kinematic errors impair positioning of the robot 
and cause deviations from the desired motions.  Reducing the 
positioning precision reduces the navigational benefits of the 
robot.  In the worst case, a slave robot may move in directions 
other than those of the master robot, decreasing patient safety. 

Much work has been done on reducing kinematic error.  
Offline calibration calculates exact kinematic parameters, but 
does not account for online errors due to interactions with 
unstructured environments [7, 8].  Estimating the bending of 
the instrument shaft is problematic due to unmodeled forces at 

the port and within the patient.  Research into flexible robotics 
has focused on dynamic flexibility [9, 10].  Such research 
assumes known static kinematics, which is not the case when 
there is static deformation against the patient.  Measuring the 
position of the tip of the instrument shaft using cameras or 
magnetic position trackers is another approach.  Such 
measurements eliminate the problem of errors in the forward 
kinematics, but do not directly solve the problem of errors in 
the inverse kinematics.  One method for using that position 
information to reduce the effects of errors in inverse kinematics 
is by online estimation of the local Jacobian [11, 12].  
Unfortunately, significant motion in a single direction can lead 
to errors in these estimates.  Another method of using position 
measurements to correct for kinematic errors is to use a 
controller based on the nominal Jacobian.  Cheah, et al., derive 
a relationship between error in a transpose Jacobian controller 
and the controller gains that result in asymptotic convergence 
to the commanded position.  While that result is useful, for 
surgical robotics it is important to have more information, 
particularly concerning motion of the robot before 
convergence. 

For robots using an inverse Jacobian controller, this paper 
presents a measure of the positioning error in the controller 
based on the error in the Jacobian.  That measure can be used to 
determine whether the system is monotonically convergent, 
and to estimate the maximum angular difference between 
desired motions and actual motions as produced by the 
controller.  The maximum angular difference can then be used 
to determine how closely the system would follow commanded 
motions.  Simulations and experimental data are used to 
illustrate the measure for a laboratory robot system.  Practical 
uses for the measure are then discussed such as predicting 
monotonic convergence, path planning, and robot design. 

II. ANALYSIS OF CONTROLLER 
An ideal robotic system moves to the commanded position 

and does not stray from the most direct path to that position.  
The first trait translates to asymptotic convergence and the 
second trait is related to monotonic convergence.  For design 
and safety reasons, it is important to have a measure of the 
effect that errors in the controller have on these properties of 
the system.  The measure developed here uses a quasi-static 
assumption to calculate both the Cartesian error length after a 
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motion and the angle between desired and actual motions.  
Possible applications in control of orientation have been left for 
future work. 

A. Controller and Assumptions 
An important use of surgical robots is for image-guided 

surgery.  The surgeon watches images from cameras and 
preoperative scans while manipulating the master robot.  The 
motions of the master are copied by the slave robot, which 
holds a surgical instrument.  In MIS, instruments have long 
shafts that pass through a small port in the patient's body. 

Unfortunately, kinematic errors in the slave robot result in 
incorrect image guidance, navigational aids (e.g., virtual 
fixtures), and robot motions.  Directly measuring the robot 
position with cameras or a magnetic tracker can fix the 
problems with image guidance, but the actual motions of the 
robot would still not match the commanded motions. 

Focusing on MIS robots influences the choice of feedback 
controllers.  Many surgical robots have a built-in joint-level 
controller.  That controller is running with a high servo rate and 
has critically damped or over-damped behavior, with properties 
set at initial design.  Additionally, the joint-level controller has 
regulatory approval and has been used in thousands of surgical 
cases, factors that inhibit modifications.  Often the kinematics 
for the master and slave robots are dissimilar, so an inverse 
Jacobian controller is practical for the outer loop controller.  
The inverse Jacobian controller requires the current position of 
the robot, which can be measured via camera or magnetic 
position sensor.  Combining these into one system (Fig. 1), the 
desired position for the robot can be set and the robot will 
move to that position, barring kinematic errors. 

While contacts between the instrument shaft and the 
environment can introduce errors, these contacts have the 
benefit of reducing the effects of system dynamics.  The 
contacts increase the damping of the system, leading to a quasi-
static situation.  Critically damped joint-level control also leads 
to a quasi-static situation due to its minimum settling time and 
no overshoot.  With these features, a quasi-static assumption 
holds as long as the commanded angular changes are small 
enough to be completed before the next update of the inverse 
Jacobian controller.  To satisfy this constraint, the motion 
scaling gain of the controller is decreased until the system 
behaves in a quasi-static manner. 

