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Abstract— The need for reliable maps of subterranean
spaces too hazardous for humans to occupy has motivated
the use of robotic technology as mapping tools. As such,
we present a systemic approach to autonomous topological
exploration of a mine environment to facilitate the process
of mapping. This approach focuses upon the interaction of
three high-level processes: topological planning, intersection
identification and local navigation. Topological planning tasks
the robot to investigate stretches of mine corridor for the
purpose of collecting data. Intersection identification converts
sensory input into topological components used to construct
an online topological map and provide the robot with a global
sense of position. Local navigation transforms topological
exploration objectives into robot actuation enabling traversal

of mine corridors. These processes are described in detail with
results presented from experiments conducted at a research
coal mine near Pittsburgh, PA.

I. INTRODUCTION

As discussed in previous mine mapping work [1], [2],

[3], [4], abandoned mines pose a significant threat to

both surface life and nearby subterranean operations. Mine

maps, the primary source of information on mine struc-

tures, are key components in resolving this threat and

preventing mine-related disasters; however, in the case

of abandoned mines, such maps are often inaccurate and

unreliable if they exist at all.

The components necessary to verify old maps or to

produce new ones are (1) data on void structure and (2)

a means of acquiring this data. To date, direct observation

from within the void has been the most reliable method for

obtaining quality data. The caveat, however, to establishing

a physical presence within the mine is that human contact

is often precluded due to the hostile nature of mine en-

vironments, especially when upkeep has been abandoned.

As a result, robotic technologies have been applied to

the domain of abandoned coal mines to offer nonhuman

methods of observation and data collection. [2], [3], [5].

While robots can physically endure the harsh conditions

of abandoned mines, mobility and autonomy for a robotic

system is a significant challenge. Mine floors, often cov-

ered with fallen timbers, roof bolts, collapsed rock, and

countless other mine-related artifacts, exhibit rugged terrain

that is difficult to negotiate. Mine walls and ceilings also

possess projecting obstacles that challenge robot maneu-

verability. In addition, the room-and-pillar mine structure

prevalent in abandoned coal mines is problematic to ex-

ploration; the combination of a highly cyclic design with

Fig. 1. Groundhog, our current robotic mine mapping platform

no external communication (including GPS) makes it easy

for a robot to become lost. Therefore, along with physical

robustness, an autonomous mine mapping robot must be

equipped with a highly reliable navigational framework.

Our current research is aimed at addressing each of

the aforementioned challenges. We are interested in both

the creation of systems that can robustly explore mine

environments and the development of algorithms that can

generate accurate maps of these environments. Previous

work in this area [3] has alleviated some of the major

exploration challenges by dealing primarily with the task of

portal inspection. Portal inspection restricts exploration to

the primary entrances of an abandoned mine and confines

the robot into traversing a single corridor. This simplifies

navigation and eliminates issues concerning global local-

ization and loop closure. The push for more intricate mine

inspection tasks, however, demands that these issues be

resolved. To enable functionality such as perimeter discov-

ery or full exploration, more capable navigation and global

positioning are required if the robot is to successfully

explore multiple corridors.

In this paper, we present a systemic approach to robotic

exploration of a room-and-pillar [6] mine. This approach is

based upon the interaction of three core concepts: topologi-

cal planning, intersection detection, and corridor navigation

(Figure 2). Topological planning maintains a topologi-

cal representation of the mine and generates navigation



Fig. 2. System overview.

objectives using this topological framework. Intersection

detection monitors sensory input and identifies corridor

intersections, which create the nodes of the topological

representation. Local navigation decomposes navigation

objectives into motion planning goals that direct the robot

along corridors for the exploration of new areas.

The remainder of this paper discusses the concepts of our

topological exploration method. In Section II we discuss

related research in this area. We then present our system

in Section III and results from an experimental mine in

Section IV. We conclude with discussion and extensions.

