Classifier Fusion for Outdoor Obstacle Detection

Cristian S. Dima, Nicolas Vandapel and Martial Hebert

Carnegie Mellon University
The Robotics Institute
Pittsburgh, PA 15217, USA
cdima,vandapel,hebert @ri.cmu.edu

Abstract— This paper describes an approach for using several
levels of data fusion in the domain of autonomous off-road
navigation. We are focusing on outdoor obstacle detection, and
we present techniques that leverage on data fusion and machine
learning for increasing the reliability of obstacle detection sys-
tems. We are combining color and infrared (IR) imagery with
range information from a laser range finder. We show that in
addition to fusing data at the pixel level, performing high level
classifier fusion is beneficial in our domain. Our general approach
is to use machine learning techniques for automatically deriving
effective models of the classes of interest (obstacle and non-
obstacle for example). We train classifiers on different subsets
of the features we extract from our sensor suite and show how
different classifier fusion schemes can be applied for obtaining
a multiple classifier system that is more robust than any of the
classifiers presented as input. We present experimental results we
obtained on data collected with both the eXperimental Unmanned
Vehicle (XUV) and a CMU developed robotic tractor.

I. INTRODUCTION

One of the most challenging aspects of autonomous naviga-
tion is perception in unstructured or weakly structured outdoor
environments such as forests, small dirt roads and terrain
covered by tall vegetation. In this paper, we focus on obstacle
detection, where we consider an obstacle to be any region that
a vehicle should not attempt to traverse (e.g. humans, trees,
big rocks, large holes, large amounts of water).

We believe that in order to achieve acceptable levels of
reliability in obstacle detection, vehicles operating in off-road
conditions will need to rely on multiple sensing modalities
(such as color, infrared images or range measuments) and
on several detection algorithms. Obstacle detection is an
inference problem, because no sensor can directly measure
“obstacleness”: one needs to infer such information from
measurements of color, temperature and shape. It is natural
to expect that having more such sources of information can
lead to better inferences and subsequently to more reliable
navigation. Because each sensor is sensitive to different en-
vironmental conditions and has different failure modes, using
multiple sensors on robotic vehicles will extend the range of
conditions in which they can operate.

In addition to data fusion, our approach relies quite heavily
on machine learning. Detecting obstacles in environments
that are as complex as the ones we are considering requires
decision schemes which involve large numbers of parameters.
Deriving such schemes manually is an extremely tedious
process which leads to highly specialized systems that are hard

Classifier 1
Classifier 2
Classifier 3

Classifier 4

Classifier Fusion

obstacles

Fig. 1. Multiple classifiers operate on sensor data and their results are fused
to detect obstacles. The fusion strategy is learned from training data.

to adapt to new environments and operating conditions. Using
machine learning to automatically tune our system enables us
to avoid this significant problem.

The approach we propose is illustrated in Figure 1. Input
data from multiple sensors is used by different classifiers
whose results are fused to produce a unique classification
result. We would like our classifier fusion step to function as
a “black box” where learning techniques are used to automat-
ically evaluate or even tune the classifiers and combine their
results. We expect the black box to output correct classification
more often than any of the input classifiers. In this paper
we present results based on several classifier combination
techniques and show that such a black-box can be built in
practice.

Using multiple sensing modalities or machine learning are
certainly not new ideas in the mobile robotics field. A quick
look at the previous work shows that sensor fusion has been a
constant presence in this area from the earliest mobile robots
with Hilare [1] to the platforms that define the current state
of the art [2]-[4]. In 1992, Pomerleau [5] demonstrated the
first successful application of machine learning methods to
the problem of mobile robot navigation.

It is interesting to contrast the machine learning techniques
used in early robotic systems such as ALVINN [5] to more
recent approaches such as ones used in the Demo III [6] or
the PerceptOR [4] programs. While the early systems tried to
achieve autonomy by solving one monolithic learning problem
(training a neural network to map from grey level images
to steering angles in the case of Pomerleau’s ALVINN [5]),
more recently the trend has been to make intensive use of
human domain knowledge and only use learning for those
aspects of the problem that are hard to pre-program. In [6]
the authors describe a system which uses manually derived
rules to identify geometric obstacles, and then filters the results

through a trainable color-based classifier meant to identify
the false geometric obstacles caused by vegetation. Similarly,
Stentz et al. [4] describe a system that uses a neural network
to estimate compressibility from color data and then combines
it through manually designed rules with other sources of
information.

