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Abstract— We present the design and gait generation for an
experimental ROLLERBLADER'. The ROLLERBLADER is a robot
with a central platform mounted on omnidirectional casters
and two 3 degree-of-freedom legs, A passive rollerblading wheel
is atiached to the end of each leg. The wheels give rise to
nonholonomic constraints acting on the robot. The legs can be
picked up and placed back on the ground allowing a combination
of skating and walking gaits. We present two types of gaits for
the robot. In the first gait, we allow the legs to be picked up and
placed back on the ground while in the second, the wheels are
constrained to stay on the ground at all times. Experimental gait
results for a prototype robot are also presented.

I. INTRODUCTION

Robots using unconventional undulatory locomotion tech-
niques have been widely studied in the recent past. This
includes robots like the Snakeboard [1], the Variable Geo-
metric truss [2], the Roller Racer [3], and various snake like
robots [4]. In contrast to more conventional locomotion using
legs or powered wheels, these robots rely on relative motion
of their joints to generate net motion of the body. The joint
variables or shape variables, are moved in cyclic patterns
giving rise to periodic shape variations called gairs.

Novel locomeotion techniques allow robots to carry out tasks
that cannot be tackled using more conventional means like
walking and powered wheeled motion. Indeed, research in this
area draws a lot of motivation from the motion of biological
systems. Some examples of this include the inchworm like
. gaits for a Crystalline robot consisting of individual com-
pressible unit modules [5] and various serpentine gaits used
for snake-like robots. However, the synthesis of gaits is often
difficult to carry out for these robots. In particular, for robots
like the Snakeboard and Roller Racer that have passive wheels,
the mode of locomotion is non-intuitive,

Unconventional locomotion strategies help robots like the
RHex [6] negotiate difficult terrain. A novel robot design that
has the ability to switch between skating and walking modes is
the Roller-Walker [7], [8]. This quadruped robot has the ability
to switch between walking and skating maodes. Passive wheels
at the end of each leg fold flat to allow the robot to walk. In
the skating mode, the wheels are rotated into place to allow the
robot to carry out skating motion. In fact, the ROLLERBLADER
is inspired by the design of the Roller Walker.

Our work differs from the Roller Walker in its ability to pick
up the rollerblades off the ground. This allows us to use gaits
that mimic those used by human rollerbladers, for example
those that combine walking or running with skating motion.
We also present simulation and experimental results for a

'Rollerblade is a trademark of Rollerblade, Inc.
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novel rotation gait that turns the robot in place. This gait has
not been shown for the Roller-Walker. In addition, we present
a geometric analysis of the ROLLERBLADER, including an
analysis of momentum transfer due to impact, that has not
been carried out for the Roller-Walker.

Fig. 1. Prototype of the ROLLERBLADER. The ROLLERBLADER has two three
degrez of freedom legs, each with a mllerblade which consists of a single
low friction wheel.

In this paper, we present a dynamic model, simulation
and experimental results for a rollerblading robot called the
ROLLERBLADER (Fig. 1). The ROLLERBLADER is a robot
with a central platform and two 3 degree of freedom legs.
Passive {unpowered) rollerblading wheels (henceforth referred
to as rollerblades) are attached at the end of each leg. We
demonstrate new gaits that ¢ombine pushing, coasting and
lift-off and return strokes. We also demonstrate a new gait
that allows us to turn in place without lifting the legs for
the duration of the gait. Our goal in this research is to better
understand the mechanics of the rollerblading motion and the
process of generation of gaiis.

The paper is organized as follows. In Section II, we present
the mechanical design of the ROLLERBLADER. In Section I,
we present the analysis of the ROLLERBLADER. In Section IV
we present the design and simulation of gaits for the robot and
experimental results.

II. DESIGN OF THE ROLLERBLADER

The primary motivation in building the ROLLERBLADER
was to create a robot capable of imitating human skating
motion. Qur focus is on generation of gaits thai allow the
robot to move. In order to keep the design of the robot
simple and avoid the complexity asscciated with dynamic
balancing, the robot was designed as a planar, statically stable
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Fig. 2. A schematic diagram of the ROLLERBLADER

robot. The robot consists of a central platform supported by
omnidirectional casters which ensures that the robot is always
stable. Two legs attached to the central platform can be picked
up and placed back on the ground allowing repositicning of
the legs from one propulsive stroke to another.

