Learning Opportunity Costs in Multi-Robot
Market Based Planners

Jeff Schneider, David Apfelbaum, Drew Bagnell, and Reid Simmons
The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213
{schneide,da0g,dbagnell reids} @cs.cmu.edu

Abstract— Direct human control of multi-robot systems is
limited by the cognitive ability of humans to coordinate nu-
merous interacting components. In remote environments, such
as those encountered during planetary or ocean exploration,
a further limit is imposed by communication bandwidth and
delay.

Market based planning can give humans a higher-level
interface to multi-robot systems in these scenarios. Operators
provide high level tasks and attach a reward to the achieve-
ment of each task. The robots then trade these tasks through
a market based mechanism. The challenge for the system
designer is to create bidding algorithms for the robots that
yield high overall system performance.

Opportunity cost provides a nice basis for such bidding
algorithms since it encapsulates all the costs and benefits we
are interested in. Unfortunately, computing it can be difficult.
We propose a method of learning opportunity costs in market
based planners. We provide analytic results in simplified
scenarios and empirical results on our FIRE simulator, which
focuses on exploration of Mars by multiple, heterogeneous
rovers.

Index Terms— Market-based planning, learning, opportu-
nity cost, multi-robot systems.

I. INTRODUCTION

Multi-robot systems are particularly challenging for hu-
man operators to control or even to observe and assess
progress. The sheer number of control and sensor variables
and the potential interactions between them can quickly
overwhelm an operator’s cognitive abilities. Furthermore,
one popular use of such systems is in remote environments
where it is too unsafe or expensive for humans to be
present. Exploration of other planets, the oceans, and the
antarctic are examples of these environments. These appli-
cations have the additional difficulty that communication
bandwidth and delay further limit what humans can do.
A common approach to these problems is to make the
interaction between humans and robots occur at a fairly
high level using a language that requires only a small
amount of communication. The robots fulfill the high-level
directives in an autonomous mode of operation that requires
them to make all lower level control decisions.

Market-based planning provides one way to define the
language of communication between operators and robots
as well as a mechanism for handling the inter-robot plan-
ning required for autonomous execution of the operators’
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requests. Operators send high level tasks to the multi-robot
system and may assign each task a reward value to indicate
the relative priority of performing it. The robots then
participate in an auction or other market-based mechanism
to distribute the tasks and coordinate their efforts. The
challenge in these systems is devising a bidding strategy
for the robots that yields good performance.

In this paper, we begin by describing our multi-robot
simulator and the multi-agent, three-tier planning and con-
trol architecture we use to control both the simulation and,
in other work, real robots. We then describe the specifics
of the market mechanism and propose an opportunity cost
based method of bidding and a corresponding learning
algorithm to determine those costs. We show analytic
results showing the convergence of the method in a sim-
plified version of the problem. Then we demonstrate the
algorithm’s peformance empirically in our simulator.

Il. THE FIRE SIMULATOR

We first describe the FIRE (Federation of Intelligent
Robotic Explorers) simulator. It provides both the testbed
for our empirical results and a motivating scenario to use
during the description of our methods. Figure 1 shows



Market ¢ fan: : +
Economy Planning 2, Planning (¢— Planning f—p- ¢+ o o
(gli‘RE lTS‘a{lE‘dﬂla t I
TDL Executive q;ﬂf—:&;p Executive |¢—pm Executive —pp s o«
cnnﬁg\nﬂtmnlfstatmldﬂla t t
Skill havi tasks havi havi
Maringis Behavior synch 7] Behavior [ Behavior —pp ¢ o
Robot 1 Robot 2 Robot 3
Fig. 2. Diagram of the distributed 3 layer control architecture. The

“plans” being exchanged between planning levels are actually interpreted
as bids, solicitations for bids, and awards of individual tasks.

a screen shot from the simulator. The scenario involves
multiple heterogeneous rovers exploring the surface of
Mars. There are different types of rovers with each having
different capabilities (e.g. carrying different sensors) and
performance (e.g. driving at different speeds). The envi-
ronment provides different types of rocks and terrain.

For this paper all tasks will take the form of analyzing a
rock at a known location. Each task description will specify
the location of the rock, the type of sensor to be used,
and the reward to be paid for successful completion of
the task. We evaluate the performance of our multi-robot
planning algorithms by the total reward they collect For
further background on the FIRE simulator, see [4].