B. Derivation of Error Measures 
For an inverse Jacobian controller with an imperfect 

Jacobian, the commanded change in joint angles, n
c� ���  

where n is the degrees of freedom for the robot, is calculated as 

 � �1 1ˆ ˆ
c d dkJ x x kJ x� �

� � � � �� , (1) 

where 3x��  is the current Cartesian position, 3
dx ��  is the 

desired Cartesian position, 3
dx� ��  is the desired motion in 

Cartesian space, Ĵ  is an estimate of J, the true system 
Jacobian, and k is a motion scaling gain.  For infinitesimal 
steps and an ideal quasi-static system, the resulting motion is 

 1ˆ
c dx J kJJ x�

� � � � �� . (2) 

Therefore the new position after completing the motion is 

 1ˆ
new dx x x kJJ x x�

� � � � � � , (3) 

and the error after completing the motion is 

 1ˆ
new d new d dx x x x x kJJ x�

� � � � � � � . (4) 

A mapping, � �,G k� , is derived from dx�  to newx� . 

 � � � �1ˆ,new d dx G k x I kJJ x�
�

� � � � � � . (5) 

To analyze convergence, the induced Euclidean norm of 
� �,G k�  can be defined in the standard way. 
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where � �G�  denotes the maximum singular value of G .  If 
� �

2
, 1,

i
G k� �� � , the Cartesian error length is always 

smaller after a step than before the step.  Therefore, the 
Cartesian error length monotonically decreases to zero with 
subsequent steps, making the controller monotonically and 
asymptotically convergent.  Let v

�
 be the right singular vector 

that corresponds to the maximum singular value, � �G� .  Note 
that v

�
 is the desired direction that results in the largest 

newx� .  Also note, neither � �
2

,
i

G k�  nor v
�

 have any 
application to the orientation of the robot.   

While � �
2

,
i

G k�  is useful, a potentially more important 
measure is the angle, �, between the desired motion, dx� , and 
the actual motion, x�  (Fig. 2).  If |�| is small for all possible 
motions across the workspace, then for a teleoperated system 

Figure 1.   Block diagram of controller. 
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the slave robot will accurately follow the motions of the 
master.  Let � �max� �  be the maximum absolute value of � 
over all desired motions, for a specific joint configuration, � .  
From linear algebra, 

 i i iGv σ u� , (7) 

where iv  are the right singular vectors of G, iu  are the left 
singular vectors of G, and iσ  are the corresponding singular 
values.  So pairs of input and output vectors can be defined 
where the input vectors, v , are unit length, 

 2

1 1 1

, 1
m m m

i i i i i i
i i i

v v u u
G

� � � �

� � �

� � � �
� � �� � � �

� � � �
� � �� , (8) 

where m=dim(x) .  Then 
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2

max cos
T

v
v v u

v u
� �

�

� �� ��� �
� � 	
 �� 	�� �� � �

. (9) 

Equation (9) calculates the exact value of � �max� � , but 
requires searching over a sphere of radius 1, invoking 
computational requirements tolerable for offline calculations 
but that may be too great for real-time use.  Instead, an upper 
bound on � �max� �  can be determined geometrically from 

� �
2

,
i

G k�  (Fig. 2).  Note that newx  must lie within a sphere of 
radius � �

2
, di

G k x� �  from dx .  The conservative estimate, 
� �max

ˆ ,k� � , of � �max� �  is constructed by assuming the actual 
motion has the largest possible |�|.  Then the actual motion is 
tangential to the surface of the sphere about dx , putting a right 
angle between the actual motion and the radius of the sphere.  
The resulting right triangle has the desired motion as its 
hypotenuse.  An upper bound on � �max� �  is therefore 
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Let p
�

 be the direction of desired motion that results in 
max� .  Note that there is no simple relationship between p

�
 

and v
�

.  v
�

 is derived from � �
2

,
i

G k� , a measure of the 
maximum length of positional error, unlike max� , which 
directly measures the angular error. 

