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Abstract—In this paper, an algorithm to estimate wind
direction by using a small and light Unmanned Air Vehi-
cle(UAV) called . KITEPLANE was proposed. KITEPLANE
had a big main wing which is a kite-like delta shape and,
therefore, it was easy to be disturbed by wind. However, this

~ disadvantage implies that the KITEPLANE has an ability to
sense wind and that it is expected to use the KITEPLANE as
a sensor for wind estimation. In order to achieve this feature,
dynamics of the KITEPLANE under wind disturbance were
derived and a numerical estimation method was proposed.
Devices equipped on board were also developed and the
proposed method was implemented. Results of an experiment
showed the effectiveness of the proposed method.

Index Terms— KITEPLANE, Unmanned Air Vehicle, Wind
disturbance, Estimation.

I. INTRODUCTION

Unmanned Air Vehicle(UAV)s are required in order for
observation and rescue activities at dangerous areas such
as volcanoes, areas stricken by earthquakes, fires and so
on. From practical viewpoints, those UAVs are needed to
have enough payload to carry equipments, to be able to fly
for an enough time, to be small and light and to be carried
easily to the place where they are launched or taken off.
Especially, since it is necessary for UAVs to fly at low
altitude in order to observe terrain, UAVs are likely to face
a danger to fall because of irregular wind or obstacles.
Therefore, sophisticated autopilot systems are necessary
and UAVs should be less hazardous even if they crashed.

Automatic control for airplanes has a long history and
these many c¢ontrol techniques are also able to be applied

for autonomous UAVs. Since dynamics of airplanes are

nonlinear, controllers based on linear theories are not
sufficient for trim conditions which are different from the
nominal trim condition. In order to overcome this difficulty,
it is common to adopt robust control approaches, gain
scheduling techniques and so on. For example, Khammash
[1] applied H,, approach to control the longitudinal pitch

motion under uncertainties of mass and center of gravity.

Chu [2] proposed a controller based on gain scheduling
for airplanes with multiple engines by using throttles only.
Kaminer [3] [4] also proposed a tracking controller by
utilizing gain scheduling. Shtessel [5] adopted a sliding
mode controller taking bounded inputs into account. Hess

[6] and Andrievsky [7] also considered bounded control -

inputs. Dynamics of UAVs are not only nonlinear but
also nonminimum phase. Hauser [8], Benvenutti [9], Koo
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[10] [11] and Shim [12] have proposed control systems
for nonlinear and nonminimum phase systems such as
autonomous UAVs by approximate linearlization approach.
Al-Hiddabi [13] concentrated to longitudinal maneuver and
proposed a nonlinear output tracking method. Intelligent
approaches such as artificial neural networks, fuzzy logic
controllers [14] have been also utilized. Montgomery [15]
proposed a learning method for a fuzzy-neural controller.
Ferndndez-Montesinos [16] utilized fuzzy logic for guid-
ance and control when an airplane was landing under

- windshear. Va$tdk [17] adopted a fuzzy logic controller

which was firstly proposed by Mamdani [18]. Sugeno
[19] also proposed a fuzzy controller for an autonomous
helicopter.

Various structure of UAVs have been also studied. Heli-
copters have been studied widely(e.g. [19], [15] [10], [20],
[11], [12] ) in spite of its complex dynamics because it
is able to hover or stop in the air. It is also significantly
important to make UAVs small and light. Grasmeyer [21]
developed a Micro Air Vehicle(MAV) named black widow
and Wu [22] proposed a MAV whose wing span was
smaller than 4cm. Deng [24] and Schenato [25] studied
small MAVs inspired from insects. Micro devices for small
UAVs are also important and Lyshvski [26] [27] studied
special control surfaces for MAVSs.

In this paper, an UAV which is not only small and
light but also has large payload is considered. The UAV
is named as KITEPLANE [28], [29] because its main
wing which is the largest component has a kite-like delta
shape (Fig.1). Because the main wing is made of cloth, it
is light and flexible. Therefore, the main wing could be
large without making the airplane heavy as for rigid fixed
wings. This implies that the KITEPLANE is able to be
light and to have large payload simultaneously. Owing to
the flexibility of the wing, the airplane is rather safe and
robust even when it crashed into the ground. The center of
the mass locates under the main wing and ailerons attached
with dihedral angles. This makes attitude in a trim state
rather stable and the motion is well-behaved. Therefore, the
airplane may be controlled only by using slow-rate low-cost
sensors such as GPS without a full attitude measurement.
Nagata [29] proposed a trajectory following controller for
the KITEPLANE based on a PID output feedback without
attitude information and results of numerical simulations
showed the effectiveness of the method under the absence
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Fig. 1. KITEPLANE

of wind disturbance.