I1l. DISTRIBUTED THREE LAYER CONTROL
ARCHITECTURE

Each robot is controlled with a three tiered architecture
consisting of a planning, executive, and behavioral layer
with the behavioral layer responsible for direct interaction
with a robot’s sensors and actuators, or a simulator. The
control architecture is built directly on the system described
in [5], [1]. For the FIRE project, a distributed version of the
architecture was developed as shown in figure 2. For more
details about the communication vertically and horizontally
between layers see [4].

Here we focus only on the planning layer and the inter-
robot communication between planning layers. The plan-
ning layer of each robot communicates with the planning
layers of the others in order to hold and participate in task
auctions. By doing so, the system (implicitly) constructs
a global plan and coordinates all of the robots’ activities.
The main components of the planning layer are the trader
and the scheduler.

The optimization algorithm used by the scheduler is
described in [2]. The input to the scheduler is a list of
tasks with their rewards. Using the task information, the
scheduler is able to compute a net profit for any specific

schedule and it performs an efficient heuristic search to find
the best one. In the FIRE architecture, it is also responsible
for communicating with the executive layer to perform the
scheduled tasks at the appropriate time.

The trader performs two separate roles. One is to hold
auctions where it takes tasks it currently owns and puts
them up for sale. If they can be sold profitably, the tasks
are transferred to the winning bidder. The specifics of what
makes a profitable transaction are given in the next section.
The second role of the trader is to bid in auctions being held
by others. Again, the bids are made according to estimated
profitability.

V. BIDDING BASED ON OPPORTUNITY COST

It is not obvious what market or bidding mechanism
should be used when implementing market-based planners.
A precursor to this work focused on the costs of performing
tasks [3] and added features such as continuous arrival of
new tasks into the system and dynamic reallocation of tasks
during execution. The principles of that system are similar
to Contract Nets [6], which inspired many market-based
planning efforts. In a cost-based framework, each bidder
estimates how much it will cost to perform a task and bids
that cost. The task is allocated to the lowest bidder. The
contract reflects an obligation to perform a task and the
bidder is paid to take on that obligation. It is assumed that
the bidder will end up paying much of this out as the “cost”
of performing the task though the cost may be hypothetical.
In the work by Dias, the cost will be real if the winning
bidder then pays someone else to perform the task. If there
is no continuous trading, it may not even be necessary to
have a concept of “money” in the system.

It is preferable not to use a cost-only framework for
planning. Doing so leaves no way to specify the relative
importance of various tasks. Instead we use a reward-
based framework. Every task has a reward which will be
paid to whoever completes it successfully. The flow of
money and meaning of a contract are different under this
framework. A contract consists of an agent paying for the
opportunity to perform a task and collect the corresponding
reward. During bidding, each agent computes how much
that opportunity would be worth and offers to pay that
much for it. The highest bidder gets the task. Later it might
resell that opportunity or it might complete the task and
collect the reward, in either case hopefully gaining a net
profit.

Before describing the bidding, we address the issue
of temporal discounting. As specified so far, our plan-
ning problem is unconstrained. Eventually the robots will
accomplish all tasks and thus all schedules are equally
good. A common constraint in practice is a limit on the
availability of resources such as time or power. We choose
to impose a limit through the use of temporal discounting as
is common in reinforcement learning and financial analysis.
A reward, R, that will be received ¢ time steps into the



future is given a value of v R where + is a discount factor
between zero and one. ~ reflects uncertainty about future
events and is equivalent to assuming that the system will
stop executing with probability 1 — + on each time step.
That interpretation is particularly useful in our Martian
rover domain since there is considerable uncertainty about
the amount of time until a rover ceases functioning due
to loss of power, failure of components, or difficulties
navigating the terrain.

We now address the question of how an agent determines
what the opportunity to perform a task is worth. The
bidding algorithm is as follows:

1) Compute the expected net profit from the current
schedule, P,;,.

2) Use the scheduler to compute the best schedule
including the new task being bid on and report the
expected net profit from it, P,..,.