Our approach is located somewhere between the two ex-
tremes we just described: we would like to be able to use
human domain knowledge when it is available, but we want
to avoid having to manually derive classifier combination
rules. Our main goal is to minimize the number of parameters
that need to be manually adjusted while maintaining high
performance levels.

In the following section we motivate our interest in classifier
fusion and we describe the algorithms we have experimented
with. In Section III we present our experimental setup and
some our results. Finally, we draw conclusions and discuss
future research directions in Section IV.

II. CLASSIFIER FUSION
A. Motivation

Let us assume that we are interested in classifying a location
in front of a robot as being traversible or not. The sensors
mounted on the vehicle can provide various measurements
about it: we could estimate its average temperature, color, and
through some image processing algorithms we could extract
texture information from our images. Once all these features
are available, we need a method to combine them in order to
classify the location in one of the two possible classes.

If we reduced ourselves to simply concatenating all the
features we would essentially perform a simple form of
data fusion at the pixel level. While pixel level fusion is a
verified and valuable method for combining data from multiple
sensors, in mobile robotics applications there are benefits that
come from also being able to fuse information at a higher
level.

We have mentioned earlier that many of current state-
of-the-art robotic systems incorporate a significant amount
problem specific human knowledge. For example, some of the
algorithms used in the PerceptOR program [4] have been ex-
tensively tuned to perform well in vegetated forest areas. Even
if our main approach is to use machine learning for obstacle
detection, it would be unfortunate to discard such valuable
previous knowledge and try to learn everything directly from
raw sensor data. The automatic classifier fusion approach we
introduced in Section I would be capable of taking several such
specialized classifiers as input (possibly along with some raw
sensor data) and learning from training data how well they
perform and how their outputs should be combined.

Most of the algorithms that map from sensor data to high
level classifications make different assumptions about the
environment and about the sensors. These different assump-
tions will usually ensure that the classification errors of the
various algorithms are not perfectly correlated. There is then
a potential of pooling their predictions together and obtain-

ing classification results that are better than each individual
classifier.

Finally, there are certain types of obstacles that are ex-
tremely hard to detect. Thin wires and negative obstacles
(holes and trenches) have small signatures that make it chal-
lenging to learn how to detect them directly from sensor data.
However, the human understanding of the nature of these
obstacles can lead to effective detectors. We know for example
that the 3-D laser points returned from a wire will form an
alongated point cloud whose scatter matrix will have one
very large and two small eigenvalues. The same wire will
generate an edge in our images, and we know that the Canny
edge detector can be used to detect it. By correlating this
type of information we can obtain much better results than
if we tried to learn everything from sensor data. We cannot
realistically expect current algorithms to “learn” the details
of eigen-analysis and edge detection from the amounts of
training data we have available. On the other hand, developing
specialized detectors for all the possible obstacles in off-road
environments is equally unrealistic. Once again, we believe
that the right solution is being able to automatically learn
how to fuse both pre-programmed specialized detectors and
classifiers that use learning.

B. Algorithms

In this paper we will discuss three algorithms that can be
used for classifier combination: committees of experts [7],
[8], stacked generalization [9] and a slight variation of the
AdaBoost algorithm [10].

1) Committees of Experts: Initially described as a method
for improving regression estimates in [7], [11], a committee
of experts can be used for both regression and classification.

Fig. 2. Committee of Experts: the output of the committee is a fixed linear
combination of the input classifiers.

The idea behind the algorithm is simple: if we have a pool of
L experts that estimate a target function h(x), we can linearly
combine their outputs as fcogr(x) = Zle a; fi(x), where
fi(z) is the estimate produced by the i*" expert. If we express
the estimation error of each one of the experts as €;(x) =
fi(xz) — h(x) it can easily be shown [8] that the optimal «;’s
in the mean squared error sense are given by

XYy
YL (C)y

where C is the error correlation matrix with

Cij = Elei(x)e;(z)]

Qg

This box learns!

