
A Robust Visual Odometry and Precipice Detection
System Using Consumer-grade Monocular Vision

Jason Campbell 1,2 Rahul Sukthankar 1,2 Illah Nourbakhsh 2,3 Aroon Pahwa 2

1 Intel Research Pittsburgh 2 Carnegie Mellon University 3 NASA Ames Research Center
Pittsburgh, PA USA Pittsburgh, PA USA Moffett Field, CA USA

{jasoncam,rahuls,illah}@ri.cmu.edu aroon@cmu.edu

 Abstract – We describe a monocular robot vision system
which accomplishes accurate 3-DOF dead-reckoning, closed-
loop motion control, and precipice and obstacle detection, all in
dynamic environments, using a single, consumer-grade web-
cam and typical laptop computer hardware. Simultaneous
translation and rotation are accurately measured, and the
camera need not be placed at the robot’s center of rotation.
The algorithm is straightforward to implement and robust to
noisy measurements. The software is based on open source
computer vision libraries and is itself open source. It has been
tested in a wide variety of real-world environments and on
several different mobile robot platforms.

 Index Terms - mobile robotics, mobile robot vision, optical
flow, odometry

I. INTRODUCTION

Visual mobile robot navigation has long been a goal of
robotics and computer vision researchers [9]. Whole fields
have developed around the exploitation of one or more
moving cameras, including visual simultaneous localization
and mapping (V-SLAM) [8,21], visual servoing [12],
spacecraft attitude control [14], and structure from motion
(SFM). The past 15 years have also seen a smaller body of
work on what has been termed visual odometry – that is, the
incremental, online estimation of robot motion from a video
sequence shot by an on-robot camera. [1,13,16,17,19,22].

Visual odometry is a distinctly local, low-latency ap-
proach that facilitates closed-loop motion control and obsta-
cle and precipice detection, as well as highly accurate dead-
reckoning. This local focus contrasts with more global ap-
proaches such as V-SLAM or online SFM which empha-
size mapping, progressive reduction of uncertainty, global
frames of reference, and which may include iterative re-
finement steps such as multi-frame bundle adjustment [10].

Historically, visual odometry systems have had diffi-
culty overcoming a number of problems, including numeri-
cal instabilities common in SFM-like projective geometric
techniques [7], sensitivity to the low quality of point corre-
spondences available from automatic tracking algorithms
[2,23], a requirement for omnidirectional views [13,22], or
the inability to disambiguate simultaneous rotation and
translation [11]. A more recent result overcomes these dif-
ficulties in monocular- and stereo-camera cases but achieves
high accuracy only with a calibrated stereo pair [19].

In this paper we describe an algorithm for strictly mo-
nocular visual odometry which achieves good real-world
performance (similar to the calibrated-stereo results shown
in [19]) at substantially lower implementation complexity.
This is made possible by exploiting a variety of straightfor-
ward consensus methods, several reasonable assumptions

for ground-based mobile robots, and the increasingly high
performance of consumer computing hardware. We have
tested this system on three small mobile robot platforms (see
Figs. 1 and 5), and in traditional office environments as well
as in extreme terrain such as ice. Our visual odometry sys-
tem is readily accessible to a wide range of robot builders
because it is based on and is itself open source software.

Visual odometry offers the prospect of substantially re-
duced sensing costs, allowing more reliable navigation
through unstructured areas and safer operation in close
proximity to humans. As the cost of computation falls, an
inexpensive camera can replace a typical sensor suite con-
sisting of dozens of range sensors and a set of encoders and
provide a broader field of view and the ability to perform
range and appearance-based sensing simultaneously. Pas-
sive vision systems also avoid the multi-path interference
problems typical with sonar rangefinders and the high sensi-
tivity to lighting common in low-cost infrared rangefinders.
For kinematically indeterminate robots (e.g., where friction
is low and actuation powerful), visual odometry offers a
low-latency error signal which can be used in a feedback
loop to correct motion. For robots that operate in highly
unstructured indoor environments (e.g., urban search and
rescue) visual odometry can be significantly more practical
and functional than other localization systems because no
radio coverage is required, no beacons need be car-
ried/deployed, static drift is low compared to low-cost iner-
tial measurement units, and high degrees of wheel slip pose
no difficulty.

