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Abstract— In this work we construct a simple dynamical
model for vibratory bowl feeders. The symmetrical arrange-
ment of the springs supporting the bowl allow us to predict
a simple structure for the stiffness matrix of the system. The
cylindrical symmetry of the bowl itself then means that the
linearized rigid body dynamics of the system can be simplified
to a 2-dimensional system. The solutions to this system are
elliptical motions of the bowl, vibrating about the symmetry
axis and along it at the same time. We are able to find a
condition for the system to be at resonance. There is some
debate about how the parts move up the helical track inside
the bowl. We are able to show that one alternative, a “slip-
stick” motion, is unlikely.

Index Terms— Vibratory bowl feeders, stiffness matrix,
screw theory.

I. I NTRODUCTION

Vibratory bowl feeders are common devices used to
orient and feed components to be assembled, see Fig. 1.
Despite the ubiquity of these devices in manufacturing most
recent academic interest has focused on two areas: The
design of traps or fences which ensure that the fed parts
are in a particular orientation, (see for example [10]), and
the mechanics of motion of parts on vibrating plates and
tracks, (see [3]).

In this work we look at the dynamics of the device
itself with a view to optimising its design. This involves
modelling the dynamics of the vibrating bowl. The aim
is to understand how the size and placement of the leaf
springs affects the motion of the bowl and how this in
turn determines the motion of the parts to be fed. Early
work, such as [1] and [4] studied linear vibratory feeders
but concentrated on the motion of the fed parts. In [6]
the frequencies and shape of free vibrational modes were
determined and verified experimentally. Later, a simplified
model for the dynamics of the bowl was included in [5].
Most recently, a force analysis of these devices was devel-
oped in [9].

Here we are able to give a fairly complete description
of the motion of the bowl. Employing screw theory we are
able to exploit the symmetry of the device, the symmetrical
arrangement of the springs and the cylindrical symmetry
of the bowl. This quickly leads to a simplification of the
dynamics to a 2 degree-of-freedom system. We look in
some detail at the stiffness matrix associated with the leaf
springs. Finally we are able to show that the fed parts are
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Fig. 1. A typical vibratory bowl feeder.

likely to undergo a bouncing motion as discussed in [3]
rather than a “stick-slip” motion.

Our second aim: to understand how the motion of the
parts is affected by the motion of the bowl, has not been
addressed here. This paper should be viewed as a report
on work in progress.

We begin with a brief review of some of the ideas and
notation used in the rest of this work.

II. SCREWS ANDWRENCHES

A twist or screw is an element of the Lie algebra
to the group of rigid body motionsSE(3). These six-
dimensional vectors are usually used to represent velocities
of rigid bodies but here we will use them to denote small
displacements,

s =
(

δθ
δp

)
=




δθx

δθy

δθz

δpx

δpy

δpz




. (1)

Suppose thatr is a point in space, then the small displace-
ment in the position ofr represented by the screws will
be given by

δr = δθ × r + δp (2)

Under a rigid body motion, screws transform according
to the adjoint representation ofSE(3). A group element



in this representation can be conveniently written in parti-
tioned form as,

H =
(

R 0
TR R

)
, (3)

whereR is a 3× 3 rotation matrix andT is a 3× 3 anti-
symmetric matrix corresponding to a translation. That is,
Tx = t × x for any vectorx, wheret is the translation
vector. The active transformation of a screws by such a
rigid motion is given by the matrix product,s′ = Hs.

The force and torque acting on a rigid body is written
as a single six-dimensional vector called a wrench,

W =




Mx

My

Mz

Fx

Fy

Fz




, (4)

where Fi are the components of the force andMi the
components of the moment acting on the body. Under
a rigid body motion these vectors transform according
to the coadjoint representation ofSE(3). So an active
transformation specified by a rotationR and a translation
T will transform a wrenchW according to,

W ′ = H−TW, (5)

where we have used the abbreviationH−T for
(
H−1

)T
.

It is simple to check that the work done by a wrenchW
over a displacements is given by,

Work = WT s. (6)

It is also easy to see that the work doesn’t change if the
wrench and screw are both transformed by the same rigid
motion.

