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Abstract— Transference of controllers evolved in simulation
to real vehicles is an important issue in evolutionary robotics
(ER). We have previously evolved autonomous navigation
controllers for fixed wing UAV applications using multi-
objective genetic programming (GP). Controllers were evolved
to locate a radar source, navigate the UAV to the source
efficiently using on-board sensor measurements, and circle
around the emitter. We successfully tested an evolved UAV
controller on a wheeled mobile robot. A passive sonar system
on the robot was used in place of the radar sensor, and a
speaker emitting a tone was used as the target in place of
a radar. Using the evolved navigation controller, the mobile
robot moved to the speaker and circled around it. The results
from this experiment demonstrate that our evolved controllers
are capable of transference to real vehicles. Future research
will include testing the best evolved controllers by using them
to fly real UAVs.

I. INTRODUCTION

While some controllers in evolutionary robotics (ER) [1]
have been evolved in situ on physical robots, evolution re-
quires many evaluations to produce good behaviors, which
generally takes an excessive amount of time on real robots.
Evolving controllers in simulation is less constraining for
many problems, because evaluations are much faster and
can be parallelized. Since simulation environments cannot
be perfectly equivalent to the conditions a real robot would
face, transference of controllers evolved in simulation to
real robots has been an important issue.

In early ER work, controllers were often evolved directly
on physical robots [2], [3]. Though the availability of
computational power has made simulation increasingly at-
tractive, some research using embodied evolution continues
[4], [5]. While embodied evolution can directly test the
performance of controllers in the real world, it can be slow,
which constrains the complexity of problems that can be
solved in a reasonable amount of time.

Simulation has been used since the beginning of ER
research [6] for evolving robot controllers with varying

∗Present address: The Robotics Institute, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA 15213

degrees of success. Some simulated controllers are never
tested on actual robots, and some fail to transfer well.
However, many controllers evolved in simulation have been
successfully transferred to real robots [7]–[10]. Adding
noise to the simulation is one method that has proven
successful in evolving controllers that transfer well to real
robots [8].

In previous research, we evolved autonomous navigation
controllers for flying unmanned aerial vehicles (UAVs)
in simulation using multi-objective genetic programming
[11]–[13]. Controllers were evolved to locate a radar,
navigate the UAV to the source efficiently using sensor
measurements, and circle around the radar. With the goal of
making evolved navigation controllers robust and the intent
of transferring controllers to physical UAVs, we abstracted
navigation from low level flight, tuned the simulation
parameters for equivalence to real UAVs, and added noise
to the simulation. While flight tests are planned for the
future, UAVs were not immediately available for testing.
We wanted to ensure that evolved navigation controllers
were transferable to real vehicles before beginning expen-
sive UAV flight tests. To evaluate the ability of evolved
controllers to control real vehicles, we transferred evolved
UAV navigation controllers to a wheeled mobile robot.

II. MOBILE ROBOT PLATFORM

In this research, we used a small autonomous mobile
robot called the EvBot II (shown in Fig. 1). A colony of
nine EvBot II mobile robots was developed by the Center
for Robotics and Intelligent Machines at North Carolina
State University for evolutionary robotics experimentation
[14], [15]. The EvBot is 9 inches wide by 12 inches long
by 10 inches tall, and is constructed on a two track treaded
wheel base. The robots features powerful motors, wheel
encoders and an utility board that hosts two microcon-
trollers, which can drive up to four DC or servo motors
in closed loop. The robot is equipped with a PC/104 on-
board computer running Linux that is responsible for all
computation, data acquisition and high-level control. The
robot is connected to a wireless network and supports video
data acquisition through a USB video camera.



Fig. 1. The EvBot II, a small mobile robot equipped with an acoustic
array

The EvBot is equipped with an on-board passive sonar
system. This sensor system makes use of an acoustic array
formed by eight microphones distributed in a fixed 3-
D arrangement around the robot. It uses data collected
from the array to perform beamforming and to find the
direction and intensity of sound sources. The audio data is
obtained by the passive sonar system through the use of a
custom USB data acquisition board, which simultaneously
samples all eight sensors. The sampled signals are then
transferred to the PC/104 computer and processed by a
beamforming algorithm. The beamforming algorithm used
in this application performs shifting and linear combination
of the sampled input signals to calculate the magnitude of
the sounds coming from all 360◦ around the robot [16].
The passive sonar system is susceptible to environmental
noise, and the direction of a source found by the acoustic
array is only accurate within approximately ±45◦.