The central platform of the robot is a hexagon-shaped
polyethylene plate (Fig. 2) supported by four casters with 0.75
inch diameter stainless steel balls and ball bearings, allowing
the robot to move in any direction. The base carries the
batteries required for power and a controller for the servos.

Two legs are attached symmetrically to the central base
of the robot. Each leg presently has three degrees of free-
dom{Fig. 2). All the servos used to actuate the legs are
mounted on the central platform to reduce the weight of the
legs. While Servo 2 is directly attached to Joint 2 (Fig. 2),
Servo 3 is attached to Joint 3 using a gear and belt system
with a 2:1 reduction. The belt system gives rise to a coupling
between the two joints of the legs. If us and ug denote the
velocities of Servos 2 and 3 respectively, and if @; and ag
denote joint angles for joints 2 and 3 respectively (Fig. 2),

dg = uz,d’g =u3/2—u2.

This shows that Servo 3 directly controls the angle 53 = as+
ag which is the angle that link 2 makes with the horizontal.
Servo 1 directly actuates the angle a;.

A bracket is attached at the end of each Jeg to mount
the rollerblading assembly. A gear and belt assembly couples
this bracket to the base of the robot. The coupling forces
the bracket to always remain horizontal and therefore the
rollerblade axle remains horizental for any motion of the leg.
One real rollerblade wheel with ball bearings for reduced roll
resistance is mounted on the end bracket (Link 3) of the legs.
An additional degree of freedom can be introduced to allow
the rollerblades to rotate about a vertical axis. However, this
feature has not yet been implemented in our prototype.

The robot has 6 joints actuated by a Hitech HS-805BB+
quarter-scale hobby servo motor. The servos are rated for 320
oz of peak holding torque at 6.0 V. Power is delivered to
Servos 2 and 3 using 2000 mAh NiCd batteries. Serve 1 is
powered by a separate batiery pack rated at 1800 mAh. Servos
2 and 3 pick up most of the load, especially when picking up
the leg, and draw a large amount of current. The servos are
controlled using a MiniSSC 1I board. MATLAB is used for
the dynamic simulation of the BLADER and to drive the servo
control board for our experimental prototype.

I11. A&ALYSIS

In [9], we presented an analysis for a simplified form of
the ROLLERBLADER. A schematic diagram for the simplified
robot used to perform the analysis is given in Fig. 3. It
was assumed that the robot was planar. A rotary joint and a
prismatic joint were used to actuate the two degrees of freedom
that allowed the rollerblade to move on the ground plane. The
rollerblades were restricted to be always in contact with the
ground, i.e. the legs could not be picked up off the ground.
The analysis was carried out using the concepts of Lagrangian
reduction [10}. .

In this section, we will extend the analysis to the case where
only one rollerblade is on the ground. We will also examine
the effects of contact transitions when one leg is brought into
or out of contact with the ground. Simulation and experimental
results for implementation of gaits on the robot are presented
in Section IV,

A. ROLLERBLADER configuration with one leg on the ground

Our main aim here is to examine the dynamics of the robot
configuration with one leg on the ground. We will use the
simplified planar version (Fig. 3) of the ROLLERBLADER for
analysis, We choose ¢ = (z, ¥, 8,71, d1, Y2, d2)7 to represent
the configuration of the system where (z,y) is the position
of the central platform in a inertial reference frame, & is the
orienation of the robot in the inertial reference frame, (v1,72)
denotes the angular position of links 1 and 2 with respect to
the central platform, (dy,d2) are the extensions of links I and
2. Let the mass and rotational inertia of the central platform
of the robot be M and I, respectively. Let each link have
rotational inertial I,. The mass of the link is assumed 10 be
negligible. Each rollerblade has mass m, but is assumed to
have no rotational irertia, Further, each rollerblade is fixed
perpendicular to the leg, i.e. the angles ¢, and ¢2 in Fig. 3
are fixed at 90 degrees. Note that this is true for our prototype
as well.

We assume, for simplicity, that the rollerblades can be
picked up instantaneously by using an appropriate mechanism
at the end of the leg. Thus, the robot is still planar and the legs
move in a plane parallel to the ground plane. However, when
the rollerblades are picked up the nonholonomic constraint
corresponding to that particular rollerblade will be absent and
the leg can move freely.

