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Abstract—1In this paper, we propose a new method for
biped humanoids to compensate for large amounts of angular
momentum induced by strong external perturbations applied
to the body during gait motion. Such angular momentum
can easily cause the humanoid to fall down onto the ground.
We use an Angular Momentum inducing inverted Pendulum
Model (AMPM), which is an enhanced version of the 3D
linear inverted pendulum model to model the robot dynamics.
Because the AMPM allows us to explicitly calculate the angular
momentum generated by the ground reaction force, it is possible
to calculate a counteracting motion that compensates for the
angular momentum generated by external perturbations in real-
time.

I. INTRODUCTION

Research related to biped locomotion and stable walking
control of humanoid robots has advanced rapidly in recent
years. Several researchers have proposed feed-forward algo-
rithms for humanoid walking based on ZMP criteria [6], [3],
[11, [5], [2], [9], [11]. The trajectories generated by these
methods are model-based and result in dynamically stable
motions provided that the trajectory of the Zero Moment
Point lies inside the convex hull of the area of support.

Gaited motion by bipeds can be quite sensitive to modeling
errors and uncertainty. In order to achieve stable gaits, a
feedback controller typically must be used. Kajita et al.[7]
calculated the additional rotational momentum that must
be applied to the body to maintain balance by using the
angular momentum as a direct reference. Napoleon et al.[10]
proposed a feedback method based on a two link inverted
pendulum model. In this research, the motion generated by
the motion planner are kept the same, and the feedback
controller tries to reduce the difference between the current
state and the ideal motion. This feedback controller was used
to simulate stable standing and kicking motions.

Humans, on the other hand, use a variety of complex
strategies in order to maintain balance according to the
amount of force applied to the body. For example, for
relatively weak perturbations, the impact is absorbed by
the ankle joint; the posture of the upper part of the body
remains unchanged. When the impact is larger, the hip and
knee joints are used, and the whole body is used to absorb
the impact. If the impact is even stronger, the human will
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alter their gait and step out one or two steps to counteract
the additional linear and angular momentum. Evidence from
biomechanical studies indicate that a number of different
strategies are prepared in advance, and the most appropriate
response motion is launched when the perturbation occurs.
This means that overall balance is preserved not only through
feedback control, but the feedforward motion is also changed
according to the current state of the body. These two balance
compensation strategies vastly increase the flexibility and
robustness of the human gait. In order to enable biped
humanoids to approach the same level of performance and
stability as humans, a balancing controller that is capable
of “retuning” the upcoming balancing motion in real-time is
needed.

In this paper, we propose a new feedback method for
biped humanoids to counteract strong external perturbation
using the Angular Momentum inducing inverted Pendulum
Model (AMPM), which is an enhanced version of the 3D
Linear Inverted Pendulum Mode (3DLIPM). Using AMPM,
it is possible to explicitly calculate the angular momentum
generated during the motion. After the perturbation, new
trajectories of the desired COM and the angular momentum
are calculated to compensate for the increased angular mo-
mentum due to the disturbance. By using these trajectories
as constraints, the trajectories of the generalized coordinates
including the position of the center of the hips and the
joint angles that satisfy those constraints are calculated using
inverse kinematics, as done in [8], [4].

We also propose a new criteria called the difference of
inertia , that is based on the difference of the moment of
inertia between the current posture and the corresponding
posture in the original motion. By using the difference of
inertia as a criteria, the angular momentum needed to bring
the posture back to the original motion can be estimated.
As a result, it is possible to calculate the motion of the
humanoid which counteracts the external perturbation, and
then gradually moves back to the original gait motion. A
number of experiments were conducted to check the validity
of the proposed method. After applying various kinds of
perturbations to the humanoid during gait motion, the coun-
teracting motion could be properly calculated. Although we
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Fig. 1.  The Angular Momentum inducing inverted Pendulum Model
(AMPM). The ZMP is allowed to move over the ground, and its position
must be linearly dependent to that of the COM. The horizontal component
of the ground force vector is allowed to change, by an amount which must
be linearly dependent on the COM.

have applied the proposed method only to gait motion, the
idea can be used for motions such as running and standing,
as well.