III. UNMANNED AERIAL VEHICLE CONTROL

In previous work, we have developed autonomous nav-
igation controllers for fixed wing UAVs using multi-
objective genetic programming [11]–[13]. The goal is for a
UAV to autonomously locate, track, and then orbit around
a radar site. There are three main goals for an evolved
controller. First, the UAV should move to the vicinity of the
radar as quickly as possible. The sooner the UAV arrives
in the vicinity of the radar, the sooner it can begin its
primary mission, such as surveillance. Second, once in the
vicinity of the source, the UAV should circle as closely as
possible around the radar. This goal is especially important
when proximity to the source affects the success of the
application. Third, the flight path should be stable and
efficient. The roll angle should change as infrequently as
possible, and any change in roll angle should be small.
Making frequent changes to the roll angle of the UAV
could create dangerous flight dynamics and could reduce
the flying time and range of the UAV.

Only the navigation portion of the flight controller is

evolved; the low level flight control is done by an autopilot.
The navigation controller receives radar electromagnetic
emissions as input, and based on this sensory data and past
information, the navigation controller defines the desired
roll angle of the UAV control surface. The autopilot then
uses this desired roll angle to change the heading of the
UAV. This autonomous navigation technique results in a
general controller model that can be applied to a wide
variety of vehicle platforms; the evolved controllers are
not designed for a specific UAV airframe or autopilot.

The controller is evolved in simulation. The simulation
environment is a square 100 nautical miles (nmi) on each
side. For each simulation, the initial positions of the UAV
and the radar are set randomly. The initial UAV position is
always on the southern edge of the simulation area with an
initial heading of due north; the initial radar position may
be anywhere in the environment. In our current research,
the UAV has a constant altitude and a constant speed of 80
knots. Each experimental run simulates four hours of flight
time, where the UAV is allowed to update its desired roll
angle once a second. The interval between these requests
to the autopilot can also be adjusted in the simulation.

Only the sidelobes of the radar emissions are modeled.
The sidelobes of a radar signal have a much lower power
than the main beam, making them harder to detect. How-
ever, the sidelobes exist in all directions, not just where
the radar is pointed. This model is intended to increase
the robustness of the system, so that the controller doesn’t
need to rely on a signal from the main beam. Additionally,
Gaussian noise is added to the amplitude of the radar
signal. The receiving sensor can perceive only two pieces
of information: the amplitude and the angle of arrival
(AoA) of incoming radar signals. The AoA measures the
angle between the heading of the UAV and the source of
incoming electromagnetic energy. Real AoA sensors do not
have perfect accuracy in detecting radar signals, so the
simulation models an inaccurate sensor. The accuracy of
the AoA sensor can be set in the simulation. In previous
experiments, the sensed AoA was set to be accurate within
±10◦ at each time step, a realistic value for this type of
sensor. For the transference experiments described here, the
AoA was accurate within ±45◦, the approximate accuracy
of the acoustic array on the EvBot. As might be expected,
controllers evolved on lower assumed levels of error were
not particularly fit when error increased this much. Fig.
2(a) shows a simulated flight path for a controller evolved
and tested on a continuously emitting, stationary radar
with a sensor accurate within ±10◦. Fig. 2(b) shows the
same controller tested with a sensor accurate within ±45◦.
Rather than using one of the controllers evolved in previous
research [11]–[13], we evolved new controllers to transfer
to an EvBot. The only change in the simulation from the
previous research was a change in the accuracy of the
simulated sensor to ±45◦.

Transference of these controllers to a real UAV is an
important issue. Flying a physical UAV with an evolved
controller is planned as a demonstration of the research,
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Fig. 2. Flight paths for a UAV controller to a continuously emitting,
stationary radar using a sensor accurate within (a) ±10

◦ and (b) ±45
◦.

so transference was taken into consideration from the
beginning. Several aspects of the controller evolution were
designed specifically to aid in this process. First, the
navigation control was abstracted from the flight of the
UAV. Rather than attempting to evolve direct control, only
the navigation was evolved. This allows the same controller
to be used for different airframes. Second, the simulation
parameters were designed to be tuned for equivalence to
real aircraft. For example, the simulated UAV is allowed to
update the desired roll angle once per second reflecting the
update rate of the real autopilot of a UAV being considered
for flight demonstrations of the evolved controller. For
autopilots with slower response times, this parameter could
be increased. Third, noise was added to the simulation,
both in the radar emissions and in sensor accuracy. A noisy
simulation environment encourages the evolution of robust
controllers that are more applicable to real UAVs.