III. EXAMPLES 
To demonstrate the various measures and variables, a 

simplified MIS robot system was simulated quasi-statically 
using the controller in Fig. 1.  Kinematic errors due to 
displacement of the instrument port were introduced, and 

max� , � �
2

,
i

G k� , max�̂ , p
�

, and v
�

 were calculated across 
the workspace of the system.  This source of error was chosen 
for its ease of implementation and straightforward implications.  
Additionally, the experimental setup (Fig. 3), using the 
controller in Fig. 1, generated trajectories from various initial 
and desired positions in the presence of kinematic errors, and 
these trajectories were compared with trajectories calculated 
via simulation. 

A. Computer Simulation 
The simulation consisted of a planar two-link robot 

attached to an instrument shaft.  Fig. 4 displays the workspace 
and configuration for both the simulation and experiment.  The 
workspace of the robot’s wrist is broken into two 
classifications depending on whether the instrument shaft could 
reach the port with the robot at that position.  The links were 
each 210 mm and the instrument shaft was 320 mm.  The home 
position was with the first link horizontal (parallel to the z-axis) 
and the second link vertical (parallel to the y-axis).  The origin 
was at the wrist of the robot in its home position.  The 
instrument shaft passed through a port that was placed at (y=0, 
z=160).  We assume that the first joint is constrained to angular 
values between 1.2 and –1.9 radians as measured from the 
home position.  The second joint is constrained to angular 
values between 1.0 and –0.7 radians as measured from the 
home position.   Additionally, the joints are constrained such 
that the sum of the angles for both joints is between 2.8 and –
0.3 radians.  These joint constraints are similar to the physical 
constraints of the robot used in the experimental setup, 
described in the next section. 

For each point in the tip workspace, we calculate the error 
metrics with a port positioning error of +20 mm in y and +10 
mm in z, and assuming quasi-static steps (Fig. 5).  This port 
error is somewhat larger than measured in our animal trials 
(Zeus surgical robot system, Computer Motion Inc., Goleta, 
California), but serves to illustrate behavior of the error 
metrics.  The circle is the location of the port and the ‘x’ is the 
estimated location of the port used by the controller.  Fig. 5a 
plots the induced Euclidean norm, � �

2
,1

i
G � .  � �

2
,1 1

i
G � �  

for a large portion of the workspace; therefore the system is not 
guaranteed to be monotonically convergent over the entire 
workspace.  However, � �

2
, 0.5

i
G k� �  in the middle of the 

workspace, so small desired motions there should be 
monotonically convergent.  In general, as the controller gain, k, 
decreases from unit gain to zero, the commanded motions 
shrink in length and so � �

2
,

i
G k�  constricts to values closer 

to one.  As k increases from unit gain, � �
2

,
i

G k�  increases 
proportionally, due to the larger motions.  The regions signified 
by the points L, M, and N in Fig. 5 were used in the 
experimental tests displayed in Fig. 8. 

x  
desiredx

dx�
max�̂  

� �
2

, di
G k x� �

Figure 2.  Geometry of max�̂ . 

x�

newx  (worst angle case)



Fig. 5b shows the estimate, � �max
ˆ ,k� �  with unit gain.  The 

effects of changing k on max�̂  are to drive it to either 90 degrees 
for a k decreasing to zero or 180 degrees for a k increasing to 
infinity, as required by (10) and the effects of k on � �

2
,

i
G k� .  

Fig. 5c shows the maximum absolute angular error, � �max� � .  
This plot is unaffected by changes in the controller’s motion 
scaling gain, k.  The latter two plots demonstrate that max�̂  is a 
conservative estimate of max� .  In fact, the contour line at the 
right of the workspace, beyond which max�̂  is greater than 135 
degrees, approximately corresponds to where max�  is greater 
than 45 degrees.  Examining max� , the actual motion is within 
90 degrees of the desired motion for most of the workspace.  In 
all three plots, larger values occurred when either the robot or 
the shaft tip were near the port position, locations at which the 
effects of the port’s position error on the controller are greatest. 

Fig. 6a is a vector plot of v
�

 across the workspace, 
displaying the directions of desired motion that maximized 

newx� .  This plot shows the desired motion directions that 
result in the largest Cartesian error lengths after the actual 
motions.  Of interest are the locations where nearby vector 
lines are perpendicular to each other, because at those locations 
small changes of position cause large changes in v, such as in 
the lower left corner and around the port.  Except in the lower 
left corner, the v

�
 for positions along the edge of the 

workspace are all approximately perpendicular to the boundary 
of the workspace.  Fig. 6b contains the same line segments 
scaled by � �

2
,

i
G k� , which shows that even though v is 

behaving interestingly in the center of the workspace, the errors 
there are not significant. 