The remainder of this paper is organized as follows:
Section II describes the hardware used in our experiments.
Section III outlines the visual odometry algorithm itself.
Sections IV through VI describe detailed aspects of the al-

Fig. 1 Two examples of robots using this visual odometry system
Only the uppermost, front camera on each robot is used for visual odometry.

gorithm. Section VII addresses obstacle and precipice de-
tection. Section VIII summarizes the framework within
which we evaluate this and other visual odometry systems.
Section IX describes the closed-loop version of our vision
system. Section X discusses the real-world performance of
our algorithm in a variety of environments and on a variety
of robots, and Section XI explores the implications of robust
visual odometry for the design of new robot systems. Sec-
tion XII concludes and summarizes our findings.

II. HARDWARE CONFIGURATION

We have successfully deployed our visual odometry
system using a variety of cameras, ranging from $5 surplus
webcams to multi-megapixel consumer digicams. The re-
sults we report here are from USB- and IEEE1394- web-
cams operating at VGA resolution (640x480 pixels). These
cameras, fitted with inexpensive 2.1 mm wide-angle lenses,
have unit costs around $100 and achieve peak frame rates of
10 and 30 frames per second (fps), respectively. Each cam-
era affords a horizontal field of view of approximately 90˚.
In the USB case, a proprietary compression algorithm was
required between the camera and camera driver [18] to per-
mit 10 fps VGA operation over a USB 1.1 bus.

Two types of tests were performed, one that passively
interpreted video to compute the robot’s trajectory after-the-
fact (“open loop”), and another that used on-line visual
odometry estimates to actively correct the robot's trajectory
(“closed loop”). The open loop tests were performed at 7.5
fps using uncompressed video recorded by an IEEE1394-
attached webcam. The open loop vision system computa-
tions were run off-line on a 3.2 GHz Intel® Pentium® Xeon™
desktop PC at effective frame rates between 30 and 50 fps.
The closed loop tests were performed using a USB-attached
webcam capable of up to 10 fps, however, the actual frame
rate varied due to CPU load. Using a laptop equipped with
a 1.5 GHz Intel® Pentium® M processor for vision process-
ing, robot control, and a near-real-time graphical user inter-
face displaying the estimated optical flow field and resulting
visual odometry results, rates from 2 to 10 fps were ob-
served.

III. ALGORITHM OVERVIEW

The visual odometry algorithm we present here is an 8-
stage process where all eight stages execute sequentially
after the capture of each video frame. In practice this algo-
rithm can execute as quickly as 15 fps on common laptop
hardware. Our approach relies on two assumptions which
are quite reasonable for many mobile robots: a) the robot
travels predominantly over a ground plane, and b) the cam-
era is mounted rigidly with respect to the robot and ground
plane. The quality of position estimation results varies with
frame rate, robot speed, camera height, and visual environ-
ment. This section presents a brief outline of the eight
stages and the following sections address specific stages in
detail. In this discussion we shall use the notation (u,v) to
represent image coordinates, lowercase (x,y,θ) to represent
incremental coordinates in a robot-centered frame of refer-
ence, and uppercase (X,Y,Θ) to represent global coordinates
in a frame of reference based on the starting position and
orientation of the robot. The eight stages are:

1. Correct camera images for lens distortion. This is ac-
complished using standard computer vision algorithms in-
cluded in the Open Computer Vision Library (OpenCV) [5].

2. Estimate the optical flow field corresponding to re-
cent video frames.

3. Screen flow-field vectors for potential tracking errors
and independently moving objects. Discard such vectors.

4. Divide the optical flow field into “ground” and
“sky”.

5. Project image coordinates (u,v) of flow vectors in the
“sky” region into a robot-centered cylindrical coordinate
frame and determine consensus angular displacement be-
tween the last two camera views. Use this as the estimate θ
of rotational motion.

6. Project image coordinates (u,v) of flow vectors from
the “ground” region on to ground plane coordinates. From
this set of transformed vectors, determine a consensus x-y
feature displacement between the last two camera views and
use this as the estimate (x,y) of translational motion.

7. Sum incremental measurements (x,y,θ) to arrive at a
cumulative estimate (X,Y,Θ) of robot position relative to the
robot’s original starting position.

8. Periodically repopulate the set of active trackpoints
to maintain adequate and uniform coverage across ground
and sky.