A generalised version of Hooke’s law can be written

W = Ks, (7)

where K is the 6 × 6 stiffness matrix of the system. If
we subject the system to a rigid body motionH then the
stiffness matrix will transform according to

K ′ = H−T KH−1. (8)

Notice that this transformation law ensures that the elastic
energy in the system, given by(1/2)sT Ks, is invariant
under rigid body motions.

More details on this Lie algebraic approach to mechanics
can be found in [7] and particular details about stiffness
matrices in [8].

III. SYMMETRY OF THE STIFFNESSMATRIX

In general, a vibratory bowl feeder consists of a cylin-
drical bowl connected to a heavy base by three or four leaf
springs. These springs are placed symmetrically about the
axis of the bowl but may be inclined with respect to the
axis.

The symmetrical placement of the springs means that
the stiffness matrix of the whole system has a rather simple
form. Suppose that the stiffness matrix of a single spring is
given byK0, for a bowl with 3 springs the stiffness matrix
of the system will be given by,

K = K0 + H−T K0H
−1 + (H−T )2K0(H−1)2. (9)

HereH represents a rotation of2π/3 about the axis of the
bowl. If we take the axis of the bowl to be thez-axis of
the co-ordinate frame thenH has the form,

H =
(

R 0
0 R

)
, (10)

where the rotation matrixR is given by,

R =




cos(2π/3) − sin(2π/3) 0
sin(2π/3) cos(2π/3) 0

0 0 1


 . (11)

Let us write the stiffness matrix in partitioned form,

K =
(

Ξ Γ
ΓT Υ

)
. (12)

Now it is clear that the stiffness matrix will satisfy the
symmetry condition

H−T KH−1 = K. (13)

with H as in equation (10) above, sinceH3 = I. This
implies that, in these coordinates the parts of stiffness
matrix have the form,

Ξ =




ξ11 0 0
0 ξ11 0
0 0 ξ33


 , (14)

Γ =




γ11 γ12 0
−γ12 γ11 0

0 0 γ33


 (15)

and

Υ =




u11 0 0
0 u11 0
0 0 u33


 . (16)

This form doesn’t really depend on the number of
springs, as long as the rotation angle of the symmetry
operation is not0 or π we get the same result.
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Fig. 2. Leaf springs, (a) Single leaf and (b) two leaves.

IV. L EAF SPRINGS

Now we look more closely at the values of the non-zero
components of the stiffness matrix. The stiffness matrix of
a simple beam is a6× 6 diagonal matrix,

K1 = diag
(EJx

l
,

EJy

l
,

GJ

l
,

12EJy

l3
,

12EJx

l3
,

EA

l

)
,

(17)
see [11] or [2]. HereE is the Young’s modulus andG
the shear modulus of the beam material. The length of the
beam is denoted byl and if we assume that the beam has
a rectangular cross-section with thicknessv and breadthw
then the area integral are

A = vw, Jx =
v3w

12
, Jy =

vw3

12
, J =

vw

12
(v2 + w2).

(18)
See Fig. 2 (a).

Leaf springs consist of several of these beams connected
in parallel. To find the stiffness matrix for a pair of leaves
we simply add their individual stiffness matrices. However
to do this addition we must have the individual stiffness
matrices in a common coordinate frame. If we assume
that the separation between the leaves ish then we can
translate the stiffness matrix for a single leaf by+h/2
and−h/2 in the y-direction. See Fig. 2 (b). Adding the
resulting stiffness matrices gives a diagonal matrix again,
K2 = diag(d1, d2, d3, d4, d5, d6), but now the entries are,

d1 =
E(4Jx − h2A)

2l
, (19)

d2 =
2EJy

l
, (20)

d3 =
(GJ

l
− 6h2EJy

l3

)
, (21)

d4 =
24EJy

l3
, (22)

d5 =
24EJx

l3
, (23)

d6 =
2EA

l
. (24)

It is clear how this can be generalised for more leaves.
To get K0 we must translate the stiffness matrixK2

along thex-axis and rotate it about this axis, see Fig. 2

(b) again. We will denote the rotation angleβ here and
write the distance translated asr. The result is simple
to derive but rather lengthy to present. In the following
section we argue that only a few of the entries are relevant
to the dynamics. Finally to find the elements ofK we
must transform and add as in equation (9) above. For the
elements we are interested in this amounts to multiplying
the elements ofK0 by 3, we get,