Fig. 3. Stacked Generalization: the level-1 learner is trained to compensate
the biases of the level-O learners.

It can be shown that the mean squared error of the committee
is always smaller than or equal to the average mean squared
error over the classifier pool. In fact, if we assume that the
experts make uncorrelated zero mean errors the error decreases
by at least a factor of L. Obviously, this is overly optimistic:
in reality the errors of the classifiers are going to be correlated
so the reduction in error will be much smaller.

This method assumes that the classifiers in the pool are
trying to solve the same classification problem. As a result,
committees of experts are only adequate for fusing classifiers
that attempt to detect the entire set of the obstacles of interest.

2) Stacked Generalization: Introduced by Wolpert in 1990
[9], stacked generalization (or ‘“‘stacking”) was initially pre-
sented as a method for combining multiple models learned
for classification. Since then, stacking has also been used for
regression [12] and even unsupervised learning [13].

In the form described by Wolpert in [9], stacked general-
ization (SG) is a two stage classifier. Just like in the case of
committees of experts we will assume that we have a pool of
L trainable experts that estimate a target function h(z). These
classifiers are what Wolpert calls the “level-0 generalizers”,
and are trained in the first stage of SG. The second stage
consists of training a classifier that takes as inputs the outputs
of the level-0 generalizers and tries to produce the correct label
as an output. This classifier is called the “level-1 generalizer”,
and its purpose is to learn the biases of the level-0 generalizers.

The level-1 generalizer should be trained using data that is
new to the level-0 generalizers. We are interested in learning
about their generalization properties and not their ability to
overfit. Without new data it would be impossible for the
level-1 learner to distinguish between a level-0 generalizer that
has very good generalization properties and one that simply
memorized the training data perfectly.

In the ideal case where very large amounts of training data
were available, obtaining new data for training the level-1
learner could be achieved by splitting the training data and
reserving half of it (for example) for training the second stage
classifier. The defining detail about stacked generalization con-
sists in a cross-validation-like scheme that makes it possible to
use all the data for training both stages of the classifier while
still avoiding overfitting problems.

Stacked generalization works very well in practice, and
it has been applied successfully in other domains such as
Automatic Target Recognition (ATR) [14].

() °® o
®) o
@ o
(0]) ’
.) ' ese
@ o o
@ O ®
“Standard”
AdaBoost
@) [cEEsifiertl o) NcEsifierdy . | [NoEssifierdn
: © | Dcesinerzn °
[Cassifiers] © | Classifiers]
o . o 0 ’
[] > "o S ¥ ® 28
o | | cEssifieRic] P ®
@) P
® @ e
AdaBoost With
Classifier Selection Labels

v

Fig. 4. AdaBoost. TOP: the standard form of AdaBoost. The varying
diameters of the blue (dark) circles represent the changing weights over the
training examples. At each iteration, the weak classifer is trained on the
current distribution over the training data. BOTTOM: our modification of
AdaBoost. Insted of considering only one form of weak classifier, we train
all the classifiers in our pool and select the best performing one at each
iteration.

3) AdaBoost with Classifier Selection: AdaBoost is an
algorithm that has been shown to be somewhat similar to the
popular support vector machines, in that it tries to maximize
the separation margin between two classes. Shapire and Freund
[10] proposed a clever iterative algorithm that solves the
margin maximization problem with the only requirement that
a so-called “weak classifier” —a learning algorithm that can
perform better than a random one- is available.

The intuitive idea behind AdaBoost is to train a series
of classifiers and to iteratively focus on the hard training
examples. As shown in Figure 4, the algorithm relies on
continuously changing the weights of its training examples
so that those that are frequently misclassified get higher and
higher weights: this way, new classifiers that are added to
the ensemble are more likely to classify those hard examples
correctly. In the end, AdaBoost predicts one of the classes
based on the sign of a linear combination of the weak
classifiers trained at each step. The algorithm generates the
coefficients that need to be used in this linear combination.