IV. ESTIMATING THE OPTICAL FLOW FIELD

Optical flow field estimation remains an open problem
after over 25 years of effort. Dozens of methods have been
proposed, each with its own strengths and weaknesses. In a
1995 survey [2,3], Barron, Fleet, et al. reported the Lucas
Kanade method [15] as being among the most accurate and
most reliable of the methods (then available), when tested
using a variety of simulated and real data series. An im-
proved and more efficient form [4] of the Lucas Kanade
algorithm is available in the open source computer vision
library, OpenCV. We employ this feature tracker to obtain
the point correspondences (equivalently, the optical flow
field vectors) required in subsequent stages of the algorithm.

In selecting features to track, we use a low corner
threshold and specify a large minimum distance between
features. (typically 0.005 and 20 pixels, respectively) This
encourages the detection of features even in low-contrast
parts of the image and provides relatively uniform coverage
across the field of view, at the cost of generating a higher
number of tracking errors. Given that the robust methods
we use to analyze those feature tracks can deal with substan-
tial numbers of outliers, we have found such wider coverage
preferable to minimizing tracking errors.

V. SCREENING TRACKPOINTS FOR QUALITY

Low contrast images, feature-poor environments, oc-
clusions, and spatial aliasing may all cause individual opti-
cal flow vectors to be estimated incorrectly (henceforth,
“patch tracking errors”). Also, dynamic elements in the
environment (e.g., moving people, vehicles) can induce op-
tical flow that may be substantially at odds with the robot’s
ego-motion-induced optical flow. Our visual odometry sys-
tem attempts to mitigate the impact of confusing flow vec-
tors from patch tracking errors and independently moving

objects by identifying and excluding suspect vectors from
the ego-motion estimation process.

Patch-tracking errors tend to show erratic movement
from frame to frame. For instance, at occlusion boundaries,
features being tracked disappear or change due to changing
image content near the discontinuity. Low-contrast features
may simply be difficult to precisely relocalize in a subse-
quent video frame due to spatial sampling irregularities in-
herent to typical low cost image sensors. Specular reflec-
tions may be tracked as features and shortly thereafter dis-
appear due to surface conditions and angles.

Likewise, the optical flow field associated with dy-
namic elements in the environment also tends to show more
erratic motion over time because the flow vectors created by
moving objects are superimposed on to the flow generated
by the robot’s ego-motion. In a special, but very important
case, the optical flow field associated with moving humans
tends to be particularly erratic because human motion is
typically discontinuous and moving human bodies undergo
substantial deformation.

In contrast, the optical flow field due to ego-motion
tends to be smooth because the robot’s motion is largely
smooth. (While there exist a variety of robots that exhibit
discontinuous motion, such as legged mechanisms, a smooth
motion assumption is reasonable for most mobile robots.
Furthermore, a robot which exhibits periodic or known dis-
continuous motion could actually exploit such motion to
better disambiguate the optical flow field.) Thus, for both
tracking errors and independent motion, smoothness can be
employed as a practical heuristic to assess the reliability of
each optical flow track in estimating robot motion. Our
optical flow algorithm exploits this observation by focusing
attention on elements that exhibit smooth motion over a
seven-frame (0.5-3 second) time horizon. However, to ac-
count for cases where the robot’s actual motion is temporar-
ily not smooth (e.g., during travel over a bumpy surface),
we suspend this rule in cases where the majority of vectors
exhibit unsmooth motion over the observation interval.

The criteria used to identify “smooth” flow centers
around the incremental angles between successive flow vec-
tors associated with each tracked image patch over time.
We compute the flow-field direction at the patch in question
across three intervals – seven to three frames back, three to
one frames back and one frame back to the current frame –
and then classify an element as “unsmooth” when the dif-
ference between any of those directions exceeds a threshold
of 30 degrees. Once an element has been classified as
unsmooth, it is ignored for purposes of egomotion estima-
tion within the current cycle.

