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Abstract— This paper deals with the task allocation problem
in multi-robot systems. We propose a completely distributed
architecture, where robots dynamically allocate their tasks while
they are building their plans. We first focus on the problem
of simple “goto” tasks allocation: our approach involves an
incremental task allocation algorithm based on theContract-Net
protocol. We introduce a parameter called equity coefficient in
order to equilibrate the workload between the different robots
and to control the triggering of the auction process. Then, we
address the problem raised by temporal constraints between
tasks, by dynamically specifying temporary hierarchies among
the tasks. Tests run in simulation quantify the benefits of our
improvements.

I. I NTRODUCTION

A. Context

The coordination of multiple robots gathered in a single
system is a big challenge in the robotics area. A team of
robots can achieve tasks faster, safer, better than a single
robot, and of course a team can accomplish operations that a
single robot cannot execute alone. This kind of system targets
applications which range from mapping missions of buildings
or in natural environment, rescue or intervention missions in
hazardous area, to planetary exploration or deployment of
equipment without human intervention. An exemplary project
in this domain isCentibots1, which aims at demonstrating a
hundred robots system mapping, exploring and monitoring a
large building in a coherent fashion during a period of 24
hours.

Our work takes place in the context of the EEC funded
projectCOMETS 2, which aims at designing, developping and
demonstrating a distributed control system for cooperative
activities using heterogeneous UAVs. Targeted applications are
surveillance and monitoring, the project being more specifi-
cally oriented towards forest fire monitoring applications. In
this context, the tasks the UAVs must achieve are essentially
“goto” tasks, that are generated either directly by an operator
or a central system that analyses all the information acquired
by the various UAVs. Some tasks are intrinsicallycooperative
tasks, such as the 3D monitoring of a fire front, that requires
the simultaneous perception of the fire from at least two
distinct positions. Other constraints, such as maintaining a
communication link between the UAVs and the central station,
can generate cooperative behaviors,e.gby defining communi-
cation relays.

1http://www.ai.sri.com/centibots/
2COMETS stands for “Real-time Coordination and Control of Multiple

Heterogeneous UAVs - seehttp://www.comets-uavs.org/

B. Problem statement

The development of multi-robot architectures implies the
development of three main decisional abilities: mission plan-
ning, task allocation and coordinated task achievement [1],
[2]. Analysis is restricted here to task allocation issues. The
mission is a partially ordered set of tasks. This may be the
result of a previous mission decomposition phase. Coordina-
tion and resource-conflict issues that are involved when the
robots effectively achieves their tasks once they are allocated
[3] are not addressed here. Given a system of several robots,
and given that set of tasks, we want the robots to allocate
all the tasks to each other and build their plans accordingly
in order to complete the mission. They should also be able
to dynamically modify the allocation, and consequently their
plans, to adapt to changes in the environment or to new
requests issued by the operator. The system must have dynamic
allocation and planning abilities, and must satisfy constraints
on energy resources and communication ranges, that are both
limited. Also, all the robots must ensure sufficient energy to
go back to their starting point when their tasks are achieved.

One main goal of this work is to keep the architecture dis-
tributed among the robots so as to gain scalability, robustness
and reactivity, with the drawback that the solution’s optimality
is not guaranteed.

In the context ofCOMETS , the tasks the system of robots
must achieve consist of (i) navigation tasks (i.e. reach a given
position), and (ii ) perception tasks. The latter tasks can be
achieved while the UAV hovers at a given position, or while
it follows a predefined path (e.gcircling around a given target),
but they can also imply the simultaneous presence of several
UAVs, hovering or moving according to predefined geometric
patterns. Therefore, two distinct problems must be solved:

1) Allocation and planning of navigation tasks is con-
cidered.

2) The problem of constraints on tasks schedules which
enables the system to deal with complex tasks that need
synchronization of robots activities is addressed.

The first problem is a multi Traveling Salesmen Problem
(often referred asm-TSP). The second problem is an extension
of the previous one, in which constraints on the execution dates
of the tasks must be satisfied: it is possible to stipulate for a
task the date when it must be started with respect to the start
date of another task.