3) Bid P, - P,q if that quantity is positive. If the
quantity is negative do not bid since no agent would
be willing to pay another to accept an opportunity.
It can always retain the opportunity and not take
advantage of it for free.

A robot auctioning off a task follows exactly the same
procedure except that it checks to see if the highest bid it
receives more than compensates for the expected loss due
to removal of that task from its schedule. If the highest bid
would not compensate this loss, it keeps the task. In order
to complete this bidding algorithm, we need to specify how
a schedule is evaluated. The schedule evaluation algorithm
considers each task in the schedule and does the following:

1) Determine the amount of time it will take to complete
the task. This may include consideration of adjacent
tasks and travel time between them as well as the
amount of time required to perform the requested
sensing operation.

2) Compute the opportunity cost as the product of the
time required and cost per unit time.

3) Compute the time discounted value of the reward for
the task minus the opportunity cost for it. Sum this
value over all tasks in the schedule.

Step 3 of the bidding algorithm may cause some concern.
In a cost-based framework, an agent is bound by its contract
to complete a task. In our framework, the agent has the
option to ignore the task. This will be the right thing to do
if the entire system is already loaded with more valuable
tasks, so we will instead consider the case where there is
spare capacity somewhere in the system. If the owner of
a task has available time it will always do the task since
the purchase price is a sunk cost and it can get additional
reward by completing it. If there is no available time then
the task owner expects to receive zero reward from it. It
will accept any positive bid it receives when auctioning the
task and the new owner will complete it.
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Fig. 3. Plot showing estimated opportunity cost vs reward achieved using
that estimate. The straight line is y=x and is provided to make it easy to
see the effects of applying the learning rule.

A. Learning Opportunity Cost

The missing component in the bidding algorithm is the
determination of the opportunity cost per unit time. Since
we are using an infinite time horizon with dynamic arrival
of tasks, we operate under the assumption that there is a
fixed opportunity cost per unit time and we only need to
estimate that one number. We do this by observing the
actual reward collected while the system runs. This allows
us to use a very simple learning rule: C**! = (1—a)Ct +
aO?, where C? is the estimated opportunity cost at time
t, O is the observed average reward during time period ¢,
and « is a learning rate.

Note that we assume opportunity cost applies only to
time. This is not necessary and any other resource such
as power or machine wear could be included using the
same method. Another obvious extension is to generate
additional features such as the amount of some resource
remaining (useful for finite time horizon and other resource
bounds), the utilization in the current schedule, the number
and value of tasks currently in the system, the number
of robots still functioning, etc. Then we would use an
appropriate non-linear function approximator in place of
the learning rule above. For this paper, we focus only on
the simple case and attempt to understand whether and how
it works.

V. ANALYTIC RESULTS

We have proposed a market-based planning system using
bidding based on learned opportunity costs, but so far
have no indication whether it will result in stable and/or
optimal performance. To gain insight, we step back from
the proposed algorithm and focus on a simplified example
that can be understood analytically. Consider a single agent
participating in the following market:

« A single new task is up for auction at each time step.



« Each task requires two time steps to complete.

o The agent uses no scheduler. If it accepts the task,
it must perform the work immediately and will be
unavailable to bid on the task offered on the next time.

o All other agents in the market are using a fixed
strategy (they are not learning). The effect of their
strategies and the distribution of task rewards available
is that the agent sees tasks with profits available that
are drawn from a uniform distribution on [0,1]. As
presented earlier, the bidding algorithm never bids
to include a profit for itself but this effect may be
observed if a second price auction is used [7].

In this market, the agent merely has to decide on its
threshold for accepting and rejecting tasks at each time
step. Suppose the agent currently estimates that it will
receive an average profit of = per time step and that the
task available on the current time step offers a profit of y.
Its choice is between accepting the task and getting a profit
of y during the next two time steps or rejecting the task
and getting zero profit this time step plus an expected =
profit on the next time step. Therefore, it accepts the task
if y> .