While a human could easily design a controller using
a very accurate sensor, the sonar sensor used in this
experiment was very noisy. By using evolution to design
controllers, cheaper sensors with lower accuracy can be
used. As the accuracy of the sensors decreases, the problem
becomes far more difficult for human designers.

TABLE I
GENETIC PROGRAMMING PARAMETERS.

Population Size 500 Maximum Initial Depth 5
Crossover Rate 0.9 Maximum Depth 21
Mutation Rate 0.05 Generations 600

Tournament Size 2 Trials per evaluation 30

IV. MULTI-OBJECTIVE GENETIC PROGRAMMING

As in our previous work [11]–[13], navigation controllers
intended for UAVs were designed using multi-objective ge-
netic programming which employs non-dominated sorting,
crowding distance assignment to each solution, and elitism.
We evolved UAV controllers using an implementation of
NSGA-II [17] for genetic programming. The function and
terminal sets combine a set of very common functions
used in GP experiments and some functions specific to this
problem. The function and terminal sets, unchanged from
our previous work, are defined as

F = {Prog2, Prog3, IfThen, IfThenElse, And, Or,
Not, <, ≤, >, ≥, < 0, > 0, =, +, -, *, ÷,
X < 0, Y < 0, X > max, Y > max,
Amplitude > 0, AmplitudeSlope > 0,
AmplitudeSlope < 0, AoA > Arg, AoA <

Arg}
T = {HardLeft, HardRight, ShallowLeft, Shal-

lowRight, WingsLevel, NoChange, rand, 0, 1}
The position is given by the x and y distances from the
origin, located in the southwest corner of the simulation
area. This position information is available using the func-
tions that include X and Y, with max equal to 100 nmi, the
length of one side of the simulation area. The vehicle is free
to move outside of the area during the simulation, but the
target is always placed within it. The two available sensor
measurements are the amplitude of the incoming signal and
the AoA, or angle between the heading and the source of
incoming electromagnetic energy. Additionally, the slope
of the amplitude with respect to time is available to GP.
When turning, there are six available actions. Turns may be
hard or shallow, with hard turns making a 10◦ change in the
roll angle and shallow turns a 2◦ change. The WingsLevel
terminal sets the roll angle to 0, and the NoChange terminal
keeps the roll angle the same. Multiple turning actions may
be executed during one time step, since the roll angle is
changed as a side effect of each terminal. The final roll
angle after the navigation controller is finished executing
is passed to the autopilot. The maximum roll angle is 45◦.
Each of the six terminals returns the current roll angle.

Genetic programming was generational, with crossover
and mutation similar to those outlined by Koza in [18]. The
parameters used by GP are shown in Table I. Tournament
selection was used. Initial trees were randomly generated
using ramped half and half initialization. No parsimony
pressure methods were used in this work, as code bloat
was not a major problem.

In GP, the evaluation process of individuals in a pop-
ulation takes significant computational time, since the



simulation must be run multiple times to obtain fitness
values for individuals. Therefore, using massively parallel
computational processors to parallelize these evaluations
is advantageous. Parallel computation was designed by
employing the concept of master and slave nodes. Among
multiple computer processors, one processor was desig-
nated as a master and the rest were set as slaves. The
master processor distributes individual evaluations over the
slave processors, and each slave processor reports its results
back to the master after completing computation. After the
master processor collects all individual fitness values from
slave processors, GP moves to the selection process. The
data communication between master and slave processors
was possible using the Message Passing Interface (MPI)
standard [19] under the Linux operating system. All com-
putations were done on a Beowulf cluster parallel computer
with ninety-two 2.4 GHz Pentium 4 processors.

V. FITNESS FUNCTIONS

Four fitness functions determine the success of individual
UAV navigation controllers. The fitness of a controller was
measured over 30 simulation trials, where the UAV and
radar positions were different for every run. We designed
the four fitness measures to satisfy the three goals of the
evolved controller: moving toward the emitter, circling the
emitter closely, and flying in an efficient way.

