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 Abstract – We describe a monocular robot vision system 
which accomplishes accurate 3-DOF dead-reckoning, closed-
loop motion control, and precipice and obstacle detection, all in 
dynamic environments, using a single, consumer-grade web-
cam and typical laptop computer hardware.  Simultaneous 
translation and rotation are accurately measured, and the 
camera need not be placed at the robot’s center of rotation.  
The algorithm is straightforward to implement and robust to 
noisy measurements.  The software is based on open source 
computer vision libraries and is itself open source.  It has been 
tested in a wide variety of real-world environments and on 
several different mobile robot platforms. 
 
 Index Terms - mobile robotics, mobile robot vision, optical 
flow, odometry 

I. INTRODUCTION 

Visual mobile robot navigation has long been a goal of 
robotics and computer vision researchers [9].  Whole fields 
have developed around the exploitation of one or more 
moving cameras, including visual simultaneous localization 
and mapping (V-SLAM) [8,21], visual servoing [12], 
spacecraft attitude control [14], and structure from motion 
(SFM).  The past 15 years have also seen a smaller body of 
work on what has been termed visual odometry – that is, the 
incremental, online estimation of robot motion from a video 
sequence shot by an on-robot camera.  [1,13,16,17,19,22].  

Visual odometry is a distinctly local, low-latency ap-
proach that facilitates closed-loop motion control and obsta-
cle and precipice detection, as well as highly accurate dead-
reckoning.  This local focus contrasts with more global ap-
proaches such as V-SLAM  or online SFM which empha-
size mapping, progressive reduction of uncertainty, global 
frames of reference, and which may include iterative re-
finement steps such as multi-frame bundle adjustment [10].  

Historically, visual odometry systems have had diffi-
culty overcoming a number of problems, including numeri-
cal instabilities common in SFM-like projective geometric 
techniques [7], sensitivity to the low quality of point corre-
spondences available from automatic tracking algorithms 
[2,23], a requirement for omnidirectional views [13,22], or 
the inability to disambiguate simultaneous rotation and 
translation [11].  A more recent result overcomes these dif-
ficulties in monocular- and stereo-camera cases but achieves 
high accuracy only with a calibrated stereo pair [19]. 

In this paper we describe an algorithm for strictly mo-
nocular visual odometry which achieves good real-world 
performance (similar to the calibrated-stereo results shown 
in [19]) at substantially lower implementation complexity.  
This is made possible by exploiting a variety of straightfor-
ward consensus methods, several reasonable assumptions 

for ground-based mobile robots, and the increasingly high 
performance of consumer computing hardware.  We have 
tested this system on three small mobile robot platforms (see 
Figs. 1 and 5), and in traditional office environments as well 
as in extreme terrain such as ice. Our visual odometry sys-
tem is readily accessible to a wide range of robot builders 
because it is based on and is itself open source software.  

Visual odometry offers the prospect of substantially re-
duced sensing costs, allowing more reliable navigation 
through unstructured areas and safer operation in close 
proximity to humans. As the cost of computation falls, an 
inexpensive camera can replace a typical sensor suite con-
sisting of dozens of range sensors and a set of encoders and 
provide a broader field of view and the ability to perform 
range and appearance-based sensing simultaneously. Pas-
sive vision systems also avoid the multi-path interference 
problems typical with sonar rangefinders and the high sensi-
tivity to lighting common in low-cost infrared rangefinders.  
For kinematically indeterminate robots (e.g., where friction 
is low and actuation powerful), visual odometry offers a 
low-latency error signal which can be used in a feedback 
loop to correct motion.  For robots that operate in highly 
unstructured indoor environments (e.g., urban search and 
rescue) visual odometry can be significantly more practical 
and functional than other localization systems because no 
radio coverage is required, no beacons need be car-
ried/deployed, static drift is low compared to low-cost iner-
tial measurement units, and high degrees of wheel slip pose 
no difficulty.   