Shortly after its publication, AdaBoost raised a lot of
interest when several experiments have shown that it seemed
not to overfit the training data even as thousands of weak
classifiers were added to the ensemble. Since then it has
been shown that AdaBoost’s training scheme corresponds
to performing gradient descent on an error function that
exponentially penalizes small classification margins [15], [16].
AdaBoost can and does overfit, especially in noisy domains.

Fig. 5.

The CMU robotic tractor (left) and the XUV (right)

It is however still a widely used algorithm due to its ability
to “boost” the performance of very weak classifiers.

Our variation to the regular form of Adaboost consists in
allowing the algorithm to choose at each iteration among
several fypes of weak classifiers. Assuming that we have a
pool of classifiers and that some of them can be trained, we
allow the algorithm to examine all the classifiers in our pool —
training the ones that are trainable— and select the one that can
best classify the training examples given their current weight
distribution.

Notice that while this is not the regular procedure for train-
ing AdaBoost, we are not modifying any of the assumptions
that the algorithm is based on. Allowing AdaBoost to use
several types of weak classifiers is equivalent to having single
weak classifier algorithm with an extended hypothesis space.
As a result, all the convergence proofs that apply to AdaBoost
also apply to our version of the algorithm.

A similar application of AdaBoost was successfully demon-
strated by Tieu and Viola [17] in the context of automated
image retrieval.

III. EXPERIMENTAL RESULTS

In order to validate the techniques described so far we
performed experiments with data coming from two different
robotic vehicles: an eXperimental Unmanned Vehicle (XUV)
developed by General Dynamics and a CMU-developed
robotic tractor.

A. Sensors and classification space

The XUV vehicle (see Figure 5) is equipped with a laser
range finder, two color cameras and an infrared camera.
Information on the sensors can be found in [18], [19]. The
CMU developed robotic tractor is equipped with two Sony
DFW-SX900 high-resolution color digital cameras producing
1280x960 pixels images and two laser range finder units which
are based on mechanically scanned SICK LMS-200 units. At
the time the data logs used in this paper were recorded the
vehicle did not have an infrared camera.

Fusing multisensor data at low level requires solving the
data association problem, which consists of establishing cor-
respondences between the measurements returned by the dif-
ferent sensors. We have developed a calibration procedure
that enables us to precisely map 3-D points sensed by the
laser range finders to our images. As a result we can generate
“colorized” three-dimensional maps such as the one shown in
Figure 6(c), and we can obtain an approximate 3-D location
for each small patch from our images.

(a) Color image

(c) 3-D point cloud in which points are colorized based on the color image

Fig. 6. A typical scene from the road detection dataset

We have chosed to use the image space extended with 3-
D information for solving our classification problems. One of
the color images is divided in a rectangular grid of patches,
and the 3-D points returned by the laser range finder are
mapped to their corresponding patches. Features based on
various sensing modalities are generated for each image patch,
and they are used for classification. The classification results
can be projected back in the 3-D world using the laser range
information residing our grid.

B. Features

For each patch in our image grid we compute five types
of features: color, texture, infrared, and two types of laser
features.

1) Color: The images are converted to the LUV color
space; we extract the mean and standard deviation of the pixels
in a patch for each channel, obtaining six color features.

2) Texture: We use a Fast Fourrier Transform (FFT) rep-
resentation of each patch in order to measure the amount of
energy present at different orientations and frequencies. For
the experiments described in this paper we extracted twenty-
four texture features for each image patch.

3) Infrared: The mean and standard deviation of the IR
pixel values for each patch are computed, resulting in two
IR features. The correspondence between the color patches
(used as reference) and IR patches is established using the
3-D information provided by the laser points that project in
the color patch.

4) Laser (simple statistics): Using the laser points that
project into each image patch we estimate the average height
expressed in the vehicle frame, and the standard deviations
in the forward, lateral and upward directions relative to the
vehicle frame. This results in 4 simple laser features.