Let ¢ = (z,4.0) € SE(2) and r = (m1,d1,72,4d2)
denote the group and shape variables for the robot. Let £ =
(€5,&y,Eq) denote the body velocity of the robot and let L
represent the Lagrangian for the robot. A detailed expression
for the Lagrangian and proof of its invariance to the left group
action are given in [9].

Consider the configuration of the robot with rollerblade 1
off the ground and rollerblade 2 in contact with the ground.
The nonholoromic constraint acting on the robot at rollerblade
2 can be written as a one-form:

w? = — sin(f + 72 )dz+c0s(8 + vo )dy~bsin{vz)df+dda. (1}
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Fig. 3. Simplified planar version of the ROLLERBLADER used for analysis.
{z.y,d) are the group variables and (y1,d1, 72, d2) are the shape variables.
¢1 and ¢z are fixed at 7.

The constraint distribution D, is given by the kernel of the
one-forms given above. D, represents the kinematic motions
possible for the system. A basis for the distribution can be
written as:

1

1_ o= |zr——%
£5=10,0,0,0,0,1,0),3 [sinm +6)

‘E%=[COG62+9)7 5in(72+0): 0’ 07 07 01 0] Séé:.[oa 0) 0-, 17 G! 0! O] 1
5 =100,0,0,0,1,0,0], &% =[011,012,1,0,0,0,0].  (2)

where,

,0,0,0=070,1],

ayy=-dg cos(yp+0Hbcos B, a12 = —dy sin(y2+6)+bsin 6.
(3)

Note that 52‘:, and EE_, represent unconstrained motion of leg 1
since rollerblade 1 is not on the ground.

B. Reduction

‘We will now use the process of Lagrangian reduction which
leads to simplified equations of motion, allowing us to write
them in a lower-dimensional space. It also provides insight into
the geometry of the system.The application of this approach to
a planar version of the ROLLERBLADER with both rollerblades
on the ground is also presented in [9].

C. Constrained Fiber Distribution

In the presence of nonholonomic constraints there may exist
one or more momenta along the unconstrained directions. The
evolution of this momentum vector, referred- to as the gen-
eralized momentum, is governed by a generalized momentum
equation (first derived in [10]). The uncenstrained directions
are represented by the constrained fiber distribution(S,) which
is defined as the intersection of the constraint distribution D,
and the fiber distribution V. The fiber distribution contains
all the infinitesimal motions of the system that do not alter
the shape of the system, The fiber distribution can be written

as
a o6 0
Vvsp{a’a—yﬁ}'

Every vector £ € S; must be in both the fiber distribution
and the conslramt dlsmbutlon Thus, we can wrile £Q n terms
of the basis elements for 7, and V.

a 3 d
&= 52 T 25, 6y +lagg @)
£ = uibh+ uzsq +uzld + usld tuséh. (5

Using Eq. 4, Eq. 5 and the basis for the constraint distribution
given by Eq. 2, we find that S, is two-dimensional. This
essentially means that there are two unconstrained directions
for the fiber variables. As we shall see shortly, there are also
two generalized momenta, each associated with one of the
unconstrained directions. Since S is two dimensional, we can
write:

Sq = Spaﬂ((Efg)h (‘fgg)z) (6)
(€41 and (£)2 are given by:
(Ednh = au; + aug + amgg (D

a

7] a
(€&)2 = aa 7= 3z T oy By +angg. (8)

where
a3 = 1,89y = cos(y2 + 8}, a22 = sin(y2 + 68), a5 = 0. (9)

and a;1 and a4, are given by Eq. 3.

The generalized momentum term for the ROLLERBLADER
with both rollerblades on the ground represents a scaled
version of its angular momentum [9]. With one rollerblade
off the ground, two generalized momenta terms are required
to describe the dynamics of the configuration. The first term,
denoted by p,, is a scaled version of the linear momentum of
the robot in a direction perpendicular to the sole nonholonomic
constraint acting on the robot, i.e. in the direction of rolling
of the rollerblade on the ground. The second term, denoted
by po, represents the (scaled) angular momentum of the robot
about the point of contact of rollerblade 2 with the ground.
The generalized momentum, p;, is given by

Pi= 6:;(1 (‘EQ)

where summation over the index 7 is implied.