II. ANGULAR MOMENTUM INDUCING INVERTED
PENDULUM MODEL

In this section, we review the Angular Momentum in-
ducing inverted Pendulum Model (AMPM) [8]. The AMPM
enhances the 3DLIPM in the following directions; (1) the
ZMP is allowed to move over the ground, (2) the ground
force vector is calculated to be not only parallel to the vector
connecting the ZMP and the COM,; its horizontal element can
be linearly correlated to the ZMP-COM vector (Fig. 1). As
a result, rotational moment will be generated by the ground
force. Let us assume the position of the COM is (z, H), the
position of the ZMP is (cx + d,0), and the vector of the
ground force is parallel to the vector (a(x — zmp) + b, g)
where a,b,c,d are constant values and g is the gravity
constant. As the height of the COM is assumed to have a
constant value H, the relationship between the acceleration

of the COM and its position can be written by:
F.:F, = &:(2+9)

%(a(x— (cx +d))+0b): H.

The differential equation of the COM can then be written by
the following form:

Z=a(l—-c)x+b—ad. (D)

The explicit solution for this differential equation can be
written as

p= 2T o amar g Vamar ()
a(l—c)

where C7, Cy are constant values. As initial parameter values
are set as x = xg and & = vy at ¢ = 0, the constant values

C1, Cy will be as follows:

1 o b—ad

Cl = 5(560 - \/(a_ac) + a(c— 1))5
B lx o b—ad
G = 2( 0+\/(a—ac)+a(c_1)).

Then, the ground force vector can be written as
F, = mx
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where m is the mass of the system. The rotational moment
r around the y-axis can be calculated by
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and the angular momentum wy, ;, generated by the rotational
momentum between times ¢t = ¢1, ¢ can be obtained as
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where w; is the angular momentum at ¢ = ¢;.

A. Using the AMPM to counteract external perturbation in
the sagittal plane

Suppose the motion of the humanoid in sagittal plane is
defined as shown in Figure 2. To clarify the concept of our
approach, let us assume here that no angular momentum
around the COM is generated in the original feedforward
motion. That means the ground force vector always passes
through the COM. Let us assume the humanoid is first in
single support phase, and external perturbation was applied
to the humanoid body causing sudden increase in the linear
and angular momentum when the COM is at Point A. The
increased linear momentum can be reduced by using existing
approaches of 3DLIPM. However, it was difficult to reduce
the induced angular momentum by previous approaches es-
pecially when the amount is large.

The increase in the linear and angular momentum are
defined here by AL and AM, as well. Even after the
perturbation, we assume the height of the center of gravity
is same as before, and the vertical velocity of the center of
gravity is zero as well. Actually, it is possible to summarize
all the effect of the external perturbation to the increase
in the horizontal component of the linear momentum and
the angular momentum, by forcing the COM to stay at the
same height using conventional feedback algorithm such as
PD control, although this would further increase the angular
momentum of the body around the center of gravity. After the
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Fig. 2. The gait motion pattern in the sagittal plane. The black dot represents
the COM and the triangles on the bottom represent the support feet. The
external perturbation is applied during single support phase, when the COM
is at Point A. The positions of the COM when the following double support,
single support, and double support phase start are defined here by Point
B, C, and C’, as well. The angular momentum generated by the external
perturbation is compensated mainly between Point B and C’.

perturbation, the COM will move along the horizontal axis,
and the ground force vector will penetrate the COM as same
as in the original motion. Therefore, the angular momentum
will stay at the same value during the single support phase. In
order to reduce the increased linear and angular momentum
to zero, the motion after the perturbation will be re-planned.
The following strategies are used to counteract the increased
momentum:

« the position the swing leg lands onto the ground will be
modified

« rotational momentum will be applied to the body during
the double support phase to counteract the angular
momentum induced by the external perturbation.