The remainder of this paper is organized as follows: 
Section II describes the hardware used in our experiments.  
Section III outlines the visual odometry algorithm itself.  
Sections IV through VI describe detailed aspects of the al-

Fig. 1 Two examples of robots using this visual odometry system  
Only the uppermost, front camera on each robot is used for visual odometry. 



gorithm.  Section VII addresses obstacle and precipice de-
tection.  Section VIII summarizes the framework within 
which we evaluate this and other visual odometry systems.  
Section IX describes the closed-loop version of our vision 
system.  Section X discusses the real-world performance of 
our algorithm in a variety of environments and on a variety 
of robots, and Section XI explores the implications of robust 
visual odometry for the design of new robot systems.  Sec-
tion XII concludes and summarizes our findings. 

II. HARDWARE CONFIGURATION 

We have successfully deployed our visual odometry 
system using a variety of cameras, ranging from $5 surplus 
webcams to multi-megapixel consumer digicams.  The re-
sults we report here are from USB- and IEEE1394- web-
cams  operating at VGA resolution (640x480 pixels).  These 
cameras, fitted with inexpensive 2.1 mm wide-angle lenses,  
have unit costs around $100 and achieve peak frame rates of 
10 and 30 frames per second (fps), respectively.  Each cam-
era affords a horizontal field of view of approximately 90˚.  
In the USB case, a proprietary compression algorithm was 
required between the camera and camera driver [18] to per-
mit 10 fps VGA operation over a USB 1.1 bus.   

Two types of tests were performed, one that passively 
interpreted video to compute the robot’s trajectory after-the-
fact (“open loop”), and another that used on-line visual 
odometry estimates to actively correct the robot's trajectory 
(“closed loop”).  The open loop tests were performed at 7.5 
fps using uncompressed video recorded by an IEEE1394-
attached webcam.  The open loop vision system computa-
tions were run off-line on a 3.2 GHz Intel® Pentium® Xeon™ 
desktop PC at effective frame rates between 30 and 50 fps.  
The closed loop tests were performed using a USB-attached 
webcam capable of up to 10 fps, however, the actual frame 
rate varied due to CPU load.  Using a laptop equipped with 
a 1.5 GHz Intel® Pentium® M processor for vision process-
ing, robot control, and a near-real-time graphical user inter-
face displaying the estimated optical flow field and resulting 
visual odometry results, rates from 2 to 10 fps were ob-
served.   

III. ALGORITHM OVERVIEW 

The visual odometry algorithm we present here is an 8-
stage process where all eight stages execute sequentially 
after the capture of each video frame.  In practice this algo-
rithm can execute as quickly as 15 fps on common laptop 
hardware.  Our approach relies on two assumptions which 
are quite reasonable for many mobile robots: a) the robot 
travels predominantly over a ground plane, and b) the cam-
era is mounted rigidly with respect to the robot and ground 
plane.  The quality of position estimation results varies with 
frame rate, robot speed, camera height, and visual environ-
ment.  This section presents a brief outline of the eight 
stages and the following sections address specific stages in 
detail.  In this discussion we shall use the notation (u,v) to 
represent image coordinates, lowercase (x,y,θ) to represent 
incremental coordinates in a robot-centered frame of refer-
ence, and uppercase (X,Y,Θ) to represent global coordinates 
in a frame of reference based on the starting position and 
orientation of the robot.  The eight stages are: 

1. Correct camera images for lens distortion. This is ac-
complished using standard computer vision algorithms in-
cluded in the Open Computer Vision Library (OpenCV) [5]. 

2. Estimate the optical flow field corresponding to re-
cent video frames.    

3. Screen flow-field vectors for potential tracking errors 
and independently moving objects.   Discard such vectors.  

4. Divide the optical flow field into “ground” and 
“sky”. 

5. Project image coordinates (u,v) of flow vectors in the 
“sky” region into a robot-centered cylindrical coordinate 
frame and determine consensus angular displacement be-
tween the last two camera views.  Use this as the estimate θ 
of rotational motion.   