II. MOTIVATION FOR TOPOLOGICAL EXPLORATION

Towards achieving our mine mapping goal, we have

constructed a 700 kg custom-built ATV-type robotic plat-

form known as Groundhog (Figure 1) that is physically

tailored for operation in the harsh conditions of abandoned

mines [3]. Groundhog has been used extensively in both

test and abandoned mine environments, accruing hundreds

of hours of mine navigation with 8 successful portal

entry experiments in the abandoned Mathies mine outside

of Pittsburgh, PA. From these experiments, log data has

generated globally consistent large-scale maps (Figure 3)

using offline techniques [1], [2]. Over the course of its

lifetime, Groundhog has evolved into a system that is

highly proficient at autonomously traversing and mapping

isolated mine corridors, successfully navigating over 2 km

of abandoned mine.

For the next phase of Groundhog’s development, we

wish to extend exploration tasks beyond isolated corridors

and towards a complete cyclic mine structure. In this paper,

we have taken the first step towards full exploration by

performing acyclic or tree exploration. The challenges in-

volved in cyclic and acyclic exploration are nearly identical

with the exception of loop closure. Loop closure is still a

difficult problem in globally consistent mapping research

and one we are currently investigating separately. Instead,

this paper addresses the pertinent requirements that take

Fig. 3. This map was generated from data acquired during experimen-
tation and utilizes our offline globally consistent mapping techniques. It
shows the highly cyclic nature of room-and-pillar mines.

Groundhog from portal inspection to multi-corridor explo-

ration. These requirements include (1) a representation of

the mine for global localization, (2) a task-level planner that

can decompose an exploration objective into intermediate

navigation goals, and (3) a navigation system that can

realize the navigation goals through path planning.

Topological representations [7] coincide nicely with the

inherent structure of room-and-pillar mines. Room-and-

pillar mines consist almost exclusively of narrow corridors

and corridor intersections (see Figure 3). A topological

map is a graph representation of a given environment

where the nodes of the graph correspond to distinct lo-

cations in the environment and the edges correspond to

a direct path between two such locations. For mines,

nodes and edges correspond to intersections and corridors,

respectively. In addition, topological representations exhibit

several advantages over grid or feature-based approaches.

Such advantages include a compact data representation

and a reduction in processing time for the construction,

manipulation, and utilization of these maps [8].

Implicit in representing a mine as a topological map

is that the robot has some way of determining node

locations from its sensor data, as well as the edges leaving

each node. Once on an edge, the robot must be able to

follow that edge to the next node. A topology that is

detectable from local sensor data is said to be embedded

in the robot’s environment. Embedded topologies exhibit

useful properties in the context of task-level planning for

exploration.

For task-level planning, topological maps have proven

to be very useful in robotic exploration tasks [9] [10].

Unexplored edges in a topological map correspond to un-

explored regions of the robot’s environment. If the chosen

topology is a roadmap [11], exploring every edge in a

topological map will allow the robot to explore every part

of the freespace.

If this roadmap should be a tree (a condition that is

enforced in the context of this paper), then the environment



can be fully explored by maintaining a list of nodes that

have unexplored edges. A sequence of edge traversals can

then be planned [8] to direct the robot to traverse an

unexplored edge. This process repeats until all edges are

explored.

For navigation, three dimensional motion planning (

2D position and 1D orientation) is necessary given that

the robot must choose between different corridors at each

intersection. To further complicate 3D motion planning,

the robot must cope with the complex arrangement of

obstacles inherent in these environments. As described in

[3], obstacles can project from the ceiling and walls of

mines, which places additional constraints on such a path

planner.

Terrain analysis and select aspects of path generation

were covered in previous work [1], [2]. The navigation

system utilized in our topological framework builds upon

the previous terrain analysis and path generation techniques

by incorporating a nonholonomic 3D path planning algo-

rithm adopted from work by Latombe [12]. This navigation

routine, as well as all the other aforementioned system

requirements, are described in the following section.

III. SUBTERRANEAN TOPOLOGICAL EXPLORATION

Our system for topological exploration in mine environ-

ments is based upon three core modules: a topological

planner, an intersection detector, and a local navigator.

