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Absrmcl-We present the design and gait generation for an 
experimental ROLLERBLADER'. The ROLLERBLADER is a robot 
with a central platform mounted on omnidirectional casters 
and two 3 degree-&freedom legs. A passive rollerblading wheel 
is attached lo the end of each leg. The wheels give rise to 
nonholonomie constraints acting on the robot. The legs can be 
picked up and placed back on the ground allowing a combination 
of skating and walking gaits We pment  two types of gaits for 
the robot. In the first gait, we allow the legs to he picked up and 
placed back on the gmuud while in the second, the wheels are 
constrained to stay on the ground at all times. Experimental gait 
results for a prototype robot are also presented. 

I. INTRODUCTION 

Robots using unconventional undulatory locomotion tech- 
niques have been widely studied in the recent past. This 
includes robots like the Snakeboard [I], the Variable Geo- 
metric mss [Z], the Roller Racer 131, and various snake like 
robots [4]. In contrast to more conventional locomotion using 
legs or powered wheels, these robots rely on relative motion 
of their joints to generate net motion of the body. The joint 
variables or shape variables, are moved in cyclic patterns 
giving rise to periodic shape variations called gaits. 

Novel locomotion techniques allow robots to carry out tasks 
that cannot be tackled using more conventional means like 
walking and powered wheeled motion. Indeed, research in this 
area draws a lot of motivation from the motion of biological 
systems. Some examples of this include the inchworm like 
gaits for a Crystalline robot consisting of individual com- 
pressible unit modules 151 and various serpentine gaits used 
for snake-like robots. However, the synthesis of gaits is often 
difficult to carry out for these robots. In particular, for robots 
like the Snakeboard and Roller Racer that have passive wheels, 
the mode of locomotion is non-intuitive. 

Unconventional locomotion strategies help robots like the 
RHex [6] negotiate difficult terrain. A novel robot design that 
has the ability to switch between skating and walking modes is 
the Roller-Walker [71, [SI. This quadruped robot has the ability 
to switch between walking and skating modes. Passive wheels 
at the end of each leg fold flat to allow the robot to walk. In 
the skating mode, the wheels are rotated into place to allow the 
robot to cany out skating motion. In fact, the ROLLERBLADER 
is inspired by the design of the Roller Walker. 

Our work differsfrom the Roller Walker in its ability ro pick 
up rhe rollerblades off rhe ground. This allows us to use gaits 
rhar mimic those used by human mllerbladers, for example 
rhose rhat combine walking or running with skating motion. 
We also presenr simulation and experimental results for a 

'Rollerblade is a tcademark of Rollerblade, h e  

novel rotation gair rhat turns the mbot in place. This gait has 
nor been shown for the Roller-Walkel: In addition, we presenr 
a geomenic analysis of the ROLLERBLADER, including an 
analysis of momentum transfer due to impact, rhar has nor 
been carried our for the Roller- Walkel: 

Fig. 1. Rarotype of the ROLLERBLADER. The ROLLERBLADER has two thRe 
degree of freedom legs, each with a m//erblode which consists of a sinele 
law friction wheel. 

In this paper, we present a dynamic model, simulation 
and experimental results for a rollerblading robot called the 
ROLLERBLADER (Fig. I). The ROLLERBLADER is a robot 
with a central platform and two 3 degree of freedom legs. 
Passive (unpowered) rollerblading wheels (henceforth referred 
to as mllerblades) are anached at the end of each leg. We 
demonstrate new gaits that combine pushing, coasting and 
lift-off and return strokes. We also demonstrate a new gait 
that allows us to turn in place without lifting the legs for 
the duration of the gait. Our goal in this research is to better 
understand the mechanics of the rollerblading motion and the 
process of generation of gaits. 

The paper is organized as follnws. In Section It, we present 
the mechanical design of the ROLLERBLADER. In Section Ill, 
we present the analysis of the ROLLERBLADER. In Section 1V 
we present the design and simulation of gaits for the robot and 
experimental results. 

11. DESIGN OF THE ROLLERBLADER 
The primary motivation in building the ROLLERBLADER 

was to create a robot capable of imitating human skating 
motion. Our focus is on generation of gaits that allow the 
robot to move. In order to keep the design of the robot 
simple and avoid the complexity associated with dynamic 
balancing, the robot was designed as a planar, statically stable 
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Fig. 2. A schematic diagram of the ROLLERBLADER 

robot. The robot consists of a central platform supported by 
omnidirectional casters which ensures that the robot is always 
stable. 'nvo legs attached to the central platform can be picked 
up and placed back on the ground allowing repositioning of 
the legs from one propulsive stroke to another. 