5) Laser VH features: As a good example of a specialized
classifier we want to incorporate in our system, we have
used an implementation of the technique described in [20]
for terrain classification. The method takes as input a sparse
set of 3-D points and looks at the local point distribution in
space. Based on the local points a scatter matrix is computed
and its eigenvalues are used to obtain three saliency features
describing the 3-D point distribution as “random”, “linear”
or “surface”. A Bayes classifier using these three features is
finally used to estimate the probability of a point of belonging
to one of the three classes mentioned above. We will refer to
the three probabilities and the three saliencies as the “Laser
VH” features.

C. Experiments with the XUV

The first experiment we present is based on data collected
with the XUV robotic platform. We evaluate the performance
of the various feature sets and the benefit of the different
fusion strategies on an important problem for outdoor mobile
robotics: detecting dirt roads. While the road detection is
not an instance of an obstacle detection problem, our setup
is essentially solving binary classification problems and as
such can also be used for two-class terrain classification with
absolutely no changes.

The data logs used for this experiment were collected at
a test site in central Pennsylvania. Each data log contained
color and infrared images, together with vehicle position and
range data. We have used 3 independent datasets (2 merged
into the training set, 1 used as an independent test set).
The corresponding images were manually labeled in the two
classes of interest. The train set contained 18963 patches(62%
“road”) and the test set contained 8582 patches (63% “road”).

The data was manually labeled and we have trained several
classifiers on this problem. At the time of these experiments we
did not have truly specialized or hand-tuned road detectors, so
we have trained neural networks on subsets of our full feature
vector (such as color, texture, IR, laser simple and laser VH) to
obtain classifiers based on the different types of information.
We compared their performance to a neural network that has
access to the full feature vector (the maximum amount of
information). We also compared their performance to two of
our classifier fusion algorithms, stacked generalization and
committees of experts. Table I presents the error rates for
the road detection experiments. From the first row down we
have stacked generalization, a committee of experts, and color,
texture, infrared, laser simple, laser VH, and all feature based
neural networks.

In order to estimate the error rates and standard deviations
we performed 10-fold cross-validation without prior random-
ization of the patches. We chose not to use randomization in
order to avoid getting overly optimistic results: since there
is a high degree of correlation between neighboring image
patches, splitting them randomly would lead to involuntary
contamination between the training and testing datasets. We
have also performed experiments with completely separate
training and test datasets (i.e. without cross-validation) and

TABLE I
ERROR RATES FOR THE ROAD DETECTION EXPERIMENTS

Name Mean Std Dev
SG 2.89 0.44
CoE 3.77 0.54

All Features 3.19 0.61

Color 9.45 2.79

Texture 28.73 2.02
IR 12.33 5.22

Laser Simple | 17.33 5.29
Laser VH 11.72 3.13

the error rates we obtained were similar to the ones produced
by cross-validation.

Overall our results are encouraging: they confirm that per-
forming both low-level data fusion and classifier fusion can
significantly improve classification performance. The fact that
committees of experts and stacked generalization performed
much better then the individual classifiers they took as input
and as well as the neural network that has access to the full
feature vector is very positive.

It is interesting to notice that the VH features perform
significantly better than the simple laser statistics, despite the
fact that precisely the same laser points are used as inputs in
both cases. This is a perfect example of why one would like to
be able to use specialized classifiers: the VH features encode
human knowledge about the 3-D statistics of point clouds
coming from flat surfaces, and this additional information
leads to better performance on the road detection task.

The error of the texture based network is by far the largest,
being very close to random predictions. After performing these
experiments we have discovered that some of the settings we
used for texture feature extraction were accidentally set to
the wrong values. This somewhat unfortunate event helped
however prove a very important point: the two classifier fusion
algorithms we tested here are robust to having extremely weak
classifiers in their pool. They both learned to largely ignore the
texture prediction and only use the color, IR and laser features
instead.

D. Experiments with the CMU vehicle

The second experiment uses data collected with the CMU
vehicle and the same types of features as the ones based on
XUV data, except for the laser VH and the IR features which
were not available. The sensors on the robotic tractor have
performance characteristics that are quite different from those
of the XUV sensors. Being able to switch our entire obstacle
detection system between two different vehicles by simply
changing the training datasets shows the power that comes
with the use of automated learning techniques. We expect
our methods to be easily transferable to many other robotic
platforms.