Now assume that the agent learns slowly such that it
keeps using the above policy until it discovers its true
expected reward exactly. Then it changes its estimate, z,
to be that value and repeats (the learning rate, «, is 1,
but the amount of time covered by one observation is
infinite). Using the rule above, the agent accepts a portion
1 — x of the tasks offered to it and rejects the other = of
them. The total time spent doing this per task offered is
(2 for the accepts and 1 for the rejects): 2 — x. The agent
receives an average reward of (1 + x)/2 for each task it
accepts and thus accumulates a total of (1 — z)(1 + z)/2
profit per task offered. Dividing profit per task offered by
time per task offered we get an average profit per time
step as a function of estimated opportunity cost: f(z) =
(1—2)(14z)/(4—2x). The agent then updates its estimate
of profit per time step to be this value. Solving f(z) = «,
we find a fixed point for these updates at z = 2 — /3. By
checking the derivatives of f we see that z = 2 — /3 is
also a local maximum and the fixed point is stable.

Figure 3 can give additional intuition. When the agent
over-estimates its expected profit it will accept very few
tasks and get a small reward because of it. When it under-
estimates, it will accept too many low profit tasks and
thus perform sub-optimally. In either case, it will end up
with an under-estimate of its optimal performance. Using
that under-estimate results in performance better than the
estimate and repeating the process moves it toward the
optimum.

VI. EMPIRICAL RESULTS

We now present an empirical evaluation of our proposed
algorithms using the FIRE simulator described earlier.
Except where noted, the algorithm follows that presented
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Fig. 4. Plot showing task reward vs completion time. The crosses on
the far right represent tasks that were not complete when the simulation
was terminated.

in section IV rather than the simplified method used for
the analysis in section V. In all of these experiments, each
trader repeatedly tries to auction off the tasks it owns in a
round robin fashion.

A. Experiments with No Learning

In the first experiments, we demonstrate the operation
of the overall system without learned opportunity costs.
We fix the estimated opportunity cost at a value of 10
dollars/second since this is known to be a conservative
estimate. Based on figure 3 and our experience, under-
estimates are much less devastating to performance than
over-estimates. The rewards for tasks are drawn from a
uniform distribution ranging between 0 and 1000 dollars.
50 new tasks are generated every 40 seconds (the parame-
ters of the simulator are set such that robots act faster than
real-time in order to speed up our experiments). There are
six identical robots in the system and all tasks are identical
except for their reward and the location of the rock, which
is drawn from a uniform distribution over a square.

During a long run of the simulation the time between the
introduction of a task and its completion were recorded. A
plot of this time against the reward for the task shows the
system exhibiting the desired behavior (see figure 4). Tasks
of very high reward are always completed almost immedi-
ately. Moderate reward tasks are generally completed less
urgently and low reward tasks are left undone. These tasks
might be done eventually, but new tasks are arriving at a
rate faster than they can be completed, so a backlog of low
reward tasks builds up as the simulation runs. Also observe
that there is some spread in the points. Since the robot’s
also consider how far they will have to drive to a rock,
they sometimes do a low-reward job because it is nearby
or put off a valuable one because it is far away.
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Fig. 5.  Plot showing estimated opportunity cost and corresponding
average undiscounted reward received (AUD) as a function of time. Each
“experiment” refers to one 15 minute block of time after which the
opportunity cost estimate was updated.

On average each robot collected 10.8 dollars/second in
the simulation. A test using the cost-only version of bidding
reported in [4] yielded an average of 8.6 dollars/second.
The difference is not surprising, but does further demon-
strate the smart use of rewards in the market.

B. Experiments with Learning on Homogeneous Robots

In the second set of experiments, the robots were allowed
to learn as a group. All robots pooled their observations to
obtain a joint estimate of their opportunity cost. During
the runs, the average undiscounted reward for the previous
15 minutes was computed every 15 minutes and then
the learning rule was applied with « = 0.5. The entire
simulation was run for 5 hours (yielding 20 such updates).
Several runs were completed with the initial estimate of
opportunity cost set at a variety of levels. In all cases,
the cost estimates and performance converged to a range
between 10 and 11 dollars/second.

Figure 5 shows one of these runs where the opportunity
cost was initialized to a very high value. From the plot we
see that the initial estimate was 20 and using that estimate
yielded an average reward received of a little under 6 in
the first 15 minute period. Applying the learning rule then
gave an estimated opportunity cost of almost 13 for the
second 15 minutes of the experiment. By the 5th update, the
learning has converged and the values continue to oscillate
due to the randomness of the simulation and the relatively
high learning rate.