For the motion during double support phase, the following
two assumptions are made: (1) the coordinate values of Point
B and C in Figure 2, which are the points of COM when the
double support phase begins and ends, as well, will be the
same as those in the original gait motion, and (2) The motion
of the COM and the trajectory of the angular momentum will
follow the rules of AMPM. The ground force vector will be
parallel to the vector connecting the ZMP and COM at Point
C. The acceleration of the COM will be uncontinuous at
Point B, as the ground force vector will be adjusted so that
the angular momentum will be reduced to zero when the
COM arrives to C. Let us assume the position of the new
foot position is decided and the coordinate value of the ZMP
at Point C and C’ are defined by z. and z., as well. The new
differential equation of the COM during the double support
phase is defined here by

T =pxr—+q @)

where p and ¢ are the parameters which are to be calculated.
The condition that the increased angular momentum will be

reduced to zero can be written by the following form:
wp,c =—AM (&)

where wp ¢ is the angular momentum generated during
double support which can be explicitly written by the form
in Equation 3. As the ground force vector is parallel to
the vector connecting the ZMP and COM at Point C, the
following equation must be satisfied:
A
H
where z. is the coordinate value of the COM at Point C and
H is the height of the COM.
By substituting Equation 6 into 5, the following equation
can be obtained:

Te = PTe+q (6)

wp,c(p) = —AM )

where wp ¢(p) is a function that returns the angular mo-
mentum generated between Point B and Point C using p
as an input. Unfortunately, there is no explicit solution for
p in Equation 7. Although the solution must be calculated
numerically, as the relationship between p and wg c(p) is
linear around the solution, a high-precision solution can be
obtained by limited number of iterations.

The increased linear momentum AL must also be reduced
to zero. In order to do this, the method proposed by Kajita
et al[5], which is to minimize the following function is used:

(2o —23)? + (v —v7)° (®)

where z.» and v, are the position and velocity of the COM
at Point C’ and xg, and vg, are the corresponding values
in the original feedforward motion. The linear momentum
is mostly compensated during the single support phase,
especially when the support foot is in front of the COM.

To summarize, the motion in the frontal plane is calculated
by searching for the foot-landing position that minimize
Equation 8. The motion during the double support phase is
determined by solving for p using Equation 7.

One problem remains here; although the angular mo-
mentum can be reduced to zero by adjusting the AMPM
parameters, the posture of the body will remain different
from the original gait motion, unless angular momentum
that brings back the body to the original posture is induced.
In order to solve this problem, we introduce a new criteria
called difference of inertia, which can be used to estimate the
amount of additional angular momentum that must be added
to the body to recover the original posture. The difference of
inertia can be defined as follows:

AI= (e —cg) x (¢ — &) + RLR] (07 — 6;) (9
where ¢; is the position of COM, ¢} is the COM in the

original motion, 6; is the orientation, ¢ is the orientation
in the original motion, R; is the 3x3 rotational matrix, I;



is the moment of inertia of segment ¢, as well, and ¢, is
the COM of the whole body. By dividing the difference of
inertia by the interval for the transition, it is possible to
calculate the angular momentum needed. In order to recover
the original motion inertia during double support phase,
an angular momentum of value AJ /Tp.c must be added
to the body, where Tg ¢ is the estimated duration of the
double support phase which can be calculated by dividing
the distance between B and C by the velocity of the COM
at Point B:

1:]3\7/0 _ xrc — B
LB
where xp, 2B, and x¢ are the position and velocity of the
COM at point B, and the position of Point C, as well.

Instead of solving for p using Equation 7, the following
equation can be used to calculate the motion to recover the
original posture:

wB,.c = —AM + ﬂi (10)
TB.c
where [ is a weight value smaller than 1 which is necessary
for stable convergence.

For each of the following walking step, the motion for
the next double support phase is recalculated using the
error of the linear and angular momentum at the end of
the previous double support phase, by solving Equation 10.
For the difference of inertia, the value at the end of the
previous double support phase is used. As a result, the motion
gradually returns back to the original motion after a few steps.