The central platform of the robot is a hexagon-shaped 
polyethylene plate (Fig. 2) supported by four casters with 0.75 
inch diameter stainless steel balls and ball bearings, allowing 
the robot to move in any direction. The base carries the 
batteries required for power and a controller for the servos. 

Two legs are attached symmetrically to the central base 
of the robot. Each leg presently has three degrees of free- 
dom(Fig. 2). All the servos used to actuate the legs are 
mounted on the central platform to reduce the weight of the 
legs. While Servo 2 is directly attached to Joint 2 (Fig. 2). 
Servo 3 is attached to Joint 3 using a gear and belt system 
with a 2: 1 reduction. The belt system gives rise to a coupling 
between the two joints of the legs. If u2 and UQ denote the 
velocities of Servos 2 and 3 respectively, and if a2 and a3 

denote joint angles for joints 2 and 3 respectively (Fig. 2). 

This shows that Servo 3 directly controls the angle p3 = an+ 
a3 which is the angle that link 2 makes with the horizontal. 
Servo 1 directly acNateS the angle al. 

A bracket is attached at the end of each leg to mount 
the rollerblading assembly. A gear and belt assembly couples 
this bracket to the base of the robot. The coupling forces 
the bracket to always remain horizontal and therefore the 
rollerblade axle remains horizontal for any motion of the leg. 
One real rollerblade wheel with ball bearings for reduced roll 
resistance is mounted on the end bracket (Link 3) of the legs. 
An additional degree of freedom can be introduced to allow 
the rollerblades to rotate about a vertical axis. However, this 
feature has not yet been implemented in our prototype. 

The robot has 6 joints actuated by a Hitech HS-805BB+ 
quarter-scale hobby servo motor. The servos are rated for 320 
oz of peak holding torque at 6.0 V. Power is delivered to 
Servos 2 and 3 using 2000 mAh NiCd batteries. Servo 1 is 
powered by a separate battery pack rated at 1800 mAh. Servos 
2 and 3 pick up most of the load, especially when picking up 
the leg, and draw a large amount of current. The servos are 
controlled using a MiniSSC Il board. MATLAB is used for 
the dynamic simulation of the BLADER and to drive the servo 
control board for our experimental protorype. 

~ 
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III. ANALYSIS 
In [9], we presented an analysis for a simplified form of 

the ROLLERBLADER. A schematic diagram for the simplified 
robot used to perform the analysis is given in Fig. 3. It 
was assumed that the robot was planar. A rotary joint and a 
prismatic joint were used to actuate the two degrees of freedom 
that allowed the rollerblade to move on the ground plane. The 
rollerblades were restricted to be always in contact with the 
ground, i.e. the legs could not be picked up off the ground. 
The analysis was carried out using the concepts of Lagrangian 
reduction [IO]. 

In this section, we will extend the analysis to the case where 
only one rollerblade is on the ground. We will also examine 
the effects of contact transitions when one leg is brought into 
or out of contact with the ground. Simulation and experimental 
results for implementation of gaits on the robot are presented 
in Section IV. 

A. ROLLERBLADER conjguration with one leg on the gmund 

Our main aim here is to examine the dynamics of the robot 
configuration with one leg on the ground. We will use the 
simplified planar version (Fig. 3) of the ROLLERBLADER for 
analysis. We choose q = ( x , y , 8 , y l , d l , y ~ , d 2 ) ~  to represent 
the configuration of the system where (x, y) is the position 
of the central platform in a inertial reference frame, 0 is the 
orientation of the robot in the inertial reference frame, ( 7 1 , ~ ~ )  

denotes the angular position of links 1 and 2 with respect to 
the central platform. (dl,dz) are the extensions of links 1 and 
2. Let the mass and rotational inertia of the central platform 
of the robot be A.I and I, respectively. Let each link have 
rotational inertial Ip. The mass of the link is assumed to be 
negligible. Each rollerblade has mass m, but is assumed to 
have no rotational inertia. Further, each rollerblade is fixed 
perpendicular to the leg, i.e. the angles 41 and 4 2  in Fig. 3 
are fixed at 90 degrees. Note that this is hue for our prototype 
as well. 