Using Noether’s theorem [1], the generalized momentum
equation specifying the evolution of the momentum can be
written as

(10

dp; d(€9);
dt aq: ( dt +T‘I(£Q)Jij - 1 2 (11)
Here, 7 is the one-form of the input torques and

forces. For the ROLLERBLADER, this is given as 7 =

(0,0,0, Ty, fdys Tygs faa)? WheTe T,y fay s Ty, and fq, are the
input torques/forces cormresponding to the v1,dy, 72 and da

. . d(£9);
degrees of freedom respectively. The expression for (—(a—l) o

is given by:
d(£9) . N . d
( (gt)J)Q=(an+ﬂi39)§;;+(“j2 a"”m)b—mﬁ 12
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(More details on the derivation of this expression can be found
in [9] and [2].)

Eq. 10 and Eq. 1 give a set of three equations that can be
solved to obtain a cornection. The connection relates the body
velocity (£) of the robot to the shape inputs for the robot:

E=—Alr)r+Ip (13)

While p was a scalar for the case of both rollerblades on
the ground, it is now a 2 dimensional vector. Two separate
momentum equations given by Eq. 11 give the evolution of
p1 and py over time. We can further exploit the invariance of
Eq. 11 to the left group action and use the expression for £
from Eq. 13 to rewrite Eq. 1] as:

p= %f'Tcr,:r- (r)F + plope(r)F +p opp(rip+ 7, (14)
Thus, the evolution of the momentum can be written in a form
that involves only the shape inputs and p. 7 is the projection
of r along EE,. Since 7 has no components along the fiber
directions, this projection yields a zero vector. The connection
and the momentum equations can also be used to reduce the
shape dynamics to a reduced shape-momentum space. Thus,
the shape dynamics can be rewritten as:

M{r)F +¢TC(r)r + N(r,#,p) = . (15)

A similar analysis can be carried cut and the appropriate
equations derived for the case where rollerblade 2 is picked
up off the ground. The analysis for the case where both legs
are on the ground has been presented earlier in [9]. The set of
equations 13, 14 and 15 defines the complete dynamics of the
system. A process of Reconstruction can be used 1o recover
the fiber variables.

D, Contact Transitions

We will now examine the effects of transition on the
system. Each time a leg is placed back on the ground an
additional nonholonomic constraint acts on the robot. Each
time a leg is picked up, one of the nonholonomic constraints
acting on the robot disappears. When the robot transitions
from one configuration to another, the generalized momentum
needs to be transferred correctly from one basis to another.
Fig. 4 depicts the effect of transitions on the system, With
the addition of a constraint, the number of unconstrained
directions goes down by one while with the removal of a
constraint it goes up by one. Thus, the number of generalized
momenta required to describe the dynamics of the system
changes with every transition.

There are two types of transitions, (1): a rollerblade comes
into contact with the ground and the number of generalized
momenta goes down by one, and (2): a rollerblade goes out
of contact with the ground and the number of generalized
momenta increases by one. We will examine the two cases
separately.

The case of a rollerblade coming into contact with the
ground will in general be accompanied by some loss of
energy. This is because the system loses momentum in the

Sq(one rollerblade in contact with ground)

(%)2

5 g (both rollerblades in contact with ground)

Fig. 4. Transitions between configurations with one and two rollerblades in
contact with the ground. Sy is two dimensional or one-dimensional.

direction of the new constraint. Thus, the only momentum that
is now present will be in the new unconstrained direction(s)
corresponding to the new configuration of the robot. We state
this observation in the following form:

When transitioning from one basis to another the new
generalized momentum in a particular direction is given by
the projections of the generalized momenta before transition
on the new unconstrained direction.

This rule can be stated in a more formal manner. Let (p; )+
denote the 7t generalized momentum, just after a rollerblade
has been put down, in a direction (£3);. (We will use the +
subscript to denote quantities just after transition and the —
subscript to denote quantities just before transition). Letn =7
denote the size of the configuration space for the robot. Then,

L
oo.-)+=§(a—q1)_(5g)£.