III. USING THE AMPM TO COUNTERACT EXTERNAL
PERTURBATION IN THE FRONTAL PLANE

The motion of the COM in the frontal plane can be
explained by AMPM as shown in Figure 3. During double
support phase, the ZMP will move proportionally to the
COM, and during single support phase, the ZMP will stay
at the same position under the supporting foot. If we assume
no angular momentum is generated, the vector connecting
the COM and the ZMP will always be parallel to the ground
reaction force.

To clarify the idea of the feedback approach in this study,
again, let us assume that the ground force vector is parallel
to the vector connecting the COM and the ZMP in the
original feedforward motion. External perturbation is applied
to the body at Point A, during single support phase, as
shown in Figure 3, and as a result, angular momentum of
amount AM/ is induced around the frontal axis. In order to
reduce this angular momentum to zero, the motion during the
following double support phase and the single support phase
will be modified. Just as same as in the motion in the sagittal
plane, the following strategies are adopted: (1) the position
the swing leg landing onto the ground will be changed (2)
rotational momentum will be applied to the body during the
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Fig. 3. Counteracting the angular momentum induced by external pertur-
bation in the frontal plane. External perturbation is applied during single
support phase at Point A. The position of the foot landing on the ground
will be changed, and the ground force vector at Point C will be changed,
as well. The ground force vector during the rest of the trajectories will be
calculated in a way that the acceleration is continuous. The motion of the
double support phase will be calculated in a way that when the right foot
lands onto the ground after the single support by the left foot (Point C”),
the position and velocity of the COM will be close to those of the original
feedforward motion, and the angular momentum is reduced to zero.

double support phase to counter act the angular momentum
induced by the external perturbation.

The new differential equation of the COM during the
double support phase is defined here by

J=pyy+aqy (11)

where p,, g, are AMPM parameters. As the duration of the
double support phase, 75 ¢ is determined by the motion in
the sagittal plane, the position and velocity at point C can be
obtained by Equation 2 and its derivative:
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where ygB,yc,Yn,yc are the positions and velocities of
COM at Point B and Point C, as well. The calculation done
here is quite similar to those done for the motion in the
sagittal plane. To calculate p, and g,, the following two
constraints are taken into account:

wg = —AMF + ATT (12)
_ . f
Ye — Z¢.
H 9 = DPyYc +Qy (13)

where AT’ is the difference of inertia at Point B, and « is
a constant value smaller than 1 to stabilize the convergence
of the method.



Fig. 4. The human body model used in this study. The number at the joints
represents the joint’s ID and their DOF.

For 2/, the position the foot lands onto the ground, a value
that minimize the following mean square error function is
adopted:

(e —y2)* + (e — 99)° (14)

where y. and g are the position and velocity of the COM
at Point C’ and y% and y, are the corresponding values in
the original feedforward motion.

To summarize, the motion in the frontal plane is calculated
by searching for the foot-landing position that minimize
Equation 14. The motion during the double support phase
is determined by calculating the AMPM parameters p, and
gy by using Equation 12 and 13 as constraints.

IV. CALCULATING THE GENERALIZED COORDINATES
USING INVERSE KINEMATICS

As we have already defined the trajectories of the COM
and the angular momentum, the next step is to calculate
kinematic parameters that satisfy these constraints. Inverse
kinematics is used for this purpose. A human body model
with 42 degrees of freedom, as shown in Figure 4, was
used. It should be noted that one translational degrees of
freedom of is added to each knee to avoid the singularity due
to its full extension. Trajectories of generalized coordinates
of the human body model are defined here as q(t) =
(q1(t), q2(t), .., qaof (t))T where dof is the number of degrees
of freedom of the human body model, and the value is 42.
Generalized coordinates g(t) include the position and rotation
of the root of the body in the 3D world coordinate system.

The relationship between velocity of the COM and velocity
of the generalized coordinates can be written as follows:

com q’

Ly =

where J.on 1S the Jacobian matrix that consists of the partial
derivatives of the COM by the generalized coordinates. Then,
the acceleration of the COM can be derived as follows:

fi:g = Comq+jcom q (15)

The angular momentum 7 and the first derivative of the
generalized coordinates have a linear correlation:

r = Rq.