We assume, for simplicity, that the rollerblades can be 
picked up instantaneously by using an appropriate mechanism 
at the end of the leg. Thus, the robot is still planar and the legs 
move in a plane parallel to the ground plane. However, when 
the rollerblades are picked np the nonholonomic constraint 
corresponding to that particular rollerblade will be absent and 
the leg can move freely. 

Let = (z,Y,~) E SE@) and T = ( ~ 1 , & , ~ 2 , d 2 )  
denote the gmup and shape variables for the robot. Let 5 = 
(&,&,;EO) denote the body velocity of the robot and let L 
represent the Lagrangian for the robot. A detailed expression 
for the Lagrangian and proof of its invariance to the left group 
action are given in [9]. 

Consider the configuration of the robot with rollerblade 1 
off the ground and rollerblade 2 in contact with the ground. 
The nonholonomic constraint acting on the robot at rollerblade 
2 can be written as a one-form: 

U,' = - sin(8 + -y2)dz+cos(8 + yz)dy-bsin(yn)d8+dd2. ( I )  



Fig. 3. Simplified planar version of the ROLLERBLADER u a d  for analysis. 
(z.y,O) a r e & p u p w i a b l e r a n d  (71,d1,72,d2) aretheshapewiabler. 
$1 and h are hxed at 4. 

The consvaint distribution V, is given by the kernel of the 
one-forms given above. V, represents the kinematic motions 
possible for the system. A basis for the distribution can be 
written as: 

1 
r:,=[o,o,o,o,o,1,01 F Z  - [ 10,o; o,o, a, 13 , ’ Q - sin(y2 +e)  

~ ~ = [ c o s ~ ~ ) , s i n ( - r z + e ) , 0 , 0 : 0 ; 0 , o ]  , ~ $ = [ O , ~ , O ; L O , ~ , O ] ,  

(2) t; = [O, 0, o;o, L O ,  01 i Q= [~11i~12,1;o,o,0,~l  . 
where, 

a ~ l = - d ~  cos(y2+8)i+cos 0,  a12 = -d2 sin(Tz+O)+bsin 8. 
(3) 

Note that C.$ and c$ represent unconstrained motion of leg 1 
since rollerblade 1 is not on the ground. 

E. Reduction 
We will now use the process of Lagrangian reduction which 

leads to simplified equations of motion, allowing ns to write 
them in a lower-dimensional space. It also provides insight into 
the geometry of the system.The application of this approach to 
a planar version of the ROLLERBLADER with both rollerblades 
on the ground is also presented in [9]. 

C. Consfrained Fiber Disfriburion 
In the presence of nonholonomic constraints there may exist 

one or more momenta along the unconstrained directions. The 
evolution of this momentum vector, referred. to as the gen- 
eralized momenfum, is governed by a generalized momenfum 
equnfion (first derived in [IO]). The unconstrained directions 
are represented by the consfrainedfiber distribution(&) which 
is defined as the intersection of the constraint distribution Vq 
and the jiber distribution V,. The fiber distribution contains 
all the infinitesimal motions of the system that do not alter 
the shape of the system. The fiber distribution can be written 
as 

Every vector (6 E S, must be in both the fiber distribution 
and the constraint distribution. Thus, we can write ($ in terms 
of the basis elements for V, and V,. 

a a a p - u1- + y- + u3-> 
Q -  ax av ae (4) 

Q = u1Q +WE% +U& + u4Q +U&. (3 
Using Eq. 4, Eq. 5 and the basis for the constraint distribution 
given by Eq. 2, we find that S, is two-dimensional. This 
essentially means that there are two unconsuained directions 
for the fiber variables. As we shall see shortly, there are also 
two generalized momenta, each associated with one of the 
unconstrained directions. Since S, is two dimensional, we cm 
write: 

s, = span((E$h,(c$)~). (6) 

(F:)1 and (G$)z are given by: 

where 

“13 = 1, aZ1 = cos(y2 + e); a22 = sin(?* + e), a23 = 0. (9) 

and all  and a12 are given by Eq. 3. 
The generalized momentum term for the ROLLERBLADER 

with both rollerblades on the ground represents a scaled 
version of its angular momentum (91. With one rollerblade 
off the ground, two generalized momenta terms are required 
to describe the dynamics of the configuration. The first term, 
denoted by p l ,  is a scaled version of the linear momentum of 
the robot in a direction perpendicular to the sole nonholonomic 
constraint acting on the robot, i.e. in the direction of rolling 
of the rollerblade on the ground. The second term, denoted 
by p 2 ,  represents the (scaled) angular momentum of the robot 
about the point of contact of rollerblade 2 with the ground. 
The generalized momentum, p i ,  is given by 

where summation over the index i is implied. 
Using Noether’s theorem [l], the generalized momentum 

equation specifying the evolution of the momentum can be 
written as 

Here, T is the one-form of the input torques and 
forces. For the ROLLERBLADER, this is given as T = 

input torqueslforces corresponding to the 71, dl , 7 2  and d2 
degrees of freedom respectively. The expression for 
is given by: 