This paper describes a task allocation scheme based on
Contract-Net, and is innovatory in two ways :

http://www.ai.sri.com/centibots/
http://www.comets-uavs.org/


For the first problem, we aim at minimizing a global criteria
(the longest trip) whileContract-Netonly takes into account
local data. We introduce inContract-Neta global parameter
which helps the optimization the criteria. It also helps to
control the auctions generation in the system.

For the second problem, the robots must share up-to-date
data that describe the constraints on the tasks and need to
plan the tasks that are linked together accordingly, without
disrupting the bidding process ofContract-Net. This will be
done with the temporary assignment of master/slave role to the
robots depending on the tasks that have been allocated. The
challenge lies in avoiding the use of a centralized planning
algorithm.

C. Related work

Rabideauet al. made a comparison of several methods for
tasks allocation in [4]. They emphasize algorithms with three
degrees of distribution, the most distributed one is based on the
Contract-Netprotocol. In [5] Bellinghamet al. successfully
implement in simulation an algorithm for theoptimal fleet
coordination problem, their algorithm does not address the
problem of synchronization between tasks and can be classi-
fied in level 2 from [4]. Dias and Stenz also studied different
approaches to the task allocation problem with multiple robots
in [6] and came to the point that distributed algorithms
based onContract-Netsuit the needs. Note that a number of
distributed schemes for task allocation in multi-robot domains
have been proposed in the literature. One of the first is [7].
ALLIANCE [8] is a distributed behavior-based architecture,
which uses motivations that enable/inhibit behaviors, resulting
in tasks (re)allocation.

Contract-Net has been introduced by Smith in [9] and
further developed by Sandholm [10]. Since 1999Contract-
Net have widely been used in multi-robot applications [11],
[12], [13]. Stenz and Dias work on an architecture called
TraderBotsin which leaderscan optimize the plan of several
other robots [14], [15], Mataric’ explored various strategies for
theContract-Netprotocol in [16]. Several studies dealing with
concrete mission such as buildings or planetary exploration
[17], [18], [19] or emergency handling [16], have shown the
feasibility and the performance of theContract-Netarchitec-
ture in real world situations.

To our knowledge, on the problem of allocation and plan-
ning of non-independent tasks in a distributed multi-robot
system, only one paper from Kalra and Stentz [20] presents
preliminary results on thesweeping perimeter problem. In
this work, the temporal window taken into account is very
small, the coordination is explicit between a limited number
of robots (one robot and his two neighbors), and the market-
based approach is not fully exploited since the auctions implies
three agents only.

D. Outline

The next section introduces anequity coefficientthat is used
in the bids evaluation and to control the auction generation
process withinContract-Net. Quantitative simulation results
obtained on the m-TSP problem illustrate the improvements
brought by the consideration of this coefficient with respect to

a plain Contract-Netapproach. Section III deals with the in-
troduction of time constrained tasks inContract-Net. It shows
that the introduction of simple execution date contraints can
help to cope with cooperative tasks, that are either requested
by an operator or automatically generated within the system,
to establish communication relays for instance. Finally, a
discussion concludes the paper.

II. CONTRACT-NET WITH EQUITY

In the classic market based approach, each agent (for us
robots) can make a public auction for one of its tasks, and
then the other robots can bid on that task using a given cost
function. The winner of the bidding process gets the task and
must insert it in its plan. In order to drive the process toward
an optimal solution, one agent can sell a task only if the bidden
cost for the execution of that task is at least less than a certain
amount of its own execution cost (generally10% less). The
cost function we will use here is simple and is calculated from
the distance the robot will travel.

A. Equity factor

The aim is to obtain an allocation that minimizes the length
of the longest trip, which also can be seen as minimizing the
duration of the mission. Our idea is to adress this global opti-
mization problem by considering two aspects: first,Contract-
Net is used to assign the tasks to the robots at a low cost so
as to keep the total distance traveled by the team of robots
not too far from optimality, and second, equity is enforced
between the robots so as to really distribute the tasks among
them and obtain a mission which is as short as possible.