The ‘case of a rollerblade going out of contact with the
ground results in the addition of a new unconstrained direction
for the system. Thus, the momentum of the system gets
distributed among the new set of directions. This effect can
be modeled in a manner similar to Eq. 16. For the specific
case of the ROLLERBLADER, if py and pz denote the two
generalized momenta for the robot configuration with only
one leg in contact with the ground, we have (after one leg is
picked up):

p1=1§;, (%)_(65)‘1, pgzg(%)“(gg)g. an

(€51 and (€3)2 are given by Eq. 7 and Eq. 8. Equation 17
defines the initial conditions for the two generalized momenta
needed for the configuration with only one leg on the ground.
They can now be used along with the shape inputs in the new
configuration to solve Eq. 13.

(16}

IV. GAIT GENERATION - SIMULATION AND EXPERIMENTS

In deriving gaits for the ROLLERBLADER, we were inspired
in part by human rollerblading motion and walking. For
simplicity, we assumed that we have direct control over the
shape inputs and are able to drive them directly. This is
equivalent 1o assurning the motors are controlled by a feedback
controller that cancels the dynamics in Eq. 15 allowing the
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direct control of 7(¢). In the experimental prototype, the servos
give us direct control of the joint angles.

Experimental data was obtained using an overhead camera
running at approximately 10 Hz. The trajectory of the robot
was found by tracking the motion of a bright orange square
marker attached to the robot. The orientation of the robot
was recovered from the orientation of one of the edges of
the square marker. The maximum error in tracking the (z,y)
position of the robot was 2.5 cm.

A. Type 1 gaits

In Type 1 gaits, the legs are picked up and reset to their

original starting position. It is easy to see that we need to push
off against the nonholonomic constraint to achieve motion of
the system. Hence, the gaits that we tried were simple gaits
where each leg does one of three motions: COAST, PUSH,
RETURN. In the COAST part of the motion, the ieg stays
at a constant relative position with respect to the body. In the
PUSH part of the motion, the leg pushes off in a direction
parallel to the constraint. The RETURN part involves picking
the leg off the ground and returning the leg 1o a new position
after the end of a PUSH.

GAIT 1 ‘

The first gait (labeled GAIT 1) is represented in Fig. 5(a)
by a timing diagram that shows the relative time that the leg
spends in each part of the gait. It can be seen that the duty
factor (the fraction of a cycle that the rollerblade is on the
ground) for this gait is 0.75. The two legs are phased 0.5
cycles apart from each other. The motion of the leg is depicted
in Fig. 5(b). The blue (solid) plot is the trajectory of the end
point of the leg. The green plane represents the horizontal
plane containing the axis of Joint 2 of the robot. The dashed
lines indicate the initial position of the leg. The simulated
motion of the robot for this gait is shown in Fig. 5(c) and the
experimental trajectory is shown in Fig. 5(d).

The significant drift in the positive y direction in the
experimental plot is caused by asymmetry of the prototype
duc to unequal weight distribution and a weaker motor on one
of the legs. Lack of significant undulation in the experimental
trajectory is partly caused by slipping of the rollerblades which
prevented them from executing the PUSH phase effectively.

GAIT 2

The second gait (labeled as GAIT 2) is similar to GAIT
1 except that the duty cycle for GAIT 2 is 0.5, i.e. each leg
spends only % of the gait cycle on the ground. The legs come
into contact with the ground alternately. Thus, in this case
there is no COAST part in the gait cycle. Experimental results
for this gait are presented in Fig. 6. The undulations in the
trajectory are more pronounced in this case because of the
much higher stroke length than in GAIT 1: each leg pushes
for 50% of the gait cycle as compared to only 25% of the gait
cycle for GAIT 1(although slipping does occur in both cases,
the net effect is a doubling of stroke length for GAIT 2).

B. Type 2 gaits

The generation of gaits for the ROLLERBLADER in the
configuration with both legs on the ground is a complex

LEFTLEG [RESET]  coasy | #ush

RIGHT LEG [CGAST T ' TRESET [COAST]

[ S R S S
[ 1
CYCLE TIME

(a) Phasing of legs for
GAIT L.

yimy

3 .4

£

= /\/\/\ o
P 0z

TG TS 7 LT O D 1 1 [F3

(c) Simulated trajectory from
left to right for GArT 1.

(d) Experimental trajectory
from left to right for GAIT 1.

Fig. 5. Gair 1
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(a) Experimental majectory of
ROLLERBLADER from left to
right for GAIT 2.

(b) B(radians) vs. i(s).