( o , ~ ,  0, T ~ ~ ,  fd,, T ~ ~ ,  fdT where T?, f d l ,  T ~ .  and fdl are the 

( dt > Q  

a a .  a 
( q ) a = ( 6 j 1  +a&)- ax + (6j2 - q 3 k ) + q 3 -  ay as’ (12) 
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(More details on the derivation of this expression can be found 
in [91 and [21.) 

Eq. 10 and Eq. 1 give a set of three equations that can be 
solved to obtain a connection. The connection relates the body 
velocity ( e )  of the robot to the shape inputs for the robot: 

While p was a scalar for the case of both rollerblades on 
the ground, it is now a 2 dimensional vector. livo separate 
momentum equations given by Eq. 1 1  give the evolution of 
pl  and p2 over time. We can further exploit the invariance of 
Eq. 1 1  to the left group action and use the expression for 6 
from Eq. 13 to rewrite Eq. 1 1  as: 

p = - r T u + ( r ) i + p T o ~ ( r ) 1 :  1.  + p T u P p ( r ) p + i ;  (14) 
2 

Thus, the evolution of the momentum can be written in a form 
that involves only the shape inputs and p. i is the projection 
of r along Q. Since r has no components along the fiber 
directions, this projection yields a zero vector. The connection 
and the momentum equations can also be used to reduce the 
shape dynamics to a reduced shape-momentum space. Thus, 
the shape dynamics can be rewritten as: 

A similar analysis can be camed out and the appropriate 
equations derived for the case where rollerblade 2 is picked 
up off the ground. The analysis for the case where both legs 
are on the ground has been presented earlier in [9]. The set of 
equations 13, 14 and 15 defines the complete dynamics of the 
system. A process of Reconstruction can be used to recover 
the fiber variables. 

D. Contact Transitions 
We will now examine the effects of transition on the 

system. Each time a leg is placed back on the ground an 
additional nonholonomic constraint acts on the robot. Each 
time a leg is picked up, one of the nonholonomic constraints 
acting on the robot disappears. When the robot transitions 
from one configuration to another, the generalized momentum 
needs to be transferred correctly from one basis to another. 
Fig. 4 depicts the effect of transitions on the system. With 
the addition of a constraint, the number of unconstrained 
directions goes down by one while with the removal of a 
constraint it goes up by one. Thus, the number of generalized 
momenta required to describe the dynamics of the system 
changes with every transition. 

There are two types of transitions, (1): a rollerblade comes 
into contact with the ground and the number of generalized 
momenta goes down by one, and (2): a rollerblade goes out 
of contact with the ground and the number of generalized 
momenta increases by one. We will examine the two cases 
separately. 

The case of a rollerblade coming into contact with the 
ground will in general be accompanied by some loss of 
energy. This is because the system loses momentum in the 

~ 
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So(one rollerblade in contact with ground) 

s, (both rollerblades in contact with ground) 

Fig. 4. Transitions between COnfigurations with one and two mUerblades in 
contact wirh the ground. S, is two dimensional or one-dimensional. 
direction of the new constraint. Thus, the only momentum that 
is now present will be in the new unconstrained direction(s) 
corresponding to the new configuration of the robot. We state 
this observation in the following form: 

When transitioning jium one basis io another: the new 
generalized momentum in a pam'cular direction is given by 
ihe projections of the generalized momeiiia before transition 
on the new unconstrained direction. 

This rule can be stated in a more formal manner. Let (pi)+ 
denote the i' generalized momentum, just after a rollerblade 
has been put down, in a direction (E;) , .  (We will use the + 
subscript to denote quantities just after transition and the - 
subscript to denote quantities just before transition). Let n = 7 
denote the size of the configuration space for the robot. Then, 

The'case of a rollerblade going out of contact with the 
ground results in the addition of a new unconstrained direction 
for the system. Thus, the momentum of the system gets 
distributed among the new set of directions. This effect can 
be modeled in a manner similar to Eq. 16. For the specific 
case of the ROLLERBLADER, if pl and p 2  denote the two 
generalized momenta for the robot configuration with only 
one leg in contact with the ground, we have (after one leg is 
picked up): 

and (E ; )2  are given by Eq. 7 and Eq. 8. Equation 17 
defines the initial conditions for the two generalized momenta 
needed for the configuration with only one leg on the ground. 
They can now be used along with the shape inputs in the new 
configuration to solve Eq. 13. 