These processes capture the topological representation,

task-level planning, and navigation requirements discussed

previously.

A. Topological Planning

At the task-level planning layer, the topological explo-

ration module plans robot actions on an edge-by-edge basis.

The mine is modeled as an acyclic graph where a fully

explored mine will consist of N edges and N+1 nodes.

Each edge corresponds to a corridor of the mine and each

node represents either an intersection of corridors or the

terminating point of a corridor, which we label as a terminal

node.

The topological planner is instantiated with a root node

and a trailing edge that is marked as unexplored. The edge

is then traversed by the robot until either (A) an intersection

is detected or (B) the passage becomes blocked. Under

condition A, the previously traversed edge is marked as

explored and the remaining M unexplored edges (where M

is at least 2) are marked unexplored from a newly created

node. The robot will then choose an unexplored edge to

traverse and repeat the edge exploration process. Under

condition B, the previously traversed edge is still labeled

explored, but a terminal node is created. The robot will

then begin backtracking along the previous edge until it

resides at the previous node. From there it will explore the

remaining unexplored edges of that node or proceed with

backtracking. The exploration process terminates once the

robot has arrived at the root node.

(a) Strong Node

(b) Weak Node

Fig. 4. Two examples of intersection detection. Node locations are shown
in red, along with the associated Delaunay triangle, and tangents to the
local Voronoi edges. In (a) the node is considered an intersection, because
each tangent would lead the robot in a direction for which it can not see
a boundary. The node in (b) is not considered an intersection, as one of
the edges heads towards a clearly distinguishable boundary.

B. Intersection Detection

Our intersection detector is based on [13], in which

we described a technique for extracting topological fea-

tures from laser range scans that can be used to identify

intersections. These features correspond to nodes of the

generalized Voronoi diagram (GVD) [14]. The GVD is an

embedded topology, and has been used in previous topolog-

ical mapping and navigation systems [15] [16]. Features are

extracted by computing the Delaunay triangulation [17] of

a range scan, and keeping only triangles that have all three

sides longer than a distance parameter � . These triangles

correspond to Voronoi nodes with the property that each

edge leaving the node is at least �� away from every corner

of the triangle. The interpretation of this property is that

the Voronoi edge corresponding to the feature can be safely



(a) Costmap (b) Goals

Fig. 5. Planning maps. (a) The 2.5D costmap and (b) potential goal
positions.

traversed by a robot with a width less than � for at least a

short distance.

While extracting GVD nodes from a single range scan

provides candidate intersections, it is not sufficient for

intersection detection. Sparse or noisy range data can often

produce false positives in a single scan. This problem is

solved by tracking features over multiple scans. For fea-

tures from two different scans to match, all the properties

of each feature (Voronoi node position and radius, and

the position of the corners of the corresponding Delaunay

triangle) must match within defined thresholds. For a

feature to be considered as an actual GVD node it must be

matched through a minimum number of consecutive scans.

Experimental tuning of all pertinent parameters has yielded

a reliable detection system.

After detecting a GVD node, one final step is necessary

before adding a new node to the topological map. GVD

nodes can be created by any sufficiently large concavity

in the local structure. Such concavities occur often in the

irregular walls of a mine corridor. The GVD nodes corre-

sponding to these features are often termed ”weak” nodes.

Edges that leave a weak node towards a closed concavity

are termed boundary edges. Eliminating these nodes and

keeping only ”strong” nodes results in a topology known

as the reduced GVD (RGVD) [18]. The distinction between

strong and weak nodes is dependent on the scale at which

the local environment is perceived. For our purposes, the

scale is defined in terms of the robot’s size and sensor

range, and so the distinction between strong and weak

nodes is well defined.

RGVD nodes can be detected by checking to see if

any edges leaving a candidate node are boundary edges.

Such a test requires range data from a full 360 degrees

around the candidate node. Given Groundhog’s sensor

configuration, this is not possible in one scan. Instead,

two scans are combined from different vantage points, each

along a different candidate edge. This requires Groundhog

to actually drive through an intersection before it can add

it as a node in the topological map. The local map formed

Fig. 6. The set of planning arcs used in path generation.

by these combined scans is also useful for node matching,

as will be discussed in section V.