In this section we present results on two instances of
the obstacle detection problem: human and negative obstacle
detection.

1) Human detection: In this dataset a human walks in front
of the moving vehicle in an area with tall vegetation. To make

015+

01rF

Errar rate
——
-~
—
|
1 1

1 1 1 1 1 1
Color Texture LaseriD COM 5G AB CTL Most Freg

Fig. 7. Box plots representing the classification performance on the obstacle
detection problem. The rectangle for each classifier represents the interquartile
range and the horizontal line is the median. From left to right we have the
color, texture and laser based classifiers, the committee of experts (COM),
stacked generalization (SG), AdaBoost (AB CTL) and Most Frequent, a
classifier that always predicts the most frequent class without using any
features.

the problem non-trivial the human is wearing a camouflage
jacket. The “specialized” classifiers are again neural networks,
this time trained using color, texture and simple laser features.
The classifier fusion strategies we compare are stacked gener-
alization, a committee of experts and the version of AdaBoost
we described. The dataset contains 22989 non-obstacle and
2893 obstacle image patches.

The results we present in Figure 7 were obtained performing
10 fold cross-validation on our dataset. Since the two classes
(obstacle/non-obstacle) are so unbalanced, we also present
the error rate of a “constant” classifier that always predicts
the most frequent class. Since only 12 percent of our data
represents the obstacle class the reader should be aware that
an error rate of 0.12 can be achieved even by ignoring all the
features.

In this experiment the color classifier performed extremely
well, followed by the laser features and the texture which was
mostly irrelevant due to the same problem as in the previous
experiment. Stacked generalization and the committee of ex-
perts were able to learn to focus on the color-based predictions
and to use the laser information to slightly improve upon the
color performance. A t-test based on our cross-validation data
showed this slight improvement to be statistically significant.

The boosting algorithm performed slightly worse than the
best input classifier. Our analysis indicates that the problem
lies in the exponential penalty that AdaBoost “charges” for
small classification margins. Our dataset has noise both in the
features and in the labels, and these conditions are known to
make AdaBoost overfits the data. A solution to this problem
would be to use “soft-margin” AdaBoost variations such as
the one described in [21].

2) Negative obstacle detection: Figure 8 shows results on
the negative obstacle detection task. The obstacle is a large

(075 m x 3 m x 1 m) rectangular depression in the
ground, located at 3 m from the vehicle. Data collected by
the color camera and the laser is used by three classifiers
(color, texture, and 3-D laser statistics). We compared our
best classifier fusion algorithm (stacked generalization) to a
neural network having access to the entire feature vector.
The results are consistent with our two previous experiments:
stacked generalization and the network using all features reach
comparable results, which are better than those of the best
input classifier. Again, the two methods learn to ignore the
texture-based obstacle detector.

IV. SUMMARY AND FUTURE WORK

We have presented a system that uses multisensor data
fusion at both the pixel level and the classifier level in order
to improve obstacle detection performance for outdoor mobile
robots. Our experiments —on different platforms, sensors and
feature configurations— confirm the intuition that combining
data from multiple sensing modalities can dramatically im-
prove classification performance. Furthermore, we have shown
that automatically combining different classifiers in order to
leverage on their particular strengths and provide performance
that is better than that of any classifier in the pool is feasible.

Our current efforts focus on developing specialized classi-
fiers and on performing classification experiments in several
other environments. We are also experimenting with more
complex classifier combination schemes such as hierarchical
mixtures of experts [22].

V. ACKNOWLEDGEMENTS

We would like to acknowledge the valuable support of Carl
Wellington in developing some of the infrastructure used for
these experiments.

This paper was prepared through collaborative participation
in the Robotics Consortium sponsored by the U. S. Army
Research Laboratory under the Collaborative Technology Al-
liance Program, Cooperative Agreement DAAD19-01-2-0012.
The U. S. Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding any
copyright notation thereon.

REFERENCES

[1] A. de Saint Vincent, “A 3-D perception system for the mobile robot
HILAIRE,” in IEEE International Conference on Robotics and Automa-
tion.