6. Project image coordinates (u,v) of flow vectors from 
the “ground” region on to ground plane coordinates.  From 
this set of transformed vectors, determine a consensus x-y 
feature displacement between the last two camera views and 
use this as the estimate (x,y) of translational motion. 

7. Sum incremental measurements (x,y,θ) to arrive at a 
cumulative estimate (X,Y,Θ) of robot position relative to the 
robot’s original starting position.  

8. Periodically repopulate the set of active trackpoints 
to maintain adequate and uniform coverage across ground 
and sky. 

IV. ESTIMATING THE OPTICAL FLOW FIELD 

Optical flow field estimation remains an open problem 
after over 25 years of effort.  Dozens of methods have been 
proposed, each with its own strengths and weaknesses.  In a 
1995 survey [2,3], Barron, Fleet, et al. reported the Lucas 
Kanade method [15] as being among the most accurate and 
most reliable of the methods (then available), when tested 
using a variety of simulated and real data series.  An im-
proved and more efficient form [4] of the Lucas Kanade 
algorithm is available in the open source computer vision 
library, OpenCV.  We employ this feature tracker to obtain 
the point correspondences (equivalently, the optical flow 
field vectors) required in subsequent stages of the algorithm.   

In selecting features to track, we use a low corner 
threshold and specify a large minimum distance between 
features.  (typically 0.005 and 20 pixels, respectively)  This 
encourages the detection of features even in low-contrast 
parts of the image and provides relatively uniform coverage 
across the field of view, at the cost of generating a higher 
number of tracking errors.  Given that the robust methods 
we use to analyze those feature tracks can deal with substan-
tial numbers of outliers, we have found such wider coverage 
preferable to minimizing tracking errors. 

V. SCREENING TRACKPOINTS FOR QUALITY 

Low contrast images, feature-poor environments, oc-
clusions, and spatial aliasing may all cause individual opti-
cal flow vectors to be estimated incorrectly (henceforth, 
“patch tracking errors”).  Also, dynamic elements in the 
environment (e.g., moving people, vehicles) can induce op-
tical flow that may be substantially at odds with the robot’s 
ego-motion-induced optical flow.  Our visual odometry sys-
tem attempts to mitigate the impact of confusing flow vec-
tors from patch tracking errors and independently moving 



objects by identifying and excluding suspect vectors from 
the ego-motion estimation process.  

Patch-tracking errors tend to show erratic movement 
from frame to frame.  For instance, at occlusion boundaries, 
features being tracked disappear or change due to changing 
image content near the discontinuity.  Low-contrast features 
may simply be difficult to precisely relocalize in a subse-
quent video frame due to spatial sampling irregularities in-
herent to typical low cost image sensors.  Specular reflec-
tions may be tracked as features and shortly thereafter dis-
appear due to surface conditions and angles.   

Likewise, the optical flow field associated with dy-
namic elements in the environment also tends to show more 
erratic motion over time because the flow vectors created by 
moving objects are superimposed on to the flow generated 
by the robot’s ego-motion.  In a special, but very important 
case, the optical flow field associated with moving humans 
tends to be particularly erratic because human motion is 
typically discontinuous and moving human bodies undergo 
substantial deformation.   

In contrast, the optical flow field due to ego-motion 
tends to be smooth because the robot’s motion is largely 
smooth.  (While there exist a variety of robots that exhibit 
discontinuous motion, such as legged mechanisms, a smooth 
motion assumption is reasonable for most mobile robots. 
Furthermore, a robot which exhibits periodic or known dis-
continuous motion could actually exploit such motion to 
better disambiguate the optical flow field.) Thus, for both 
tracking errors and independent motion, smoothness can be 
employed as a practical heuristic to assess the reliability of 
each optical flow track in estimating robot motion.  Our 
optical flow algorithm exploits this observation by focusing 
attention on elements that exhibit smooth motion over a 
seven-frame (0.5-3 second) time horizon.  However, to ac-
count for cases where the robot’s actual motion is temporar-
ily not smooth (e.g., during travel over a bumpy surface), 
we suspend this rule in cases where the majority of vectors 
exhibit unsmooth motion over the observation interval.   