However, wind disturbance significantly deteriorates the
performance of the path following of the KITEPLANE
because of its large main wing. On the contrary, this
implies that the KITEPLANE is sensitive to wind and
it is able to be utilized to observe wind direction. Once
the wind information is available, the performance of the
autopilot system will be able to be improved. Furthermore,
autonomous path planning taking wind into account will
also be able to make efficient flight. Information about
wind itself is also required by many applications such as
a weather forecast, estimating the diffusion of pollution,
preventing a fire and so on. Therefore, a method to estimate
wind, especially its direction was considered in this paper.
To this end, dynamics of the KITEPLANE under wind
disturbance was derived first, and then a method to estimate
parameters of wind was proposed which was the main con-
tribution of this paper. For a small UAVs, Wu modeled the
dynamics as ARX model and identified those parameters
using measured results of flight test [23]. The model used
in this paper was a nonlinear system and parameters were
estimated online by solving an algebraic equation using
measured data.

In order to show the validity of the proposed method,
results of experiments were shown. For experiments, a
small all-in-one computer system was developed. Results
showed the effectiveness of the proposed method.

This paper is organized as follows. In the next sec-
tion(Sec.IT), the KITEPLANE and the computer system are
shown and dynamics of the system is derived in the section
III. The method to estimate wind is proposed in the section
IV and results of experiments are shown in Sec.V. Then,
conclusion follows (Sec. VI).

II. KITEPLANE

KITEPLANE is introduced briefly in this section. It’s
full length, wing span and height are 2, 280mm, 2, 780mm
and 1, 130mm respectively. Weight is about 20kg. Payload
of a KITEPLANE is more than 6kg. It is able to take off
from a runway or a flat field, to fly more than 3,000m
above sea level and to land on the ground. The airplane
has five wings, i.e. a delta-shaped main wing, a couple
of ailerons, an elevator and a rudder. The main wing is
fixed to the body. Servo motors are attached to ailerons,
the elevator and the rudder as control surface actuators.
The engine is installed in the center of the body and a
servo motor controls its throttle.

An on-board computer system which will be referred
as CPU is a PC/104 IBM-PC compatible embedded
PC unit(Advantech, PCM-3370) and connected to A/D
unit(Advantech, PCM-3718HG), GPS(Furuno Electric Co.,
GN-79) and FPGA system for a servo signal genera-
tor/receiver unit. Sensor unit connected to A/D unit consists
of three accelerometers(Crossbow, CX02LF3), three gyro-
scopes(Murata Manufacturing Co., ENV-05F-03), a magne-
tometer(AP1 System, AM-21M) for an azimuth angle and
two inclination-meter(Midori Precisions, UV-00H) for roll
and pitch angles. All servo motors are controlled manually
via radio control in manual mode, or automatically by an
on-board computer system in auto mode. A block diagram
of the system is shown in Fig. 2.
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Fig. 2. Overview of KITEPLANE System

ART-Linux [30] which was a real time operating system
based on Linux was used and the proposed system was
implemented as a realtime task. GPS information was
available once per a second and other sensory informa-
tion were sampled each 50msec. GUI monitoring system
which informs operators the stat of the airplane. TELNET
protocol was used for forking tasks on CPU and FTP was
used for transferring data among CPU and base computers
as they were used in usual LAN.

III. DYNAMICS OF KITEPLANE

Though the complete dynamics of the KITEPLANE are
extensively complex, a simple rigid body model is useful
which is shown in this section.