A. Normalized distance

The primary goal of the UAV is to fly from its initial
position to the radar site as quickly as possible. We measure
how well controllers accomplish this task by averaging the
squared distance between the UAV and the goal over all
time steps. We normalize this distance using the initial
distance between the radar and the UAV in order to mitigate
the effect of varying distances from the random placement
of radar sites. The normalized distance fitness measure is
given as

fitness1 =
1

T

T
∑

i=1

[

distancei

distance0

]2

where T is the total number of time steps, distance0 is the
initial distance, and distancei is the distance at time i. We
are trying to minimize fitness1.

B. Circling distance

Once the UAV has flown in range of the radar, the goal
shifts from moving toward the source to circling around it.
An arbitrary distance much larger than the desired circling
radius is defined as the in-range distance. For this research,
the in-range distance was set to be 10 nmi. The circling
distance fitness metric measures the average distance be-
tween the UAV and the radar over the time the UAV is
in-range. While the circling distance is also measured by
fitness1, that metric is dominated by distances far away
from the goal and applies very little evolutionary pressure

to circling behavior. The circling distance fitness measure
is given as

fitness2 =
1

N

T
∑

i=1

inrange ∗ (distancei)
2

where N is the amount of time the UAV spent within the
in-range boundary of the radar and inrange is 1 when the
UAV is in-range and 0 otherwise. We are trying to minimize
fitness2.

C. Level time

In addition to the primary goals of moving toward a
radar site and circling it closely, it is also desirable for the
UAV to fly efficiently in order to minimize flight time to
get close to the goal and to prevent potentially dangerous
flight dynamics, like frequent and drastic changes in the roll
angle. The first fitness metric that measures the efficiency
of the flight path is the amount of time the UAV spends
with its wings level to the ground, which is the most stable
flight position for a UAV. This fitness metric only applies
when the UAV is outside the in-range distance, since once
the UAV is within the in-range boundary, we want it to
circle around the radar. The level time is given as

fitness3 =

T
∑

i=1

(1 − inrange) ∗ level

where level is 1 when the UAV has been level for two
consecutive time steps and 0 otherwise. We are trying to
maximize fitness3.

D. Turn cost

The second fitness measure intended to produce an
efficient flight path is a measure of turn cost. While UAVs
are capable of very quick, sharp turns, it is preferable to
avoid them. The turn cost fitness measure is intended to
penalize controllers that navigate using a large number of
sharp, sudden turns because this may cause very unstable
flight, even stalling. The UAV can achieve a small turning
radius without penalty by changing the roll angle gradually;
this fitness metric only accounts for cases where the roll
angle has changed by more than 10◦ since the last time
step. The turn cost is given as

fitness4 =
1

T

T
∑

i=1

h turn ∗ |roll anglei − roll anglei−1|

where roll angle is the roll angle of the UAV and h turn is
1 if the roll angle has changed by more than 10◦ since the
last time step and 0 otherwise. We are trying to minimize
fitness4.

E. Combining the Fitness Measures

These four fitness functions were designed to evolve
particular behaviors, but the optimization of any one func-
tion could conflict heavily with the performance of the
others. Even though the controller doesn’t generate the



most optimized controllers possible, it can obtain near-
optimal solutions. Combining the functions using multi-
objective optimization is extremely attractive due to the
use of non-dominated sorting. The population is sorted into
ranks, where within a rank no individual is dominant in all
four fitness metrics.

While all four objectives were important, moving the
UAV to the goal was the highest priority. There are several
techniques to encourage one objective over the rest; in this
research, we used a simple form of incremental evolution
[20]. For the first 200 generations, only the normalized
distance fitness measure was used. Multi-objective opti-
mization using all four objectives was used for the last
400 generations of evolution.

We have previously evolved UAV navigation controllers
using both direct evolution and environmental incremental
evolution for a variety of radar types, including: 1) continu-
ously emitting, stationary radars, 2) intermittently emitting,
stationary radars, 3) continuously emitting, mobile radars,
and 4) intermittently emitting, mobile radars. Only the
continuously emitting, stationary radar case was used in
the experiments described in this paper since it could be
directly tested using the EvBot.

VI. TRANSFERENCE TO A WHEELED MOBILE ROBOT

Testing the evolved controllers on the EvBot was attrac-
tive because the passive sonar system [15] is an acoustic
analog to the radar sensor used in simulation. The two
signal types propagate similarly, and both sensors detect
signal strength and direction. The similarities between the
two systems made it possible to transfer evolved UAV
controllers to an EvBot. In evaluating the transference of
the evolved controllers, we were not interested in show-
ing optimal behavior on the robot platform. Instead, our
concern was that the controllers should exhibit the same
behaviors on the real robots as they did in simulation,
particularly robustness to noise.