The criteria used to identify “smooth” flow centers 
around the incremental angles between successive flow vec-
tors associated with each tracked image patch over time.  
We compute the flow-field direction at the patch in question 
across three intervals – seven to three frames back, three to 
one frames back and one frame back to the current frame – 
and then classify an element as “unsmooth” when the dif-
ference between any of those directions exceeds a threshold 
of 30 degrees. Once an element has been classified as 
unsmooth, it is ignored for purposes of egomotion estima-
tion within the current cycle.   

Over time we also wish to stop tracking consistently 
unsmooth elements and instead choose other image patches 
which may offer a more reliable indication of robot egomo-
tion.  Thus, when a given flow element is classified as 
“unsmooth” but the majority of other flow elements are 
classified as smooth, a score field associated with the 
unsmooth element is incremented by 5.  The score fields for 
all smooth elements are decremented by 1, but not below 
zero.  If, over time, a flow element’s unsmoothness-score 
field exceeds 10, that element is removed from the list of 
image patches to track in future video frames.  This allows 
problematic patches to be replaced with new image patches 

the next time that new tracking features are chosen (i.e., in 
Step 8). We have found that the weights 10/5/1 strike a 
compromise between shielding the motion estimation proc-
ess from confusing optical flow vectors and accommodating 
a limited number of irregularities without prematurely dis-
carding a trackpoint.   

VI. ESTIMATING ROBOT MOTION 

Given the set of filtered optical flow vectors, the next 
task is to derive an estimate of the robot’s incremental mo-
tion during the last pair of frames, and to integrate it over 
time to obtain global estimate of robot position.  First, we 
summarize the derivation of the mapping between image 
pixels and points in the world.  Next, we decompose incre-
mental motion into a rotation and a translation and estimate 
each separately.  Finally, we combine the information to 
recover the robot’s motion in a world coordinate frame.  
These steps are detailed in the following subsections. 

A.  Mapping Camera Coordinates to the Ground Plane 
First, we determine the mapping between the camera 

coordinates (u,v) of a tracked feature and its corresponding 
point (x,y) on the ground plane.  Our physical setup is de-
picted in Fig. 2.  The height H of the camera from the 
ground plane is manually measured, as is the distance D 
from the robot to the intersection of the principal ray with 
the ground plane.  We can recover the tilt α of the camera  
from the expression: 

D
H=α)tan(  (1) 

We also employ basic trigonometry to map from v (as-
sumed to be measured from the top of the image) to β (ver-
tical angle between principal point and the observed point): 

( ) 





−=β

2
tan2)tan( VFOVVv , (2) 

where V is the vertical dimension of the image in pixels 
(e.g., 480 rows) and VFOV is the vertical field of view of 
the camera. These relations enable us to recover the distance 
y from the robot to the observed point: 

)tan( β+α
=

Hy , (3) 

and the depth z to the observed point from the camera: 

)sin(
)cos(
β+α
β

=
Hz . (4) 

Fig. 2 Mapping Camera Coordinates to the Ground Plane 
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When an optical flow vector generated by a tracked feature 
on the ground plane is imaged by the camera, its observed 
magnitude (in pixels) is affected by its depth z relative to the 
image plane and its orientation β to the camera axis.  The 
above equations enable us to invert this transform, and to 
determine the actual displacement of each observed feature 
on the ground plane – and thus derive the incremental mo-
tion of the robot. 