ξ33 = 3(d2 sin2 β + d3 cos2 β +
r2d5 sin2 β + r2d6 cos2 β), (25)

γ33 = 3r(d5 − d6) cos β sin β, (26)

u33 = 3(d5 sin2 β + d6 cos2 β). (27)

V. L INEARIZED DYNAMICS

We consider small motions of the feeder about its
equilibrium position. The small displacement of the bowl
can be described by a twist,sT = (θx, θy, θz, x, y, z),
whereθx is the small angle of rotation about thex-axis,
x is a small translation along thex-axis and so forth. The
linearized dynamics of the feeder are given by,

N s̈ + Ks = W. (28)

Here,W is the driving wrench andN is the6× 6 inertia
matrix of the bowl.

Now the bowl of the feeder has approximately cylin-
drical symmetry with the symmetry axis aligned along
the symmetry axis of the total stiffness matrix. Assuming
that the axis of symmetry is thez-axis as in the previous
sections, the inertia matrix will have the form,

N =
(

D C
CT mI

)
, (29)

whereD is a diagonal matrix,

D =




mk2
1 0 0

0 mk2
1 0

0 0 mk2


 , (30)

the mass of the bowl ism here and theks are radii of
gyration. Note that the cylindrical symmetry implies that



Fig. 3. The motion of a point on the bowl showing three different phase differences.

the radius of gyration about thex-axis k1, is the same as
the radius of gyration about they-axis. The matrixC gives
the position of the centre of mass which must lie on the
symmetry axis of course, say a distancecz from the origin:

C =




0 −mcz 0
mcz 0 0
0 0 0


 , (31)

finally hereI denotes the3× 3 identity matrix.
Normally the machine will be actuated by several strong

electromagnets, these are arranged so as to produce a force
in thez-direction and simultaneously a torque about thez-
axis. The electromagnets are driven cyclically so that the
wrench acting on the bowl can be represented as,

W =




0
0

pA
0
0
A




cosωt, (32)

wherep is the pitch of the wrench,A the amplitude and
ω the driving frequency of the magnets andt represents
time. In some designs the actuators are arranged so as to
produce a pure torqueWT = (0, 0, A, 0, 0, 0) cos ωt, with
the conventions adopted here this is a wrench with infinite
pitch.

Notice that the equations de-couple. Consider the set of
wrenches comprising forces along thez-axis together with
torques about thez-axis, clearly the driving wrench of the
machine lies in this linear system. Now we can separate the
equations into two groups, 4 equations are annihilated by
any wrench in the linear system. The degrees of freedom
represented by these equations are not driven and hence we
can assume that initial motion will be damped out after a
while and hence there will be no motion here. We will not
consider these degrees of freedom further. The remaining
pair of equations can be written,(

mk2 0
0 m

)(
θ̈z

z̈

)
+

(
ξ33 γ33

γ33 u33

)(
θz

z

)
=

(
pA
A

)
cosωt. (33)

From now on we will simply writeξ for ξ33, γ for γ33 and
so forth.

In practical machines there will be damping, in line
with our linearized dynamics we can include a damping
matrix to provide a wrench which is a linear function of
the velocity of the bowl. A reasonable assumption that is
often made is that the damping matrix is proportional to
the stiffness matrix, so called proportional damping,

(
mk2 0

0 m

)(
θ̈z

z̈

)
+ ν

(
ξ γ
γ u

)(
θ̇z

ż

)
+

(
ξ γ
γ u

) (
θz

z

)
=

(
pA
A

)
cosωt. (34)

It is possible to consider other damping matrices, however
if the damping is not symmetrical about thez-axis then the
equations will not de-couple.