Fig. 6c is a vector plot of p
�

, the directions of desired 
motions that result in � �max� � .  These vectors are similar to 
the ones in Fig. 6a, but the differences are rather noticeable in 
the bottom left, and along the edge of the workspace.  Also, p

�
 

seems to change more smoothly than v
�

, around the left-center 
of the workspace.  Fig. 6d is the same plot scaled by � �max� � .  
Comparing Fig. 6d to Fig. 6b emphasizes the difference 
between v and p

�
 where errors in motion are largest, near the 

workspace boundary furthest from the port. 

To show the effect of different error directions in the port 
estimate, Fig. 7 contains simulation data for various port 

positioning errors.  The errors are 10 mm in the +z, -z, +y and -
y directions, respectively.  Plots of � �max� �  and � �max

ˆ ,1� �  are 
shown.  max�̂  is again shown to be a conservative estimate of 

max� .  Port position errors in the z-direction cause greater error 
at the bottom of the workspace, whereas port errors in the y-
direction cause more error on the right side of the workspace.  
Looking more closely, positive y errors in the port position 
cause the high error region to shift downward compared to 
negative y errors in the port position.  The trend is positions 
along the line of port error do not have errors in motion. 

B. Physical Experiment 
The experimental setup (Fig. 3) incorporated a Phantom 

robot (model 1.5, Sensable Technologies, Inc., Woburn, MA).  
For this setup, the roll joint was removed from the wrist and all 
positions were kept in the y-z plane by actively driving the base 
joint to a set value.  Limiting motion to the vertical plane 
allows easy visualization of results.  The home position of the 
Phantom is with the first link horizontal and the second link 
vertical.  The origin of graph axes is at the position of the tip of 
the robot in its home position.  The controller in Fig. 1 was 
used to control the robot.  The joint level controller was PID 
with the same update rate as the inverse Jacobian control.  The 
various gains were chosen for a slow, over-damped motion to 
any position within the workspace. 

A hollow cylinder 320 mm in length and made of stainless 
steel was attached to the end of the Phantom to simulate a 
surgical instrument.  The Jacobian in the inverse Jacobian 
controller relates the change in the position of the tip of this 
shaft to the change in the robot joint angles.  This shaft passed 
through a model of a port constraint.  The port constraint 
consisted of a low friction acetyl ball joint.  The ball freely 
rotated but could not translate.  A cylindrical hole in the ball 
allowed the shaft to pass through.  For this work, the port 
constraint was placed halfway along the shaft in the z direction,  
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at position (y=0 mm, z=160 mm).  Fig. 4 shows the workspace 
of the robot’s wrist and the workspace of the tip of the shaft.  
The controller used an estimated port position of (20, 170).  
This port error was the only kinematic error in the experiment.  
Since the true port position was known, the instrument tip 
position (x in Fig. 1) was calculated using forward kinematics. 

For the experiment, initial tip positions were placed at (y,z): 
(0, 320), (0, 375), and (0, 415), labeled L-N in Fig. 5.  Those 
positions were chosen to lie in areas of increasing error.  Eight 
stop positions were then chosen for each start position at 
distances of ±20 mm along the y-axis, z-axis and diagonal 
directions.  Experimental position data were gathered as the 
system moved from each start position to the corresponding 
eight desired positions.  Fig. 8 contains plots of the 
experimental trajectories described for the desired points L, M, 
and N, respectively.  Simulated paths overlay the plots in 
dashed lines, calculated as quasi-static steps with a controller 
gain of 0.01.  Though none of these results show the robot 
moving away from the desired position before converging, 
such a path is possible.  The simulated path for the desired 
position at (435, 0) actually does move away from the desired 
position just before converging. 

IV. DISCUSSION 
Robots can be useful tools in minimally invasive surgery, 

increasing situational awareness, reducing hand tremor, and 
providing tools to reduce the surgeon's mental workload.  
Unfortunately, experience shows that port motion and flexing 
of the instrument shaft can result in localization and motion 
errors, mitigating the helpfulness of the robot.  Such errors can 
reduce or eliminate the usefulness of navigational aids and 
image guidance, as well as cause the robot to move the 
instrument in undesirable directions. 