B.  Estimating Robot Rotation and Translation 
Over a short interval, the robot’s motion on the ground 

plane can be decomposed into a change in heading (rotation 
about a vertical axis) and a displacement (translation).  We 
recover each separately using different regions of the image.  
Such a two-step process is important because, while in prin-
ciple all optical flow vectors can convey information about 
camera translation, vectors corresponding to features that 
are distant from the camera will exhibit such small amounts 
of parallax-induced optical flow that those measurements 
would be overwhelmed by tracking noise.  In contrast, cam-
era rotation causes all observed feature points, both nearby 
and distant, to move through the same angle.  This means 
that we can derive a robust estimate for heading change by 
observing features far from the camera (since those are rela-
tively insensitive to optical flow induced by translation).  
Once the effects of any observed heading change are sub-
tracted from the optical flow field, the flow vectors associ-
ated with features near the camera can serve as a good basis 
for estimating translational motion.  We implement this 
strategy by observing that flow vectors near (and above) the 
horizon typically correspond to distant objects and we em-
ploy these for rotation estimation.  Vectors below the hori-
zon are good candidates for estimating translation.  Fig. 3 
shows a typical image with filtered flow vectors and its de-
composition into the three zones.  We discard vectors in a 
“dead zone” near the horizon since the observed location of 
the horizon is affected by brief, transient changes in robot 
pitch – and this could greatly magnify small errors in trans-
lation estimates based on distant points (which lie near the 
horizon).  Once again, because further steps in the algorithm 
are robust against to outliers, it is not necessary that this 
sky/horizon/ground heuristic always hold true.  For in-
stance, we have observed good visual odometry perform-
ance even in crowded rooms, where many features above 
the horizon are in fact only tens of centimeters or a few me-
ters from the camera.   

To estimate rotation, we back-project each flow vector 
from the “distant” zone into a vertical cylindrical coordinate 
frame centered on the camera using mappings analogous to 
those  described above.  We then simply estimate the 
change in heading by taking the median of the observed 
angular displacements.  Note that one should not naively use 
the horizontal displacement of the flow vector as an estimate 
for heading change since, particularly for wide-angle lenses, 
the mapping from the camera plane to cylindrical coordi-
nates will depend on the position of the observed feature in 
the image.  However, for certain low-cost, highly-barrel-
distorting wide-angle lenses (such as the ones used in most 
of our tests), we have empirically observed that the barrel 
distortion fortuitously approximates the cylindrical map-
ping.  Thus one could achieve comparable accuracy with a 

significant savings in computation simply by performing 
optical flow in the uncorrected image and using the median 
of horizontal displacements as an indicator of heading 
change.  While our present algorithm does not take advan-
tage of this trick, we are developing an extension that will 
be able to do so.  Obviously, this trick cannot be employed 
when estimating translation because the transformation re-
quired is entirely different.  

To estimate translation, we first subtract the rotational 
flow field implied by our estimated heading change.  We 
then attempt to find the pure translation vector that best ex-
plains the resulting flow observed in the “ground” region of 
the image.  This is done by back-projecting the flow vectors 
on to the ground plane as outlined in (3).  This inverts the 
perspective distortion induced by the camera, and the 
lengths of each vector correspond to actual displacements 
on the ground plane.  For an ideal image sequence, the re-
sulting flow field would consist of identical vectors; in real-
ity, the flow field is perturbed by unmodeled effects such as 
tracking error, variations in the height of the ground surface, 
and the motion of other objects in the scene.  We obtain a 
robust estimate of the robot’s translation by taking the me-
dian of the set of x-displacements and the median of the set 
of y-displacements.  Such a simple scheme works because 
we have already accounted for the effects of perspective 
projection and rotation.  Note that this simplicity is possible 
due to the strong (but valid) assumptions described above. 

The median x displacement serves as our estimate of 
instantaneous translation along the focal plane (i.e., side-
ways motion) and the median y displacement serves as our 
estimate of instantaneous translation parallel along the cam-
era axis (i.e., forward/reverse motion).  Or in the case where 
the camera is tilted these two axes are defined by the projec-
tions onto the ground plane of the focal plane and the cam-
era axis. 