C. Local Navigation

Navigation is the intermediate process between topo-

logical exploration and vehicle actuation. The navigation

module accepts topological objectives from the task-level

planner, such as ”turn and face corridor �” or ”traverse cor-

ridor �,” and produces robot maneuvers. These maneuvers

take the form of waypoints that the robot controller tracks

and follows.

The navigation process utilizes the Sense-Plan-Act (SPA)

architectural framework to transform exploration tasks into

motor commands. In the navigational context, the SPA

procedure accrues sensor data from the robot’s environment

(sense); creates an internal representation of the environ-

ment and plans a set of actions to achieve a navigation

objective (plan); and executes this plan by maneuvering

the robot towards a goal location (act). These SPA phases

operate in a continuous cycle throughout the duration of

exploration.

The sensing portion of SPA executes from a stationary

position. Scanning lasers capture range measurements from

the ceilings, floors, and walls in the robot’s immediate field

of view. This scan data, represented as a 3D Cartesian point

cloud, is compressed into a 2D grid. The grid encodes

the traversabilty of the terrain (also known as a 2.5D

cost map) where each grid cell is marked either lethal or

traversable conditioned upon the detection of an obstacle in

that cell. Traversable cells are assigned with a local gradient

assessment to estimate the cost of traversing that particular

cell.

Navigational planning then utilizes this cost map in two

phases:

1) Goal selection: the process of choosing a goal that

coincides with the topological exploration objective

2) Path generation: the process of choosing a feasible

set of motions that achieve the goal without colliding

with obstacles

Goal selection decomposes the objective of the topolog-

ical planner into pose goals within the robot’s workspace.

Since the robot must position and orient itself to align with

unexplored corridors, goals and workspace are expressed in

three dimensions (i.e. � � � 	
). For each SPA cycle, the

robot will choose a goal pose that positions the robot in
� � 
 �
and orients the robot in � .



(a) Start and End configu-

ration

(b) Intermediate configura-

tions

Fig. 7. An example of path generation

It is important to note that the greatest challenge in goal

selection under our exploration framework is in picking

goals that ensure continued progress for the next SPA cycle.

A bad goal, one that places the robot facing a wall or an

undesired corridor, can disorient the robot. In such cases,

the robot can prematurely stop exploring a corridor. For

this reason, goals are selected that coincide with the center

of the corridor and face in the general direction of the

corridor.

Path generation, the second phase of planning, creates

paths in the aforementioned 3D workspace while consider-

ing the drive characteristics of the robot. The nonholonomic

constraint imposed by the platform’s Ackerman drive

system makes this problem similar to the nonholonomic

motion planning problem for car-like robots [12] [19]. For

Groundhog, however, this problem is simplified in that

Groundhog moves at a fixed and rather slow speed. As

such, we can neglect acceleration and vehicle dynamics,

and simplify the problem to a geometric search of paths

through the workspace.

Our path generation algorithm is adapted from the

techniques addressed in Latombe [20] and the MORPHIN

algorithm [21]. A finite set of arcs (corresponding to a

set of fixed steering angles) of uniform arc length are

selected to represent the set of moves the robot can make

from a given pose. Both forward and reverse arcs are

included (corresponding to a positive or negative velocity,

respectively) as well as straight lines (corresponding to a

steering angle of zero). The arcs are explicitly stored as a

finite collection of relative poses that describe the motion

of the robot for each specified steering angle (Figure 6).

The workspace is discretized in both position and orien-

tation to form a 3D state space used in the search routine.

Position is divided into cells that match the cell size of the

cost map and align with cell boundaries. The orientation

is divided into � bearings between ��� � � �
. The size of �

can be varied to manipulate planning performance. A large

� , for example, will generate shorter paths, but will also

increase memory and computation time required to find a

solution whereas a small � will generate faster solutions at

Fig. 8. A survey map of a section of the Bruceton mine, with node
locations shown in red. The unterminated edge leaving Node 1 represents
the path out of the mine.

the price of longer paths.