Iv. GAIT GENERATION - SIMULATION AND EXPERIMENTS 

In deriving gaits for the ROLLERBLADER, we were inspired 
in part by human rollerblading motion and walking. For 
simplicity, we assumed that we have direct control over the 
shape inputs and are able to drive them directly. This is 
equivalent to assuming the motors are controlled by a feedback 
controller that cancels the dynamics in Eq. 15 allowing the 



direct control of r ( t ) .  In the experimental prototype, the servos 
give us direct control of the joint angles. 

Experimental data was obtained using an overhead camera 
running at approximately IO Hz. The trajectory of the robot 
was found by tracking the motion of a bright orange square 
marker attached to the robot. The orientation of the robot 
was recovered from the orientation of one of the edges of 
the square marker. The maximum error in tracking the (x, y) 
position of the robot was 2.5 cm. 

A. o p e  I gaits 
In Type 1 gaits, the legs are picked up and reset to their 

original starting position. It is easy to see that we need to push 
off against the nonholonomic constraint to achieve motion of 
the system. Hence, the gaits that we tried were simple gaits 
where each leg does one of three motions: COAST, PUSH, 
RETURN. In the COAST part of the motion, the leg stays 
at a constant relative position with respect to the body. In the 
PUSH part of the motion, the leg pushes off in a direction 
parallel to the constraint. The RETURN part involves picking 
the leg off the ground and returning the leg to a new position 
after the end of a PUSH. 

GAIT 1 
The first gait (labeled GAIT I )  is represented in Fig. 5(a) 

by a timing diagram that shows the relative time that the leg 
spends in each part of the gait. It can be seen that the duty 
factor (the fraction of a cycle that the rollerblade is on the 
ground) for this gait is 0.75. The two legs are phased 0.5 
cycles apart from each other. The motion of the leg is depicted 
in Fig. 5(b). The blue (solid) plot is the trajectory of the end 
point of the leg. The green plane represents the horizontal 
plane containing the axis of Joint 2 of the robot. The dashed 
lines indicate the initial position of the leg. The simulated 
motion of the robot for this gait is shown in Fig. 5(c) and the 
experimental trajectory is shown in Fig. 5(d). 

The significant drift in the positive y direction in the 
experimental plot is caused by asymmetry of the prototype 
due to unequal weight distribution and a weaker motor on one 
of the legs. Lack of significant undulation in the experimental 
trajectory is partly caused by slipping of the rollerblades which 
prevented them from executing the PUSH phase effectively. 

GAIT 2 
The second gait (labeled as GAIT 2) is similar to GAIT 

1 except that the duty cycle for GAIT 2 is 0.5, i.e. each leg 
spends only f of the gait cycle on the grnund. The legs come 
into contact with the ground alternately. Thus, in this case 
there is no COAST part in the gait cycle. Experimental results 
for this gait are presented in Fig. 6. The undulations in the 
trajectory are more pronounced in this case because of the 
much higher stroke length than in GAIT 1 : each leg pushes 
for 50% of the gait cycle as compared to only 25% of the gait 
cycle for GAIT I(a1though slipping does occur in both cases, 
the net effect is a doubling of stroke length for GAIT 2). 

E. Type 2 gaits 
The generation of gaits for the ROLLERBLADER in the 

configuration with both legs on the ground is a complex 

(a) Phasing of legs for 
GAIT 1. 

@) GAIT 1: Leg Motion 

11/1 ::I 

(c) Simulated uajectory from 
Ieh to right for GAIT 1.  

(d) Exp=zrimemtal trajectory 
from left to right for GAIT 1. 

Fig. 5.  GAIT 1 

..y/ 02 0'1 I. I 

(a) Experimental mjectory of 
ROLLERBLADER from left to 

(b) @(radians) YS. t(s). 

right for GAIT 2. 