C. Estimating Global Motion 
The previous subsection described our algorithm’s ap-

proach for estimating incremental robot motion using a con-
sensus of appropriately back-projected optical flow vectors.  
These incremental changes in robot pose are chained frame-
by-frame to derive the global estimate of the robot’s posi-
tion.   

Horizon Zone

“Ground” Region

“Sky” Region

Fig. 3 Classifying Optical Flow Field Vectors 
Vectors above the horizon are used to estimate robot rotation,  

vectors below the horizon are used to estimate robot translation.  



VII. DETECTING HAZARDS  

In addition to accurately estimating translation and rota-
tion of the robot in a planar environment, our system ex-
ploits optical flow to identify potential hazards, such as ob-
stacles and precipices.  In contrast to traditional obstacle-
detection techniques, we do not recover a depth map of the 
scene, nor do we rely on the reflectance properties of obsta-
cles.  The basic idea is straightforward: discontinuities in the 
optical flow field signal the presence of both obstacles 
(positive violations of the planar world hypothesis) and 
precipices (negative violations).  Our current approach to 
detecting these discontinuities relies on somewhat ad hoc 
heuristics.  The image plane is divided into several sub-
regions, each of which independently computes the median 
optical flow field direction and velocity.  Adjacent sub-
regions are then compared for evidence of a discontinuity. 

Since obstacles or precipices are, by definition, located 
at a different depth from the camera, the observed flow due 
to parallax will be different.  A region with disproportion-
ately-short flow vectors signals a depression while a region 
with longer vectors is indicative of a looming obstacle.  
Thus, when our algorithm notices a sudden change in the 
median value of flow vectors in a region, it signals the pres-
ence of a hazard.  The robot can monitor the location of 
hazards as it continues its careful advance, and can safely 
stop before the hazard becomes a threat.  This is illustrated 
in Fig. 4. 

In practice, our robots can safely detect precipices as 
near as 3cm away and can autonomously maneuver on small 
table-tops (approximately 1 m2) without falling. 

VIII. MEASURING THE PERFORMANCE OF A VISUAL 
ODOMETRY SYSTEM 

A visual odometry system may be used in two modes: 
open loop (i.e., passive observation of the robot’s motion), 
or closed loop (i.e., integrated with the robot’s motion con-
trol logic as a feedback sensor).  Closed-loop operation is 
more useful and ultimately more likely in practice, but open 
loop testing is substantially more informative when evaluat-
ing a visual odometry system.  This is because in certain 
modes of closed loop operation (e.g., whenever velocity in 
one dimension or one axis is being held at zero), a wide 
variety of control loop gain values may yield satisfactory 
performance.  This flexibility corresponds to insensitivity to 
an unknown scale factor in estimated change is position or 
orientation.  By contrast, open loop evaluation highlights 
bias errors in translational and angular velocity estimation 
that manifest as cumulative error. 

In the following evaluation we use a combination of 
open loop and closed loop methods, including open loop 
experiments patterned after the procedure we outlined in [6] 
and closed loop evaluations versus other forms of dead 
reckoning.  To measure the relative benefit of open loop 
visual odometry we consider three types of position estima-
tion error (also as proposed in [6]), including a) incremental 
translational error, b) incremental rotational error, and c) 
long-run net (cumulative) translational error.  In the case of 
(c) we express this error as a percentage of total distance 
traveled to enable comparisons between test scenarios done 

at different scales.  To measure these we use several 
ground-truthed visual odometry video sequences.   

In the closed loop analysis we measure the net Euclid-
ean distance between the final robot position and the goal 
position at the end of a commanded path.  We then divide 
this distance by the total distance traveled to obtain a basic 
measure of cumulative error rate in translational motion.  
Each of the robot paths involved around 1000 frames of 
video taken over 4-10 m of forward travel and included at 
least 360° of cumulative rotation to test the ability to cor-
rectly chain estimates derived from different sets of features. 