Transference experiments were done in an arena con-
structed for EvBot tests. This 153 inch by 122 inch area
can be set up as a maze for certain experiments, but for
this experiment it was completely open. A video camera
with a fisheye lens is mounted above the maze environ-
ment to document experiments. To test the controllers, we
performed a series of experiments. In each experiment,
the robot was placed along one wall facing toward the
middle of the environment. A speaker was suspended a
foot above the ground and continuously emitted a 300 Hz
tone. A circle was placed directly underneath the speaker
as a visual reference point, since the fisheye lens tended
to distort the location of the speaker in images captured
by the overhead camera. Robot movement was discretized
into steps, much like in the simulation. At each time step,
the controller was executed to produce a roll angle. Since
the EvBot is not controlled by a roll angle, the robot would
turn to control direction. The differential drive system on
the EvBot allowed all turns to happen in place, without
changing the location of the robot. The EvBot was only
calibrated to turn at multiples of 5◦ and the magnitude of
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Fig. 3. Simulated path for a UAV flying to a continuously emitting,
stationary radar using an evolved controller and a sensor accurate within
±45

◦.

the turn angle was always rounded down to the nearest
multiple of 5. Calibrating the EvBot to turn at angles
smaller than 5◦ would have been unreliable due to the
size of the EvBot and the characteristics of its motors.
After turning, the EvBot would always move forward the
same amount, mimicking the constant speed of the UAV in
simulation. The EvBot moved 3 inches per time step, and
in simulation the UAV moved 0.02 nautical miles per time
step. If these values are used to scale the maze environment,
then the maze would represent an area approximately 1.13
nmi by 0.90 nmi. Hence, these experiments were not testing
the entire flight path, only the very end of flight when the
vehicle nears the target.

An evolved controller was tested 10 times on an EvBot.
We chose this controller from the evolved population based
primarily on good fitness values for normalized distance
and circling distance, though level time and turn cost were
also used. This controller was able to successfully drive
the EvBot from its starting position to the speaker and then
circle around the speaker. This small number of tests was
enough to confirm that the controllers were consistently
able to perform the task as desired.

Fig. 3 shows a simulated flight path for the evolved
controller. This controller had good fitness values, though
comparing Fig. 2a and Fig. 3 shows that the controllers
evolved with a more inaccurate sensor were not as well
adapted as those from previous work using more accurate
sensors [12]; the flight path is much less smooth and
requires more turns. This controller was very successful
when transferred to the EvBot. Fig. 4 shows a path from
one of the experiments using this controller. Running this
evolved controller on the EvBot produces a tight circling
behavior with a regular orbit around the target. This behav-
ior is very similar to the corresponding circling behavior
in simulation, shown in Fig. 5. This controller produces
less efficient flight paths than other previously evolved con-
trollers because the sensor was less accurate [11]. However,
the robots produced the four desired behaviors reliably.
One sign of an extremely fit controller is a centering of
the emitter when the controller begins to circle. A sign
that the controllers evolved for use on the EvBot were less
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(controllers were evolved and tested on ±10

◦ accurate sensors).

well evolved than those from previous research was that
the target was not as close to the center of the orbit when
the robot began to circle.

VII. CONCLUSIONS

Using genetic programming with multi-objective opti-
mization, we evolved autonomous UAV navigation con-
trollers capable of flying to a target radar, circling the
radar site, and maintaining a stable and efficient flight
path. Four fitness functions were used to produce the
desired behaviors. Controllers were evolved to use inac-
curate sensors in a noisy environment. UAVs were not
immediately available for flight testing, so we tested the
transferability of the evolved controllers by using them to
control a wheeled mobile robot. Evolved UAV controllers
were successfully transferred to a wheeled mobile robot
equipped with a passive sonar system which provided the
angle and amplitude of sound signals from a stationary
speaker. Using evolved navigation controllers, the mobile
robot moved to the speaker and circled around it. The
results from this experiment demonstrate that our evolved
controllers are capable of transference to real physical
vehicles. In the next stage of this research, we will test
evolved controllers on physical UAVs.
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