The search routine determines a collision-free path by

performing a biased breadth-first search through the state

space using the robot’s arc set to generate successor states.

The algorithm maintains a list of OPEN and CLOSED

states. The OPEN list is initialized with the start state,

which is mapped into the discrete state space

��� � 
 �� � � �� �

from a continuous space start pose

� �� � 
 �� � � �� �. From

the start pose, successor poses are calculated from the

end poses for each arc in the arc collection. The c-

space is dynamically determined by performing a collision

check along robot’s footprint at each terminating arc pose

within the cost map. Only collision-free arcs will have

terminating poses in

� �� � 
 �� � � �� � mapped into a discrete

states

��� � 
 �� � � �� � and added the OPEN list of states. The

previously visited state is then placed on the CLOSED

list and never revisited. The process continues to expand

OPEN states until either a goal state is reached or no states

reside on the OPEN list. If a solution is found, it is traced

by following a set of back-pointers connecting transition

states from the goal to the start. Otherwise, no solution is

returned.

Actuation is the latter part of SPA that issues a chain of

platform commands to drive Groundhog along the planned

path solution. The solution is issued as a series of way-

points generated from the planned arcs. These waypoints

are then tracked using feedback from Groundhog’s pose

estimator. Tracking waypoints rather than arcs prevents

tracking errors from accumulating as rapidly.

IV. RESULTS

Experiments were conducted in the Bruceton research

coal mine outside of Pittsburgh, PA. Each experiment

consisted of starting Groundhog in a tree environment

and proceeding with an autonomous exploration task. Over

the course of each exploration, a topological map is con-

structed, along with a log of intersections detected. These

experiments were designed to test the new capabilities of



Fig. 9. Groundhog’s path from online pose estimation during an exper-
iment. Even though the pose estimates for a particular intersection differ
each time it was detected, the topological map provides a mechanism for
determining the correct location.

Groundhog, mainly a high level awareness of position, the

capacity to choose and follow topological objectives, and

the ability to navigate in a way meaningful to exploration

(ie. turning corners).

Figure 8 shows the topological map built during the

largest single experiment, overlayed on a survey map of the

corresponding section of the mine. In this run, Groundhog

was teleoperated from the portal to a position near the first

intersection. It then proceeded to autonomously explore

as much of the environment as was traversable, and then

autonomously return to the portal. Over the course of

2 hours, Groundhog traversed more than 400m of mine

corridor.

Figure 9 shows the path recorded from Groundhog’s

online pose estimator during this same experiment. While

accurate enough in the short term, the online pose es-

timation exhibits considerable error over the long term,

rendering it useless for high level navigation. However, by

maintaining its position on the topological map, Groundhog

was able to correctly determine when it had returned to an

intersection it had already visited. It was thus able to fully-

explore the mine environments used in our experiments and

safely navigate its way back to the exit of the mine.

Over more than 20 hours of testing of the final system,

and passing through more than 50 intersections, the inter-

section detector correctly identified 100 percent of relevant

intersections. Furthermore, it never classified a weak node

as a strong node. This sort of reliability is paramount to

successful navigation in hazardous, abandoned mine envi-

ronments. Figure 4 demonstrates the intersection detector

in both the strong and weak case.

The local navigation module ran continuously through-

out these experiments. During basic corridor traversal path

planning took approximately 10 seconds per SPA cycle

using Groundhog’s 300 MHz processor. The previous

(a) Resulting Plan (b) Resulting Path

Fig. 10. An example of planning and waypoint following. The start and
end configurations, as well as the planned path of 11 arcs, are shown in
(a). The path followed by the robot according to its online pose estimation
is shown in (b)

Groundhog navigation system required approximately 60

seconds under the same conditions. More complicated

turning behaviors took between 30 and 60 seconds on

average, depending on the complexity of the maneuver

in question. An example path, along with Groundhog’s

tracking of said path, is shown in Figure 10.