For both open loop and closed loop tests we use real 
imagery obtained from on-robot cameras.  While real im-
agery is somewhat more difficult to acquire and ground-
truth, simulated data does a poor job of capturing a host of 
factors which can have a significant impact on vision system 
and robot performance, including variable lighting, motion 
blur, optical imperfections, complex motions, and temporal 
and spatial aliasing.  The complex interplay of these factors 
also offers strong incentive to test robot vision systems in as 
wide a variety of environments and lighting conditions as 
possible. 

IX. CLOSING THE LOOP 

To implement the closed loop tests we developed a 
simple proportional controller for one of our robots.  This 
controller uses visual odometry to estimate robot position 
relative to the starting point and attempts to execute com-
pound motion plans consisting of sequences of pure transla-
tion and pure rotation.  Although the motion plan is con-
structed from segments of pure translation and rotation, the 
controller employs mixed translation and rotation to 

Fig. 4 Hazard detection  
The upper image shows a precipice, lower image shows a pair of obstacles.  
Each shaded circle indicates the relative optical flow field velocity at that 
point.  Lighter circles denote higher velocities and darker circles denote 

lower velocities.   



smoothly correct errors observed during execution.  This 
allows the controller to appropriately counteract steady-state 
drift due to differential drag forces, uneven tire wear, and 
drivetrain irregularities, as well as transient conditions such 
as loss of traction and deliberate human interference.  Spe-
cifically, the controller maintains 3DOF estimates of the 
robot’s pose error and adjusts motor drive speeds and steer-
ing angles to correct those errors.  

Given the number of stages involved in obtaining the 
video images, processing them, and commanding the robot, 
the total latency of the control loop is relatively large –  ap-
proximately 300 ms.  This leads to substantial overshoot on 
each motion segment involved in executing a motion plan.  
Rather than improving the controller to get better single-
movement accuracy we instead use the vision system to 
measure these additional errors and factor them into the 
execution of the next motion segment.  Thus we take advan-
tage of strong visual dead-reckoning performance to coun-
teract the failings of both a naïve controller and kinematic 
indeterminacy (e.g., wheel slip, experimenter interference, 
surface irregularities).  

X. RESULTS 

We have integrated the closed loop version of the vis-
ual odometry system described above into a mobile robot 
system based on the Personal Exploration Rover (PER) plat-
form [20].  The vision system itself runs on a laptop com-
puter which sits adjacent to the robot and is connected via a 
tether.  This mode of operation is most appropriate for dem-
onstrations and interactive experiments where accessibility 
to the user interface displayed on the laptop is important.  
Via this interface the user can control vision system parame-
ters such as number of trackpoints, image patch size, and 
required corner quality.  The laptop can also be attached to 
the back of the robot for longer-distance experiments where 
tethered operation is impractical or when access to the user 
interface is unnecessary.  This mobile robot vision system 
has proven effective in a variety of difficult conditions such 
as polished floors (challenging due to specular reflections), 
and crowded rooms full of humans (challenging due to the 
many independently moving entities in view).  

We have also evaluated our algorithm using prere-
corded video data where ground-truth has been established 
with the fiducial-based robot tracking system we described 
in [6].  This has allowed us to evaluate the performance of 
our algorithm in a variety of outdoor and indoor situations, 
including such comparatively extreme cases as ice, high-
glare asphalt and grass.  Results are presented in Table I.  
For comparison, consider that a recently published result in 
visual odometry using calibrated stereo cameras on a 
ground vehicle yielded corresponding cumulative (open 
loop) error measures of 3.6% and 4.6% on two long test 
runs [19].  Our proposed visual odometry algorithm makes 
more restrictive assumptions but uses only a monocular 
camera and achieves similar error rates while being substan-
tially less complex to implement.  While our tests involve 
substantially shorter distances than those in [19], the relative 
error measurements and motion topologies are comparable. 