Fig. 6. GAIT 2 

problem. We examined the use of sinusoidal inputs to drive 
the robot in [9]. We will now describe these gaits in brief and 
present new experimental results obtained using these gaits. 
Symmetric gait 

The simplest possible gait that can be used is the one where 
the motions of the two legs are symmetric with respect to the 
longitudinal axis of symmetry (z axis of the body fixed frame - 
see Fig. 3). We call such a gait, where y2 = -yl and d l  = d2, 
a symmetric gait. The symmetric gait generates motion only 
in the forward direction. The inputs are specified as sinusoids: 

27rt 27rt 
d2=&6idzesin(-+4d,), ~ Z = Y Z ~ + Y Z ~ S ~ ~ ( - + & ~ ) .  ( I  8) 

where ( d l ,  = dzo = 0.345, yzo = 0 ) ,  ( d l ,  = dze = 0.075, -yzC = 
-ylc=0.3) are the amplitudes of the sinusoidal inputs, (& = 

TT2 = 1) are phase offsets and time periods respectively for 

Tdi T71 

2 = %,&, o,& = 0) and (Tdl = Tdz = TT1 = 
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the inputs. 
Fig. 7 shows simulated and experimental motion of the 

robot for a symmetric gait. Note: a closer investigation (not 
shown) of Fig. 7(a) reveals that the forward velocity, &, is 
not constant. 

Anti-symmetric gait An artti-symmetric gait is a gait with 
(rl = ~ 2 , d l  = dz), i.e the legs move in-phase. An anti- 
symmetric gait gives rise to pure rotational motion ofthe robot. 

The inputs for the gait are still given by Eq. 18 but now 
ylC = y*e = 0.3. All the other parameters have the same 
values as in the forward motion gait. Fig. 8 shows simulated 
and experimental results. The spike in the value of 0 at the 
end of the gait is because 0 wraps around from -T to T. 

(a) z(m) “S. t ( S ) .  (b) Shape vari- (c) Experimental 
&lei Vajectory. 

Fig. 7. Simulated and experimenlal r).mnmerric gait for the ROLLERBLADER. 

C. Discussion of experimental results. 

Several practical problems arose in the experimental im- 
dementation of the gaits. The most imoonant was the effect 

(a) Simulated @) Shape vari- (c) Experimenlal 
swim) abies. a(radiulq VI. 

t(S). t(S). 

Fig. 8. Simulsled and experimental onti-symmetric gait. 

Given a trajectory to follow we would like to be able to 
automatically generate a gait that takes the robot along this 
trajectory. This would allow us to generate motion plans for 
the robot or control it using a joystick-like interface. In [ I  I], 
an optimal control method was used to generate gaits.for the 
Snakehoard and is potentially applicable to our system as well. 

A method of achieving point to point motion is to con- 
catenate the Type 2 gaits presented here to move from p i n t  
to p in t .  However, this results in the robot coming to rest 
each time it transitions between gaits. In contrast, human 
rollerbladers frequently use the concept of coasting, i.e. they 
build up momentum for some time and then steer themselves. 
We would like to be able to achieve the same effect, both in 
simulations and experiments. This would require the design of 
gaits that build up momentum or brake the robot. 
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V. CONCLUSION AND FUTURE WORK 

In this paper, we have presented the design for a 
ROLLERBLADER robot. Analysis of the robot was cmied out 
using the method of Lagrangian reduction. Contact transitions 
were handled using appropriate momentum transfer equations. 

gaits were then implemented on the prototype of the robot. 
The gaits include a novel gait that turns the robot in place 
with both rollerblades on the ground throughout the gait and 
two gaits motivated by human rollerblading motion. 

We plan to improve the design of our prototype by reducing 
the weight of the legs and adding springs to help the serYos lift 
up the legs. We plan to add an additional degree of freedom 

Another line of future work we are planning to explore is 

Simulation results were presented for two types of gaits. The tics and ils contro~):’ in pmC. IEEE lnr. cOnj ~~~~~i~~ ~ ~ ~ ~ ~ ~ r i ~ ~ .  

~ystems, bs vegas, &[&,er 2003. 

to the rollerblades by actuating the angles 41 and $2 (Fig. 3). 
nal Mrchonics Amlysis, 136(1), pp- 21-99, 1996, 
J. p. osuow~, 1. p. Desai, and v. ..optimal gait 

the design of a dynamically stable rollerblading robot where 
dynamic balance issues would play a very big role. 

far nonholooomic locomotion systems:’ The /ntCmalioMl Jouml of 
Roborics Research, vol. 19(3), pp. 1-13, March 2oW. 

3949 