V. CONCLUSION

In this paper, we have described the high level processes

that enable our system to autonomously explore a complex

mine environment. These processes consist of a topological

planner, an intersection detector, and a local navigator.

These processes, in conjunction with the existing Ground-

hog architecture, enable exploration of tree-structured mine

environments. We have presented results from one of

several experiments conducted in a mine environment that

verify this approach.

This work has extended the capability of our robot to

the point where it is able to perform a number of realistic

tasks associated with mine safety and rescue. As well as

mapping acyclic operational and abandoned mines, it is

capable of exhibiting “go to” behavior, where it could be

instructed to locate a particular intersection in a mine to

check for structural damage or wounded personnel.

We are currently concentrating on extending our auton-

omy framework to handle cyclic mine environments. It is

our belief that the topological properties of detected nodes

can be combined with the local mine structure at these areas

to allow for robust node recognition. Previous work [13]

demonstrated the feasibility of this approach with 2D local

maps. We are currently working to extend this approach to



Fig. 11. A point cloud generated from a 3d scan at a corridor intersection
in the Bruceton mine.

use detailed 3D information (Figure 11) as input to surface

matching and recognition routines [22]. This will allow our

system to better exploit the inherent uniqueness of irregular

mine corridors and intersections to aid in loop closure.

With such a capability, the exploration and navigation of

general mine environments would be possible, completing

the primary goal of the Mine Mapping Project.

ACKNOWLEDGMENTS

The authors would like to acknowledge the Carnegie

Mellon Subterranean Robotics and the Carnegie Mellon

HSLAM groups for efforts directly related to systems

development; the National Institute of Occupational Health

and Safety, Mine Safety and Health Administration, Penn-

sylvania Department of Environmental Protection, and var-

ious people in the mining industry who provided guidance

and support for this work; Workhorse Technologies, LLC

for technical and operational support in all aspects of the

project; and finally, Senator Arlen Specter for his continued

support.

REFERENCES

[1] S. Thrun, D. Hahnel, D. Ferguson, M. Montemerlo, R. Triebel,
W. Burgard, C. Baker, Z. Omohundro, S. Thayer, and W. Whittaker,
“A system for volumetric robotic mapping of abandoned mines,” in
Proceedings of the IEEE International Conference on Robotics and

Automation, 2003.

[2] D. Ferguson, A. Morris, D. Hähnel, C. Baker, Z. Omohundro,
C. Reverte, S. Thayer, C. Whittaker, W. Whittaker, W. Burgard,
and S. Thrun, “An Autonomous Robotic System for Mapping
Abandoned Mines,” in Proceedings of the Conference on Neural

Information Processing Systems (NIPS). MIT Press, 2003.

[3] C. Baker, A. Morris, D. Ferguson, S. Thayer, C. Whittaker, Z. Omo-
hundro, C. Reverte, W. Whittaker, D. Hähnel, and S. Thrun, “A
Campaign in Autonomous Mine Mapping,” in Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA),
New Orleans, LA, 2004.

[4] A. C. Morris, D. Kurth, D. Huber, C. Whittaker, and S. Thayer,
“Case studies of a borehole deployable robot for limestone mine
profiling and mapping,” in International Conference on Field and

Service Robotics (FSR), July 2003.

[5] A. Nuchter, H. Surmann, K. Lingermann, J. Hertzberg, and S. Thrun,
“6d slam with an application in autonomous mine mapping,” in IEEE

International Conference on Robotics and Automation, 2004.
[6] A. B. Cummins and I. A. Given, Eds., SME Mining Engineering

Handbook. Port City Press, 1973, vol. 1.
[7] B. Kuipers and Y. Byan, “A robot exploration and mapping strategy

based on a semantic hierarchy of spatial representations,” J. Robot.

Auton. Syst., vol. 8, pp. 47–63, 1991.
[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Intro-

duction to Algorithms, Second Edition. MIT Press, 2001.
[9] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “Robotic exploration

as graph construction,” Transactions on Robotics and Automation,
vol. 7, no. 6, pp. 859–865, December 1991.
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