For this purpose, we introduce a measure of equity called
equity coefficient(Ceq). Each robot can compute its own
workload (wl) using a cost function: the workload is the cost
of the whole plan of the robot. The robots broadcast the value
of their workload to the others and each one can compute its
Ceq. For the robotA the formula is :

CAeq =
wl(A)− wl

wl
(1)

Wherewl is the mean ofwl(.) over the robots for which
A knows the workload. Indeed, since we consider limited
communication range,A may have only a partial knowledge
of the workloads. The meaning of this coefficient is :
• CAeq < 0 : robotA has a too small plan with respect to

the other robots.
• CAeq > 0 : robotA is overloaded with respect to the other

robots.
• CAeq > CBeq : robotA has more work than robotB.

B. Equity factor and task evaluation

In Contract-Neta task is allocated to the robot which can
insert it in its plan for the lowest cost; also the robot should not
be too overloaded. For that the evaluation the robot makes for
a task is modified by taking into account itsCeq. The utility
the robotA computes for the taskT1 (utA(T1)) is corrected
in ut′A(T1) by :

ut′A(T1) = utA(T1)− CAeq × |utA(T1)|



This correction is applied to the utility computed by both
the auctioneer and the bidder. By this meanContract-Netis
influenced the way we want :
• A robot with a high workload will more easily reallocate

its tasks and will get new tasks with more difficulty
because its utility for the tasks is lowered.

• On the contrary, a robot with a low workload will be
more easily allocated new tasks but will give up its own
tasks with more difficulty because its utility for the tasks
is increased.

C. Control of the auctions generation

The problem here is we do not want several auctions
being launched at the same time. Basically, theContract-
Net protocol does not provide any details when the agents
of the system can start an auction, and other papers do not
emphasize this point either. Our need is to keep the system
entirely distributed, so we do not want an authority which
would give the right to the robots in turns, and we want to
keep the system dynamic so we do not want to give to each
agent a static list which would define the turns for the auctions.

Our solution is inspired by thetoken-ringnetworks in which
a token passes from one computer to another to give them the
authorization to send their data over the network. Here the
token allows the robot to make an auction.

1) Token circulation:The robot that has got the token is the
auction leader. If another robot is willing to make an auction,
it can ask for the token to the current auction leader. It sends
his request along with itsCeq. The owner of the token collects
all the requests, it is also allowed to request for the token. It
then randomly chooses the next owner of the token, using a
random distribution based on the collectedCeq (the more a
robot is overloaded, the higher chance it has to get the token).
This is done to help overloaded robots to reallocate their tasks.

2) Token creation:When a robot wants to make an auction,
but nobody has the token, it then creates a token and uses
itself to make an auction, the process is started spontaneously !
Because of communication delay, it may happen that several
robots create a token at the same time, this is why we specify
the following behavior :
• If a robot that is not currently an auctioneer receives

several auctions at the same time, it then bids on the
auction which has the higher priorityie the higherCeq
(the auctioneer gives itsCeq along with the auction). The
other auctions are ignored.

• If a robot that is currently an auctioneer receives other
auctions, it keeps on his own auction only if it has the
higherCeq, else it cancels its auction and can bid on the
auction with the higher priority.

D. Results

A typical mission allocation and execution goes this way:
(1) A set of tasks is given to the system (either directly by
an operator, or issued from a decomposition process). (2) The
base is a simpleContract-Netagent except that it has a high
priority (an artificially high equity factor) and will never make
a bid. The base starts making auctions with the tasks of the
mission and goes on until all the tasks are allocated to the
robots. (3) The base does not keep the token any more and

scenario l σ(l) min(l) max(l) n

grouped/no equity 5248 674 3035 6150 133
grouped/equity 2195 264 1844 2954 156
scattered/no equity 2481 481 1724 4631 133
scattered/equity 1895 162 1581 2343 160

Fig. 1. This table summarizes the statistical results over 100 runs of the
simulation of four scenarii, considering a grouped or scattered start, and with
or without the use of the equity coefficient.l is the length of the maximal
tour, andn is the number of auctions of the allocation process.

the robots can start making auctions. (4) The process stops
when none of the robots ask for the token. A robot stops
making auction when it has already auctioned all its tasks and
no reallocation has occurred. If not, the robot auctions again
all its tasks. This stop criterion is quite different from what
has been done until now (usually a fixed number of auctions
turns). (5) The mission starts being executed by the robots. The
auction process starts again when new tasks are requested by
the operator, or when a robot fails to achieve its plan.