Let “body frame” be the Cartesian coordinate system
which is attached to the airplane and whose origin is
located at the center of the gravity (Fig. 3). X axis is
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aligned to the front of the body and Z axis is aligned
to down when the airplane stays on the ground. Y axis is
chosen as the body frame becomes right-hand. Let “inertial
frame” be the Cartesian coordinate system which is fixed
on the ground. X axis and Y axis of the inertial frame are
aligned to East and North respectively. Z axis is toward
perpendicular upright direction. Denote the velocity of

i
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(a) Body Frame (b) Coordinate Transformation

Fig. 3. Body Frame and Inertial Frame

the airplane as Vo and let Up, Vs and Wp represent
elements of Vo with respect to the body frame. Pg,Qp
and Rp represent angular velocities with respect to the
body frame. Fxp,Fyp,Fzp, L, Mg and N denote
aerodynamic forces and moments. Define Z-Y-X Buler
angle from the inertial frame to the body frame as &, 0, ¥
and denote a transformation matrix from the inertial frame
to the body frame as T';(®, O, ¥) or T'g; in short. It is
easy to show that there exists an inverse of T'g;, which
~will be denoted as Tp, as far as © # +Z. Denote
m and I as mass of the airplane and an inertia matrix
respectively. The position of the center of the gravity is
denoted by X7,Yr, Zr with respect to the inertial frame.
Let Ap = [UB,VB,WB]T and £ = [PB,QB,RB]T.
Assume the wind effect can be modeled as forces and

moments added to the system. Denote them as dwrp

or dwrp respectively. Then, by using above notations,
dynamics of the KITEPLANE can be given as follows:
d
m A5 +£&5 ® Ap = T'p1 [0,0,mg]” M
+[Fxs, Fyp, Fzp]" + éwrp
d
I—ép+¢&p®I¢p = [Lp, Mp, Np|" +dwrp (2)

d
7 X0 Yn 2" = T1p)p A3)

& Cy S¢

d Ce Ce

% [ ) ] = I: —-Sy Cy 0 ] T4
v ok sk

where Cy, Sy, Co, Se, and g represent cos ¥, sin ¥,
cos©, sin© and a gravitational acceleration. ® denotes
outer product. Since aerodynamic forces and moments are
mainly caused by wings, Fxp,Fyg,Fzp,Lg, Mg and
Np are not only functions of the state of the airplane but

also functions of control inputs which is denoted as u.
Refer [28], [29], [31] for further details.

The dynamics (1),(2),(3) and (4) are able to be summa-
rized in a general nonlinear form:

&z = f(z)+g(x,u)+dwp ©)]
¥y = h(z),
where « = [Up, Vs, Ws, P, @8, RB, X1,Y1, 21,9, 0, ¥]”,
y are measurable outputs such as the position (X7, Y7, Z7).

dwp represents wind disturbances -with respect to the
body frame. Since “wind frame” is omitted in the above

~ modeling, the effect of attack of ‘angle caused by wind is

also included in dwp.

IV. WIND ESTIMATION

The KITEPLANE is able to observe angular velocities,
accelerations with respect to the body frame, and roll
and pitch angles with respect to the inertial frame. Xg
component of dynamics (5) can be written as

axp(t) = To(x(t)) Ao + dwx p(t), (6)

where ax g, Lo(x) and Ag represent the acceleration in
Xp direction, a row vector of known nonlinear functions
and a column vector of unknown parameters respectively.
Denote the number of unknown parameters as r. Assume
that constant wind is blowing only in the horizontal plane.
dwp can be approximated as

. . wx A
dwpg =Tpi(z) | wy |, N0
0
where wx and wy are constant parameters. Let

I(z) = [To(z), Tar11(x), Teriz(z)]
where T'p 14 represents ,j element of T'p 1 and let

: T
A= [Ag,wx',wY] .
Then, (6) can be expressed as follows:

axp(t) = T(z(t)A. ®
Though (6) gives an algebraic relation between the ob-
served information and unknown parameters, it is not
possible to solve A since (6) is under-determined.
Define a matrix IT which contains a time series of " as
I(z(t — (n - 1)Ts))
I'(z(t - (n - 2)Ts))
oe) = | : ; )
T'(z(t - Ts))
T(z(t))
where Ts represents the sampling period and n represents
the number of sampled data. Similarly, define a vector Y
which contains a time series of acceleration ax g as
axp(t— (n—1)Ts)
axp(t — (n - 2)T5)

Y(t) = 10)

aXB(t._ Ts) -
axp(t)
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Fig. 5. Flight Path

direction since this disadvantage could be interpreted as
the KITEPLANE was sensitive to wind. For the wind
estimation, the dynamical model was derived and the
computational approach was proposed. Devices for exper-
iments were also developed and the proposed method was
implemented on the developed system. The result of an
experiment showed the validity of the proposed approach.

For future works, autopilot system by utilizing the in-
formation about wind should was able to be estimated is
needed to be developed, since the effect of wind is critical
for practical uses of the KITEPLANE.
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