C. Experiments with Learning on Heterogeneous Robots

Consider a scenario with different types tasks. One type
requests the use of an A sensor and the other requests the
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Fig. 6.  Plots showing the effect of varying AB robots’ estimate of

their opportunity cost. The top plot shows overall system performance
measured by the total undiscounted reward collected. The bottom plot
shows numbers of A and B rocks chosen by AB robots.

use of a B sensor. Suppose we have two different types
of robots. One carries only an A sensor and thus can only
perform tasks requiring an A sensor. The other carries both
sensors and can perform any task.

Intuitively, we would like AB robots to choose mostly B
tasks even though they are equally well suited for A tasks.
This would leave most of the A tasks for the A robots
and ensure that B tasks don’t get neglected, thus achieving
the highest overall reward for the system. Is there a way
to achieve this automatically in our system? Consider the
actual opportunity costs for these robots. The AB robots
have a higher opportunity cost (higher reward typically
achieved on average) because they can do any task and
thus have the best ability to pick high-value tasks near
their current position. A robots have lower opportunity cost
because they only have A tasks available to them. Now
suppose an A robot and an AB robot are bidding on the
same A task and suppose it is the same distance from both
of them. The AB robot should lose this auction because
its opportunity cost is higher and thus its estimated profit
and the amount it is willing to bid for the task is lower. Of
course, AB robots will not always lose since the current
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heterogeneous robots. AUD is average undiscounted reward received.
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state of their schedule and the location of the rock also
contribute to the expected costs and rewards for the tasks.
The high-cost AB robots will still win B tasks because no
other robots can perform them.

Before trying learning, we performed some experiments
to test the effects of the opportunity cost estimate on system
behavior. There are 3 A robots, 3 AB robots, and an equal
number of A and B tasks generated. The opportunity cost of
the A robots was fixed at 5 (well below the correct value).
During separate runs, the opportunity cost for the AB
robots was varied over a range of 0 to 20. Figure 6 shows
the results of these experiments. When the AB opportunity
cost is low, those robots perform a significant number of A
tasks in addition to their B tasks and cause under-utilization
of the A robots. The overall performance of the system is
poor. As the AB opportunity cost is increased, AB robots
do more B tasks and less A tasks. Corresponding to this
change, overall system performance increases up until the
cost reaches 7. Beyond that, the AB robots quit doing some
B tasks as well because they expect more valuable tasks to
arrive. As a result overall system performance decreases.

Finally, we allowed each robot type to learn its own
opportunity costs in this scenario. Again the simulations
were initialized with several different values for the oppor-
tunity cost and convergence was observed for all of them.
Interesting results from one such trial are shown in figure
7. In this run, the initial cost for A robots is set very high
at 100, while the initial cost for AB robots is set very low
at 0. This is the extreme opposite of their correct values.
In the figure we see that during the first 15 minutes, the
A robots collected no reward because their cost estimate
made no task appear profitable. The AB robots collected a
sub-optimal, but reasonable reward. Then for the second
15 minutes, the AB estimate was increased to about 6

and the A estimate was reduced to about 50 (still way
off the chart). The result of this was that A robots still
accomplished almost no tasks, while AB robots became
more selective and achieved higher profit. By the third
period, the A estimate has come down to a level where A
robots start doing things. As they take more jobs, it begins
to cut into the profitability of the AB robots, but the overall
system performance is better. By the 7th period, the costs
have converged exactly as we had hoped. The A robots
have concluded that their opportunity costs are lower than
those of the AB robots and they are doing the majority of
the A tasks.

VIl. FUTURE WORK

The current system demonstrates the successful use of
opportunity cost learning in a market-based planner. Their
remain many extensions that would be helpful and/or
necessary in real systems. The most obvious is is learning
based on a broad array of features and the ability to handle
non-linear opportunity costs.

Further work is also needed to bridge the gap between
the analytic and empirical results we presented. The an-
alytic results are similar to what appears as yield man-
agement in operations research and we expect to be able
to extend those results similarly. The interaction between
the scheduler’s ability to move low-priority tasks to the
end and the trader’s ability to get rid of them is particu-
larly challenging to analyze. Generalizing the analysis for
simultaneous learning by all agents is the topic of much
ongoing effort in the machine learning community.
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