 
 

TABLE I 
VISUAL ODOMETRY PERFORMANCE ON VARYING TERRAIN 

Terrain 
(any special circumstances) 

Mean 
Incremental 
Error Magni-
tude 

Cumulative 
Error,  
(Cartesian 
Distance as %
Of  Distance 
Traveled) 

Open-loop tests   
 Indoors / Carpet 0.3 3.3% 
 Outdoors / Grass 2.2 5.1% 
 Outdoors / Asphalt 4.3 6.1% 
 Outdoors / Ice 3.5 5.4% 
Closed-loop tests   
 Indoors / Polished Concrete 

(with active, physical  human interference 
and an independently moving audience) 

unmeasured 7.1% 

XI. IMPLICATIONS FOR ROBOT DESIGN 

Experimental results validate our contention that con-
sumer-grade cameras offer sufficient perceptual information 
to enable effective visual odometry and precipice detection.  
Such cameras offer a new price / functionality point in the 
space of possible robot sensors.  

We believe the present results further the case for vi-
sion-based mobile robotics, and also suggest directions for 
robot morphology.  Visual odometry requires a large camera 
height concordant with both visibility of the terrain over the 
robot itself and to facilitate measurement of optical flow for 
both nearby and distant features.  Placement of the camera 
at the robot's center of rotation is often in tension with this 
desire to push the camera forward so that the terrain in front 
of the robot is visible.  Our visual odometry results suggest 
that, even with the camera at a significant distance from the 
robot center of rotation, odometry remains accurate, and so 
the camera can be placed to optimize forward and down-
ward visibility.  Furthermore, we believe that holonomic 
robots and other systems capable of controlling robot mo-
tion along any arbitrary center of rotation will be able to use 
this VO technique to measure position and control trajec-
tory.  This is particularly important in the case of holonomic 
robots using Swedish 90 wheels, such as the Palm Pilot Ro-
bot Kit (PPRK), because such wheels tend to have signifi-
cantly higher wheel-ground slippage than conventional 
fixed or steerable wheels.  In effect, the visual odometry 
algorithm described here, combined with consumer-grade 
vision hardware, imbues the robot designer with the free-
dom to design and deploy robots with more expressive mo-
tion regimes because this technique obviates the need for 
accurate wheel encoders and wheel-ground slip constraints. 

Cameras are easier to place than sonars or IRs because 
they image a broad field of view with relatively high resolu-
tion.  With adequate robustness in the VO system, cameras 
need not be center-mounted, increasing their flexibility and 
offering more opportunities to place them ideally for preci-
pice detection.  Given that modern robots are very likely to 
incorporate high-performance processors typical of today’s 
PCs and laptops a vision system can readily be implemented 
without the need for additional hardware.  PTZ cameras can 
serve several navigational configurations for omnidirec-
tional robots well. 



XII. CONCLUSION 

Vision is falling in price more rapidly than any other 
sensor, and yet is also a richer sensor than traditional rang-
ing devices.  In particular because a camera can capture so 
much data simultaneously, even a monocular vision system 
can play multiple roles within a robot system.  This paper 
has described a vision system capable of robustly estimating 
robot velocity and rotation as well as reliably detecting cer-
tain classes of hazards (precipices and obstacles).  This vi-
sion system is readily accessible to all levels of robot build-
ers, requiring only a single consumer-quality webcam.  We 
have evaluated the proposed system on a variety of small 
mobile robots and tested it in a wide variety of environ-
ments (see Fig. 5).  Our implementation of this algorithm is 
available as open source software and can be downloaded 
from 

 http://info.pittsburgh.intel-research.net/People/jasonc/vo.  
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Fig. 5 Environments and Robots On/In Which This Visual Odometry System Has Been Tested 
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