Fig. 6. GAIT 2

problem. We examined the use of sinusoidal inputs to drive
the robot in [9]. We will now describe these gaits in brief and
present new cxperimental results obtained using these gaits.
Symmetric gait

The simplest possible gait that can be used is the one where
the motions of the two legs are symmetric with respect to the
longitudinal axis of symmetry (z axis of the body fixed frame -
see Fig. 3). We call such a gait, where yo = —v; and dy = do,
a symmetric gait. The symmetric gait generates motion only
in the forward direction. The inputs are specified as sinusoids:

. 2mt . 27t
dy=ds+dyc Sln(_+¢d1 )1 =T 1c 5111( "'—+¢~h ),
le T’)‘l

27t . 2mt
" +¢d2), Ye=Y201V2¢ SIH(L+¢¢,). (1 8)
Td’ T’Tn

where (di,=dg, = 0.345, 72, =0), (d1c =d2. =0.075,v2. =
—71.=0.3) are the amplitudes of the sinusoidal inputs, (¢4, =
STW=¢d2 = 3Tﬁ’¢’h = 0=¢‘)’2 = 0) and (le =Ty = T"h =
T,, = 1) are phase offsets and time periods respectively for

do=dasHda, Sin(
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the inputs.

Fig. 7 shows simulated and experimental motion of the
robot for a symmetric gait. Note: a closer investigation (not
shown) of Fig. 7(a) reveals that the forward velocity, &, is
not constant.

Anti-symmetric gait An anti-symmetric gait is a gait with
(11 = 72,d1 = da), i.e the legs move in-phase. An anti-
symmetric gait gives rise to pure rotational motion of the robot.

The inputs for the gait are still given by Eq. 18 but now
Ye = Y2 = 0.3. All the other parameters have the same
values as in the forward motion gait. Fig. 8 shows simulated
and experimental results. The spike in the value of # at the
end of the gait is because & wraps around from —= 1o 7.

B,

(a) z(m) vs. £(s).

(b} Shape wvari-
ables

Fig. 7. Simulated and experimental symmetric gait for the ROLLERBLADER.

(c) Experimental
trajectory.

C. Discussion of experimental results,

Several practical problems arose in the experimental im-
plementation of the gaits. The most important was the effect
of friction on the robot. The rollerblades do not provide
enough traction in the lateral direction. Thus, the legs of the
robot were continucusly slipping, violating the nonholonomic
constraints. This limited the ability of the legs to push off
the nonholonomic constraints. Thus, the robot was not able
to match the simulated motion, Increasing the weight of the
robot will improve friction at the blades but will also increase
friction at the casters. The requirement for a central platform
supported by omnidirectional casters can only be removed by
developing a dynamically stable rollerblader.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented the design for a
ROLLERBLADER robot. Analysis of the robot was carried out
using the method of Lagrangian reduction. Contact transitions
were handled using appropriate momentum transfer equations.
Simulation results were presented for two types of gaits. The
gaits were then implemented on the prototype of the robot.
The gaits include a novel gait that turns the robot in place
with both rollerblades on the ground throughout the gait and
two gaits motivated by human rollerblading motion.

We plan to improve the design of our prototype by reducing
the weight of the legs and adding springs to help the servos lift
up the legs. We plan to add an additional degree of freedom
to the rollerblades by actuating the angles ¢, and ¢» (Fig. 3).
Another line of future work we are planning to explore is
the design of a dynamically stable rollerblading robot where
dynamic balance issues would play a very big role.

(a) Simulated (b) Shape vari- (c) Experimental
{radians) vS. ables. B(radians) Vs,
1(s). #s).

Fig. 8. Simulated and experimental anti-symmetric gait.

Given a trajectory to follow we would like 1o be able to
automatically generate a gait that takes the robot along this
trajectory. This would allow us to generate motion plans for
the robot or control it using a joystick-like interface, In [11],
an optimal control method was used to generate gaits for the
Snakeboard and is potentially applicable to our system as well.

A methed of achieving point to point motion is to con-
catenate the Type 2 gaits presented here to move from point
to point. However, this resulis in the robot coming to rest
each time it transitions between gaits. In contrast, human
rollerbladers frequently use the concept of coasting, i.e. they
build up momentum for some time and then steer themselves.
We would like 1o be able to achieve the same effect, both in
simulations and experiments. This would require the design of
gaits that build up momentum or brake the robot.
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