[2] C. Shoemaker and J.Bornstein, “The Demo III UGV program: A testbed
for autonomous navigation research,” in Proceedings of the 1998 IEEE
ISIC/CIRA/ISAS Joint Conference.

[3] M. Ollis and T. M. Jochem, “Structural method for obstacle detection
and terrain classification,” in Unmanned Ground Vehicle Technology,
2003.

[4] A. Stentz, A. Kelly, P. Rander, H. Herman, O. Amidi, R. Mandelbaum,
G. Salgian, and J. Pedersen, “Real-time, multi-perspective perception
for unmanned ground vehicles,” in AUVSI, 2003.

[5] D. Pomerleau, “Progress in neural network-based vision for autonou-
mous robot driving,” in IEEE International Symposium on Intelligent
Vehicles, 1992.

[6] P. Belluta, R. Manduchi, L. Matthies, K. Owens, and A. Rankin,
“Terrain perception for DEMO IIL,” in IEEE International Symposium
on Intelligent Vehicles, October 2000.

(a) Color based classifier

(b) Laser based classifier

(c) Texture based classifier

Fig.

[7]

[8]
[9]
[10]

(11]

[12]

[13]

[14]

(d) Scene

M. Perrone, “Improving regression estimation: Averaging methods for
variance reduction with extensions to general convex measure optimiza-
tion,” Ph.D. dissertation, Brown University, 1993.

C. Bishop, Neural Networks for Pattern Recognition. Oxford University
Press, 1997.

D. H. Wolpert, “Stacked generalization,” Los Alamos, NM, Tech. Rep.
LA-UR-90-3460, 1990.

R. E. Schapire, “A brief introduction to boosting,” in International Joint
Conference on Artificial Intelligence, 1999.

M. P. Perrone and L. N. Cooper, “When networks disagree: Ensemble
methods for hybrid neural networks,” in Neural Networks for Speech
and Image Processing, R. J. Mammone, Ed. Chapman-Hall, 1993, pp.
126-142.

L. Breiman, “Stacked regressions,” Machine Learning, vol. 24, no. 1,
1996.

P. Smyth and D. Wolpert, “An evaluation of linerly combining density
estimators via stacking,” Information and Computer Science Department,
University of California, Irvine, Tech. Rep., 1998.

L.-C. Wang, L. Chan, N. Nasrabadi, and S. Der, “Combination of
two learning algorithms for automatic target recognition,” in [EEE
Inernational Conference on Image Processing, 1997.

(e) Neural network using all features

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

(f) Stacked generalization

8. Example of obstacle detection with the CMU vehicle. The blue and red areas correspond respectively to common sensor field of view and obstacles.

L. Mason, J. Baxter, P. Bartlett, and M. Frean, “Boosting algorithms
as gradient descent,” in Advances in Neural Information Processing
Systems, vol. 12. MIT Press, 2000.

R. E. Schapire, “The boosting approach to machine learning,” MSRI
‘Workshop on Nonlinear Estimation and Classification, 2002.

K. Tieu and P. Viola, “Boosting image retrieval,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2000.

T.-H. Hong, T. Chang, C. Rasmussen, and M. Shneier, “Feature detection
and tracking for mobile robots using a combination of ladar and color
images,” in Proceedings of the 2002 IEEE International Conference of
Robotics and Automation, Washington, D.C., May 2002, pp. 4340-4345.
M. Shneier, T. Chang, T. Hong, G. Cheok, H. Scott, S. Legowik, and
A. Lytle, “A repository of sensor data for autonomous driving research,”
in Proceedings of the SPIE Aerosense Conference, 2003.

M. Hebert and N. Vandapel, “Terrain classification techniques from ladar
data for autonomous navigation,” in Collaborative Technology Alliance
Workshop, 2003.

G. Ritsch, T. Onoda, and K.-R. Miiller, “Soft margins for AdaBoost,”
Machine Learning, vol. 42, no. 3, 2001.

M. Jordan and R. Jacobs, “Hierarchical mixtures of experts and the em
algorithm,” Neural Computation, no. 6, 1994.