The steady state solutions to the above equations are
sinusoids of angular frequencyω that is,

θz = A1 cos(ωt + φ1), (35)

z = A2 cos(ωt + φ2). (36)

We can solve for the constants,A1, A2, φ1 and φ2 quite
easily, but we get rather large expressions,

A1 = A

√
(pu− γ − pmω2)2 + ν2ω2(u− γ)2

∆
(37)

and

A2 = A

√
(ξ − γ −mk2ω2)2 + ν2ω2(ξ − pγ)2

∆
, (38)

where,

∆2 = (ξu−mξω2 −muk2ω2 + m2k2ω2 − ξνuω2 +
γ2ν2ω2 − γ2)2 + (ξνuω −mk2νuω3 +

ξuω −mξω3 − 2νγ2ω)2. (39)

The phase difference is given bytan(φ2 − φ1) = Y/X,
with,

Y = (pu− γ − pmω2)(ξ − γ −mk2ω2) +
ν2ω2(u− γ)(ξ − pγ), (40)

X = (pu− γ − pmω2)(ξ − pγ)νω −
(ξ − γ −mk2ω2)(u− γ)νω. (41)



Finally here notice that the constants defined above satisfy
the following relation,

X2 + Y 2 =
(

A1∆
A

)2 (
A2∆
A

)2

. (42)

This is simple to see from the complex arithmetic used to
solve the dynamic equations, but it could also be verified
directly.

VI. M OTION OF THEBOWL

Consider a point on the helical track with initial coordi-
natesq = (R, 0, 0)T say, in this linear approximation we
can use equation (2) to find the motion of this point:

q(t) =




R
RA1 cos(ωt + φ1)
A2 cos(ωt + φ2)


 . (43)

This is a small, elliptical motion, see Fig. 3.
The ‘tilt’ and size of the ellipse will be determined by the

mechanical parameters of the machine and the frequency
of the driving wrench. Notice that the points on the ellipse
will satisfy the quadratic equation,

y2

A2
1R

2 sin2 φ
− 2yz cosφ

A1A2R sin2 φ
+

z2

A2
2 sin2 φ

= 1, (44)

whereφ = φ2 − φ1 is the phase difference. This can be
written in matrix form as,

(y, z)

(
1

A2
1R2 sin2 φ

− cos φ
A1A2R sin2 φ

− cos φ
A1A2R sin2 φ

1
A2

2 sin2 φ

) (
y
z

)
= 1.

(45)
The tilt angle can be found by diagonalising the2 × 2
matrix in equation (45) using a rotation matrix. The tilt
angleα, will be the rotation angle which diagonalises the
coefficient matrix, it satisfies,

tan(2α) =
2A1A2R cos φ

A2
1R

2 −A2
2

. (46)

In fact this gives two solutions forα, separated byπ/2,
corresponding to the major and minor axes of the ellipse.
Notice that this tilt angle is independent of the amplitude
of the driving wrenchA.

We can find the lengths of the semimajor and semiminor
axes,a, b, by looking at invariants of the matrix. For the
diagonalised matrix the determinant will be1/a2b2 and
since the determinant is an invariant of the matrix we can
evaluate the determinant of the matrix in equation (45)
above to give,

ab = A1A2R| sin φ|. (47)

The modulus sign here is becausea andb are both positive.
The trace of the diagonal coefficient matrix is(1/a2) +
(1/b2), this leads to the result,

a2 + b2 = A2
1R

2 + A2
2. (48)

Dividing equation (48) by (47) we get a quadratic equation
for the eccentricity of the ellipsee = a/b.
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Fig. 4. Force diagram for a part on an inclined plane.

Most literature on bowl feeders state that the device is
designed to run at or near resonance. Standard definitions
of the resonant frequency roughly state that this is the
frequency with maximum output. In our case we have two
outputsθz and z so we need a slightly modified notion
of resonance. Let us assume that we are interested in the
situation where the motion of the bowl is maximal. So
the “output” of our system can be taken as the area of
the ellipse. The area of an ellipse is proportional to the
product of its semimajor and semiminor axesab, so we
must maximise equation (47). Now we can writesin φ =
Y/
√

X2 + Y 2 using X and Y from equations (41) and
(40). Then simplifying using equation (42) gives the result,

ab =
A2R|Y |

∆2
. (49)

This expression can be maximised with respect toω to
yield the condition for resonance. However, in a practical
design the driving frequencyω will be the frequency of the
local electricity supply;2π×50 Hz in Europe and2π×60
in the US. It is also common to use a rectifier to double this
frequency, but in any design study the driving frequency
should be considered as fixed and not a design parameter.
The resonance condition can be used to optimise a single
design parameter the rest being fixed. The easiest to find
would be p the pitch of the driving wrench but in most
designs this is chosen to be 0 or infinite, where 0 pitch
corresponds to a pure force along the axis and infinite pitch
corresponds to a pure torque about the axis of the device.
It would also be possible to use this condition to optimise
with respect to properties of the spring, for example the
length of the spring or its angleβ.