In the tests, we focus on steps 2 to 4. The results were
obtained with our simulatorSiMuRob 3.

We based all our tests on the same mission: 50 points picked
up in the environment have to be visited by a team of 4
robots. The points have been uniformly randomly generated
once in this environment. In order to show the interest of our
equity coefficient, we run scenarii with the coefficient disabled
(we give it a fixed value so as to mimic a plainContract-
Net protocol). Another important point is how the robots are
firstly distributed in the environment. If they are scattered
(the usual situation whenContract-Netis used) each robot is
implicitly attributed a different area, the area surrounding its
initial position, because of the cost function which is based on
traveled distance. If they are initially grouped around a same
point (which is mostly the case in operational situation), the
problem is more difficult.

The results presented in table 1 show that the solution
obtained with the equity coefficient is improved by a factor of
2.4 over the standardContract-Net, if the robots are scattered,
the improvement factor drops to1.3. This is due to the fact
that the solution found by the standard protocol is already a
good one. The interest of our method is that it works well
even if the initial situation is not favourable. On the other side
the allocation process is about 20% longer (more auctions are
done) with the equity coefficient enabled.

III. T IME-CONSTRAINED TASKS IN A DISTRIBUTED

ENVIRONMENT

The problem of constrained tasks allocation and planning
for a system of multiple robots is commonly addressed with
a centralized planner such asGRAMMPS [21]. We sketch
here how we deal with simple time constrained tasks in our
distributed environment.

3SiMuRob (Simulation Multi-Robot) is a Java application developed
at LAAS-CNRS and can be freely downloaded atwww.laas.fr/
˜tlemaire/ .

www.laas.fr/~tlemaire/
www.laas.fr/~tlemaire/


Task 1

Task 1.1 Task 1.2 Task 1.3

Task 1.1.1 Task 1.1.2

expectedStartDate, 
plannedStartDate

startDate

Fig. 2. This tree shows up the hierarchical links between tasks.

master robot A

t

slave robot B

t

master/slave robot C

t

mother task 1

expectedStartDate
tasks 1.1 and 1.2

child task 1.1

child/mother task 1.2

idle

execution

slave robot D

t

child task 1.2.1

plannedStartDate
tasks 1, 1.1 and 1.2

expectedStartDate
tasks 1.2.1

dt

dt

simultaneous execution

execution just before

plannedStartDate
tasks 1.2.1

Fig. 3. This is an example of the plans of four robots after the allocation of
four constrained tasks.

A. Execution around dated

This constraint means that we will try to have a given
task executed more or less at a given date. This constraint
enables the system to deal with constraints on relative date of
execution of several tasks expressed numerically:T1 and T2

simultaneously orT1 n seconds before of afterT2. We choose
to put the constraintexecution around dated on the tasks for
several reasons :

• This constraint issoft, which means that there is an
infinite number of solutions that satisfy it, the distributed
allocation algorithm will find even a bad solution and will
not end to dead-lock.

• The quality of satisfaction for that constraint is easily
measurable, and then we are able to take into considera-
tion this measure when we evaluate the utility the robot
will gain in executing that task. The quality of satisfaction
for the constraint can be directly included in the bid of
our Contract-Net protocol.

• The information needed to plan such constrained tasks
is very limited and will not overload the communication
bandwidth between the robots.

B. Constrained tasks tree

The constraint can be used for example to enforce simulta-
neous execution of two tasks. One taskT1 which is planned for
execution at dated1 puts on taskT2 the constraintexecution
around dated1. The taskT1 is said to be the mother task, and
taskT2 the child task.