The derivative of the angular momentum can be derived as
follows:

7 = Rg + Rq. (16)

The translational and rotational acceleration of the feet can
be expressed as functions of g as well:

(D), Dy, 01,0,)" = Jrg + Jrq. (17)

The trajectories of the feet are calculated by scaling the
trajectories of the original feet using the new position of the
foot steps;

(2, py) =
Si+1 _ Si ) ) si-l—l _ si ] )
( iil — im (pg - s;c) + Slz? if—l — Z-y (Pg - S;) + S;)
3:1:,0 S.r,O Sy,O Sy,O

where (s, s}) and (s5t!, sit1) are the position of the ith
and (i + 1)th footsteps on the floor in the newly generated
motion, (s, g, s} () and (si*),s}*}) are the corresponding
position of the footsteps in the original motion, and (p, py)
is the position of the foot in the horizontal plane in the newly
generated motion, and (p2, pg) is the corresponding position
in the original motion.

The rotation of the feet in the new motion will be cal-
culated by using the step length as a scaling factor: 8, =
(s1/s7)0y. This is due to the fact that the orientation of the
feet enlarges as the step length gets larger.

Combining Equation 15, 16, and 17, linear constraints that
must be satisfied by the body can be summarized to the
following form:

A=Jand+Jan g (18)

where A = (&,7p,0,p,,6,)7, and Ja =
(Jeoms R, J¢)T. Calculating ¢ that satisfies Equation
18 can be considered as an inverse kinematics problem.
Since the goal is to calculate a stable gait motion, the
following quadratic form is minimized with respect to g:

(G—klg—qo)+d-q)(g—kig—qy)+d-@)". (19

where k, d are the elastic and damping constants, respec-
tively. Quadratic programming is used to calculate g by
minimizing Equation 19 subject to the constraint given by
Equation 18.

Using the calculated acceleration, the values of thegener-
alized coordinates and their velocity were updated step by
step, and finally, the whole trajectory was obtained.



V. EXPERIMENTS

The motion of the human body was first generated by
planning the motion of the COM using AMPM without any
angular momentum around the COM. After the trajectories
of the COM and the feet were determined, the trajectories
of the joint angles were calculated using inverse kinematics.
This motion is shown in Figure 5.

Then, while the humanoid is performing this feedforward
motion, external perturbation was applied to the body during
the single support phase. Two experiments were done and
in each of them different level of impact was applied to the
body. In the first experiment, a weaker impact that induced
additional linear momentum of 0.1 kg - m/s and angular
momentum of 12.0 kg-m?/s around the COM. In the second
experiment, stronger perturbation was applied, which induced
additional linear momentum of 0.2 kg - m/s and angular
momentum of 24.0 kg - m?/s

First, gait motions that only counteract the external pertur-
bation but do not recover the original postures were calcu-
lated. The results are shown in Figure 6 (weak perturbation)
and 7 (strong perturbation), as well. Although the humanoid
can stop the rotation of the chest, the chest remains bent for
the following motion.

Next, the feedback criteria that takes into account the
difference of inertia was used. Again, two experiments were
done. In each of them different level of perturbation was
applied and the same additional pair of linear and angular
momentum (linear momentum of 0.1 kg - m/s and angular
momentum of 12.0 kg - m?/s by the weaker impact, and
linear momentum of 0.2 kg - m/s and angular momentum
of 24.0 kg - m?/s by the stronger impact) were induced.
After the perturbation, the thorax rotates to the front due to
the increased angular momentum. This angular momentum is
counteracted during the following double support phase, and
the original gait motion is gradually recovered after a few
steps. The trajectories of the two motions are shown in Figure
8 and 9, as well. In both of the motions, after stopping the
rotation of the chest, the body is brought back to the original
upright posture.