VII. PART DYNAMICS

In [3] it is suggested that the motion of the fed parts in
such a vibratory feeder is a bouncing or hopping motion.
However, it has also been suggested that the motion is a
“slip-stick” motion resulting from the difference between
static and dynamic friction. Here we investigate this claim
and show that this slip-stick motion is rather unlikely.

Figure 4 shows the forces acting on the fed part when
it is in contact with the helical track. In our linear approx-
imation the track is just an inclined plane. For simplicity



we will assume that the motion of the bowl follows an
ellipse with its major axis aligned with the track. In fact,
other things being equal, this arrangement will produce
the smallest accelerations perpendicular to the track. In
coordinates aligned with the inclined plane the motion of
the part fixed to the inclined plane will be

q(t) =
(

a cos ωt
b sin ωt

)
. (50)

Applying Newton’s second law to the motion perpendicular
to the plane gives

R = m0g cosα− bω2 sinωt, (51)

wherem0 is the mass of the part andg is the acceleration
due to gravity. (Note that in Fig. 4F represents the
frictional force acting on the part.) For the part to stay
in contact with the plane the reaction forceR must remain
positive, implying that,

b sin ωt <
m0g

ω2
cos α. (52)

The constantb is positive so we consider the maximum
values ofsin ωt, this leads to the inequality,

b <
m0g

ω2
cosα. (53)

Now if we assume that the driving frequency is 50 Hz and
the mass of the part is a few grams, then we see that for
no bouncing the displacement of the track perpendicular
to its surface must be less than a few microns. This very
stringent limit is unlikely to be maintained under normal
factory conditions.

VIII. C ONCLUSIONS

In this paper we have laid the foundations for an analysis
of vibratory bowl feeders. These are important practical
machines and it is perhaps a little surprising that the
existing literature concerning these devices is so sparse.

Specifically we have constructed a simple linear model
for the dynamics of the bowl supported by a symmetrical
arrangement of springs. With this simple model we are able
to deduce a condition for resonance in terms of the design
parameters of the device and the driving frequency of the
actuators. We are also able to show, from a theoretical
perspective, that the probable mechanism for the motion
of the parts is not “slip-stick”.

In any modelling exercise it is necessary to make
reasonable assumptions and ignore some features of the
system. Here for example, we have ignored the fact that
most of these machines rest on rubber feet for vibration
isolation. We have also approximated the motion of the
bowl using linear dynamics. To justify these assumptions
we really need to appeal to experiments. Preliminary results
show that the motion of the bowl is indeed elliptical but
at the moment we do not have any quantative results.
However, the modelling techniques we have used are robust
and we do not anticipate any major difference between
this theory and any experiment. Rather we expect to be
able to use suitable experiments to identify some of the

model parameters which are difficult to predict from simple
measurements, such as the damping factorν and the radius
of gyrationk.

For brevity here, we have also ignored the dynamics of
the bowl away from thez-axis. That is we have tacitly
assumed that motions which are neither rotations about the
z-axis nor translations along it, are fully damped. However,
deviations from symmetry, which will always be present
to some extent in a real device, may cause energy to
be transferred to these “off-axis” modes. In [6] it was
suggested that motion in these modes could be the cause
of observed “dead-spots” in real devices.

To carry this theoretical work forward we need to study
the bouncing dynamics alluded to in [3]. In particular we
would like to know how the tilt angle and eccentricity of
the elliptical motion of the bowl effects the motion of the
parts. Also the pitch of the helical track which carries the
parts around the inside of the bowl, is an important design
parameter and its effect of the motion of the parts needs
to be understood.

We would like to be able to explain certain phenomena
observed by operators of these machines. For example, in
some cases one can increase the feed rate of the parts
by reducing the amplitude of the drive. Also, in some
operating regimes the parts will move down the track
rather than up. Eventually it should be possible to optimise
the design of these machines and hence make them more
efficient and more productive.
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