TemporallyT1 is defined by astartDate d1 (the date when
it can be executed at the earliest), and aplannedStartDate
(the date when it will actually be executed).T2 has the same
attributes plus anexpectedStartDate d1 (the preferred date
for its execution).

The allocation process must allocateT1 beforeT2 (because
we need to knowd1 for bidding on T2), but the tasks can
be reallocated later. It is important to note that onlyT2 is
constrained,T1 is allocated and firstly planned as usual. After
the allocation process, themaster robot RA (the one which
will be executingT1) will chooseplannedStartDate for both
T1 andT2, the robotRB (the one which will be executingT2)
is called theslaverobot. Since the system is dynamic, changes
can be made to the plans ofRA andRB . If it happens, the
slave robot only informs its master of the changes in its plan,
it sends the newstartDate for that task and then the master
robot computes a newplannedStartDate for the execution
of the two tasks which is acceptable by bothRA andRB .

The relation master/slave between the robots is local in time
(only for the execution of the considered tasks), and temporary
because the tasks can be reallocated to other robots. So this
is quite different from theTraderBotsarchitecture [15].

Figure 2 presents a tree of tasks and focus on the data
that are exchanged in order to plan the tasks, and figure 3
sketches the allocated tasks from the robot point of view. The
synchronization between robots is actually accomplished with
the introduction ofidle periods in the robots plans.

C. Evaluation of the utility of a task

Now the quality of satisfaction for the constraints which
weight on the tasks of the plan is to be taken into account.
Previously we computed the cost of a plan with its length,
now we add a term for each task which reflects the constraint
satisfaction quality. We call this termdeltaDate, for the
constrained taskTi the formula is :

deltaDatei = |startDatei − expectedStartDatei|
+
∑
j

deltaDateij

where deltaDateij comes from the children tasksTij of
taskTi. These children tasks are either allocated to the same
robot or to another one.

The utility of a plan can now be computed by the formula :

planUtility = −

movingCost+ k ×
∑

taski∈plan

deltaDatei


The robot bids on a task with the value(planUtility′ −

planUtility) whereplanUtility andplanUtility′ are respec-
tively the utility of the planbeforeand after the insertion of
the task.

The factork is here to normalize the sum. In fact we add
two quantitiesmovingCost anddeltaDate which are not of
the same nature. This becomes false if themovingCost is
computed with the time needed by the robots to go from one
point to another. One can understandk as a scale factor,k =
0.1 (it is the typical value we use.) means that we find the



Fig. 4. This screenshot presents a planepl1 which is watching out an area
and a blimpbp2 which is a communication relay betweenpl1 and the base.
The pink lines represents the communication links which are available (the
link pl1 →base is not available). The red circle arcs enclose the area where
the blimp can serve as a communication relay, and the dots represents the
discrete positions, the planner of the blimp has chosen one of these positions.

periods when the robot is idle 10 times less important than
when the robot is active.

D. Time consistency of the plans

We must ensure that the time constrained tasks are planned
correctly to prevent the system from ending into deadlock.
Here again we use a very basic planner, not really efficient,
but very easy to implement and which clearly maintains
consistency of the plans. Each child task is tagged with an
expectedStartDate, the planner will insert the task into the
plan so as to respect the local chronology between children
tasks of this plan.

When a modification occurs in the plan, we use a simple
but rough process to maintain this local consistency: if two
children tasks are not in the chronological order, they are
swapped.

Assuming that the plans are incrementally built, the lo-
cal consistency ensures the global consistency. Indeed, the
synchronization is reached by inserting idle periods into the
plans of the robots so a robot waits even a long time for
synchronization rather than trying to swap tasks.

E. Implemented tasks

Two new tasks have been implemented in our simulation to
illustrate constrained tasks.