A measure, max�̂ , was proposed for minimally invasive 
surgical robots with inverse Jacobian controllers. Given the 
true Jacobian and the estimated Jacobian, max�̂  conservatively 
estimates the maximum absolute angle, max� , between desired 
motion and actual motion.  This measure assumes a quasi-static 
system, an assumption justified by low gain on the inverse 
Jacobian controller, a high-speed joint-level controller, and the 
presence of damping. 

The simulation demonstrates the measures of the motion 
error across the workspace.  Comparing Fig. 5b and 5c, max�̂  is 
larger than max�  at all positions, behaving as a conservative 
estimate.  The contours of max�̂  are much steeper than those of 

max� .  This results in max�̂  closely estimating max�  around the 
middle of the workspace, but being quite large at positions 
close to, or far from, the port. 

In the purest sense, max�̂  and � �
2

,
i

G k�  are not practically 
usable metrics since they require knowledge of the true 
Jacobian of the system.  One practical use does exist when the 
error sources on the kinematics are bounded.  In this case, 
calculating � �

2
,

i
G k�  for the worst cases shows whether the 

robot will converge with a monotonically decreasing error 
length for all possible cases, and allows the observation of 
subsets of the workspace where the behavior of the system is 
most desirable.  Similarly, the measure can be used as a design 

tool to determine the necessary tolerances of various system 
components.  Using the system in this paper as an example, if 
positions along y=0 are the most important, then Fig. 7 shows 
that errors in the y position of the port are less tolerable than 
errors in the z position. 

Another practical result lies in using angular errors to 
predict error sources.  Using an external position measuring 
system to track the tip position, a plot of the measured errors in 
angle, �, throughout the workspace could be composed.  By 
comparing those measurements to the various plots of 
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� �max� �  generated by assuming different sources of error, 
similarities could suggest which sources of error are 
significant. 

Online calculation of � �max
ˆ ,k� �  could use a priori 

knowledge to enhance online estimation of the Jacobian.  By 
assuming bounds for sources of significant error, worst-case 
Jacobians can be calculated for the errors at each of those 
bounds.  The Jacobian can then be estimated during online 
motions, allowing calculations of � �max

ˆ ,k� �  between the 
estimated Jacobian and each of the worst-case Jacobians.  The 
maximum of those angles provides an upper bound on the 
actual angular error. 

The desired motions, v
�

, plotted in Fig. 6a, are similar to 
the desired motions, p

�
, in Fig. 6c.  Therefore, the desired 

motions that result in the largest length of Cartesian error for a 
unit controller gain are similar to the motions that actually 
result in the largest angular error.  The differences occur 
wherever changing the motion scaling gain of the inverse 
Jacobian controller could decrease the Cartesian error. 

Path planning is another practical use for this work.  If the 
likely sources of error are known, v

�
 can easily be calculated 

for those error sources.  A path planner could then trade off 
between indirect and direct paths to the desired final position, 
where the indirect paths may have less error than the direct 
paths. 

The experimental paths in Fig. 8 approximately follow the 
simulated paths, providing some experimental validation for 
the simulation.  The most obvious differences are for the start 
position at (415, 0), the start position closest to the edge of the 
workspace.  For this start position, three of the experimental 
paths do not closely follow the simulated paths, those for the 
desired positions at (429, 14), (401, -14), and (435, 0).  Another 
difference between experimental and simulated paths in Fig. 8 
is that the angular error between desired motion and actual 
motion is sometimes greater for the experimental paths than for 
the simulated paths.  The combination of three sources of error 
could explain these discrepancies.  First, friction at the port 
constraint impedes motion anisotropically based on velocity.  
Second, lack of gravity compensation in the joint-level control 
results in unmodeled forces on the system that vary over the 
workspace.  Third, dynamic effects could influence the 
experimental system, though this seems unlikely since the 
controller gains were set for very slow motion. 

Future studies will apply this work to shaft flexion as a 
source of kinematic error.  Subsequently, the two sources of 
error, port motion and instrument flexion, will be combined.  
The result will be bounds on those error sources such that the 
system will still converge with a monotonically decreasing 
positional error length.  An additional possibility is to 
investigate the relationship between the measures presented in 
this paper and the orientation of the robot by using the full 
Jacobian instead of just the position portion of the Jacobian. 
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Figure 8.  Trajectories followed in experiment (solid lines) and simulation (dashed lines), to the desired positions (red dots) each 20
mm away from the corresponding start positions (black dots) at (L): (320, 0),  (M): (375, 0),  (N): (415, 0). 
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