The trajectories of the angular momentum around the
lateral axis when the difference of inertia is taken into account
(dashed line) and when it is not taken into account (solid line)
are plotted in Figure 10. Without including the difference of
inertia in the criteria function, the angular momentum just
decreases to zero. On the other hand, when this information
is used for feedback control, after the value decreases to
zero, negative angular momentum that is needed to move the
body back to the upright posture is generated, and gradually
converges to zero after a few steps.

VI. DISCUSSION

As the gait motion is much more unstable during the
single support phase than during the double support phase,

Fig. 5. The original gait motion of the humanoid gait in the sagittal plane
generated using AMPM.

Fig. 6.  The trajectory of the humanoid walking in the sagittal plane.
Assuming external perturbation has induced additional linear and angular
momentum (0.1 kg - m/s and 12.0 kg - m?/s) during the single support
phase, the increased angular momentum is counteracted during the following
double support and single support phases.

we assume here the external perturbation happened during
the single support phase.

As the stance distance is much longer along the anterior
axis than along the lateral axis, the method in this study is
more effective for counteracting angular momentum around
the lateral axis than around the frontal axis. Strong interfer-
ence along the lateral axis will greatly affect the velocity of
the COM and then the humanoid will have to step out the next
step lateral to the supporting foot. In such case, however, the
swing foot can easily collide with the supporting leg unless
precise path planning is done for the landing motion. This
would be the next subject to be solved.

The inertia criteria shows good performance to bring the
current posture to the target posture. When calculating the
motion using inverse kinematics by using the angular mo-
mentum and linear momentum as constraints as constraints,
the obtained motion gradually deviates from the target motion
even though the objective function of inverse kinematics
include terms based on the difference of the target posture

Fig. 7. The trajectory of the humanoid walking in the sagittal plane.
Assuming external perturbation has induced additional linear and angular
momentum (0.2 kg - m/s and 24.0 kg - m?/s) during the single support
phase, the increased angular momentum is counteracted during the following
double support and single support phases.



Fig. 8. The motion of the humanoid gait in the sagittal plane. After 0.1
seconds in the initial single support phase, additional linear and angular
momentum around the center of gravity is added to the body (0.1 kg -
m/s and 12.0 kg - m?2/s). The feedforward motion is reorganized so that
the increased angular momentum can be counteracted during the following
double support and single support phase.

Fig. 9. The motion of the humanoid gait in the sagittal plane. After 0.1
seconds in the initial single support phase, additional linear and angular
momentum around the center of gravity is added to the body (0.2 kg -
m/s and 24.0 kg - m?/s). The feedforward motion is reorganized so that
the increased angular momentum can be counteracted during the following
double support and single support phase.

and the current posture. In such case, it is necessary to add
additional angular momentum to the body in order to restore
the original posture. By adding a term based on inertia criteria
to the target angular momentum constraint, it is possible to
stabilize the posture to the target posture.

VII. SUMMARY AND FUTURE WORK

In this paper, we proposed a new method for biped hu-
manoids to counteract a large amount of angular momentum
induced by strong external perturbations applied to the body
during gait motion. Such angular momentum can easily cause
the humanoid to fall down onto the ground. We use AMPM,
which is an enhanced version of 3DLIPM, to calculate the
counteracting motion in real-time.

Although we assumed large amount of force as the external
perturbation, the stepping patterns and the position of the
foot landing to the ground were kept the same as the
original feedforward motion. It is, however, not possible to
counteract very strong perturbation especially in the lateral
direction if the stepping pattern and the landing positions are
also reorganized. Calculating new patterns of the appropriate
stepping parameters will be the next goal to be achieved.

ACKNOWLEDGEMENT

The work described in this paper was partially supported
by a grant from City University of Hong Kong (Project No.
7100293).

Yx10? Angular momentum around the lateral axis

100, \

-100.

X
100 150 200 250 3.00

Fig. 10. The trajectory of the angular momentum around the lateral axis
when the AMPM is used only to counteract the angular momentum generated
by the external perturbation (solid line), and when further angular momentum
is generated for feedback motion to turn the motion back to the original gait
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