The watch-outtask consists for the robot to travel around
a rectangular area to be monitored and the robot must keep
communication with the base. If the communication link
between the base and the robot cannot be maintained during
the execution of the task, then the robot should generate acom-
relay task between it and the base which is to be executed by
another robot at the same time the watch-out task is executed.
The com-relay task can be recursive, which means that several
robots can be needed to effectively maintain communication
between the base and the robot which will be watching out
the area. Figure 4 illustrates these two tasks.

F. Results

Here the results are more qualitative. The simulator shows
that even with very simple planning algorithms in a distributed
environment, we manage to allocate and plan a mission
correctly. Figure 5 presents what we obtain with our simulator
on some examples. It illustrates the strategy found by the team
: since for the watch-out tasks two robots are needed (one for

Fig. 5. Top: some watch-out and goto tasks are allocated to the team of
robots. Bottom: The planepl4 (top-left) has fallen out of order and the tasks
have been reallocated to the remaining robots.

the given task, and one more for the com-relay), we can see
that the four robots are split into two teams of two robots and
each team takes care of a part of the environment. When there
remains only three robots, the solution is more complex and
less structured, but is valid and does not appear to be very
sub-optimal.

IV. D ISCUSSION AND PERSPECTIVES

A. A simple planner

The planner we use to insert the tasks into the plans of the
robots is very simple, it adds a task by choosing the best index
inside the current tasks list to execute the new task. We also
added an improvement procedure for the plans which is based
on anr-opt algorithm from [22]. This algorithm tries to locally
improve the plan by swappingr-tasks. We implemented the
algorithm for r = 2 which eliminates most of the loops we
could observe in the plans of the robots before.



Even if the two blocks (planner and plan optimization)
we use are not very efficient, we think this architecture is
interesting for a planner used in collaboration withContract-
Net.A simple but fast planner can rapidly compute a bid to
participate to an auction. And a more elaborate algorithm can
improve the current plan to alleviate the limitations of the fast
planner. This algorithm could compute a whole new plan or
try to modify the current plan. It can be run periodically and/or
when important changes occur in the current plan.

B. Types of constraints

In our current implementation we deal with a relaxed
problem of temporal contraints. Tasks may benumerically
partially ordered: the constraint betweenT1 and T2 cannot
be “T1 beforeT2” but must be “T1 n seconds beforeT2”. As
far as we know, the problem of distributed constrained tasks
allocation is still unsolved.

C. Various metrics for task evaluation

Mataric’ et al. introduces in [13] a metric for task evaluation
depending on the kind of the task which is being auctioned.
This enables the system to work with a great variety of tasks.
In our case, we have a few number of tasks but they can
be used in different contexts. We think about a metric which
could depend on thecontextof the mission rather than on the
tasks themselves, this metric could be chosen by an operator
or automatically determined by the system when an alarm is
detected for example. Such metrics could be :
• A metric based on theenergynecessary to achieve a given

task. It could be used when the robots have to watch-out
an area, must detect alarms,. . . In these cases one wants
the system to save energy so as the mission could be
executed a longer time.

• A metric based on thetime necessary to achieve a given
task. Rescue missions for example can benefit from a
reduced execution time.

V. CONCLUSION

In this paper we have successfully developed a totally
distributed architecture for multi-robot tasks allocation. The
Contract-Net protocolhas been enhanced with a token based
system which manages the turns for the auctions independently
of any extern authority and is associated with an innovatory
stop criterion. Moreover, to our knowledge it is the first time
that global synthetic information is taken into account during
the bidding process ofContract-Net. Our algorithm takes into
account both a cost computed by the planner of the robot and
a global attribute calledequity coefficient. This kind of simple
attribute is well-adapted to distributed platform since its value
is indicative and thus does not require ideal communication
between the robots to be computed, and we demonstrate that
it can substantially improve the performance of the whole
system.

On another side, an open problem is pointed out: the
design of planning algorithms that can be run on a distributed
platform with limited communication bandwidth such as a
system of robots. Another difficult point is the robustness
of the algorithm when communication is temporally lost. We
demonstrate with our simulation that this is feasible, but with

several limitations such as the kind of available constraints
that can weight on the tasks.
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