Over time we also wish to stop tracking consistently
unsmooth elements and instead choose other image patches
which may offer a more reliable indication of robot egomo-
tion. Thus, when a given flow element is classified as
“unsmooth” but the majority of other flow elements are
classified as smooth, a score field associated with the
unsmooth element is incremented by 5. The score fields for
all smooth elements are decremented by 1, but not below
zero. If, over time, a flow element’s unsmoothness-score
field exceeds 10, that element is removed from the list of
image patches to track in future video frames. This allows
problematic patches to be replaced with new image patches

the next time that new tracking features are chosen (i.e., in
Step 8). We have found that the weights 10/5/1 strike a
compromise between shielding the motion estimation proc-
ess from confusing optical flow vectors and accommodating
a limited number of irregularities without prematurely dis-
carding a trackpoint.

VI. ESTIMATING ROBOT MOTION

Given the set of filtered optical flow vectors, the next
task is to derive an estimate of the robot’s incremental mo-
tion during the last pair of frames, and to integrate it over
time to obtain global estimate of robot position. First, we
summarize the derivation of the mapping between image
pixels and points in the world. Next, we decompose incre-
mental motion into a rotation and a translation and estimate
each separately. Finally, we combine the information to
recover the robot’s motion in a world coordinate frame.
These steps are detailed in the following subsections.

A. Mapping Camera Coordinates to the Ground Plane
First, we determine the mapping between the camera

coordinates (u,v) of a tracked feature and its corresponding
point (x,y) on the ground plane. Our physical setup is de-
picted in Fig. 2. The height H of the camera from the
ground plane is manually measured, as is the distance D
from the robot to the intersection of the principal ray with
the ground plane. We can recover the tilt α of the camera
from the expression:

D
H=α)tan((1)

We also employ basic trigonometry to map from v (as-
sumed to be measured from the top of the image) to β (ver-
tical angle between principal point and the observed point):

() 





−=β

2
tan2)tan(VFOVVv , (2)

where V is the vertical dimension of the image in pixels
(e.g., 480 rows) and VFOV is the vertical field of view of
the camera. These relations enable us to recover the distance
y from the robot to the observed point:

)tan(β+α
=

Hy , (3)

and the depth z to the observed point from the camera:

)sin(
)cos(
β+α
β

=
Hz . (4)

Fig. 2 Mapping Camera Coordinates to the Ground Plane

image
plane
(at f)

v z

α

β

(x,y)
D

H

VFOV/2

principal ray
from camera

top edge of
camera view

When an optical flow vector generated by a tracked feature
on the ground plane is imaged by the camera, its observed
magnitude (in pixels) is affected by its depth z relative to the
image plane and its orientation β to the camera axis. The
above equations enable us to invert this transform, and to
determine the actual displacement of each observed feature
on the ground plane – and thus derive the incremental mo-
tion of the robot.

B. Estimating Robot Rotation and Translation
Over a short interval, the robot’s motion on the ground

plane can be decomposed into a change in heading (rotation
about a vertical axis) and a displacement (translation). We
recover each separately using different regions of the image.
Such a two-step process is important because, while in prin-
ciple all optical flow vectors can convey information about
camera translation, vectors corresponding to features that
are distant from the camera will exhibit such small amounts
of parallax-induced optical flow that those measurements
would be overwhelmed by tracking noise. In contrast, cam-
era rotation causes all observed feature points, both nearby
and distant, to move through the same angle. This means
that we can derive a robust estimate for heading change by
observing features far from the camera (since those are rela-
tively insensitive to optical flow induced by translation).
Once the effects of any observed heading change are sub-
tracted from the optical flow field, the flow vectors associ-
ated with features near the camera can serve as a good basis
for estimating translational motion. We implement this
strategy by observing that flow vectors near (and above) the
horizon typically correspond to distant objects and we em-
ploy these for rotation estimation. Vectors below the hori-
zon are good candidates for estimating translation. Fig. 3
shows a typical image with filtered flow vectors and its de-
composition into the three zones. We discard vectors in a
“dead zone” near the horizon since the observed location of
the horizon is affected by brief, transient changes in robot
pitch – and this could greatly magnify small errors in trans-
lation estimates based on distant points (which lie near the
horizon). Once again, because further steps in the algorithm
are robust against to outliers, it is not necessary that this
sky/horizon/ground heuristic always hold true. For in-
stance, we have observed good visual odometry perform-
ance even in crowded rooms, where many features above
the horizon are in fact only tens of centimeters or a few me-
ters from the camera.

To estimate rotation, we back-project each flow vector
from the “distant” zone into a vertical cylindrical coordinate
frame centered on the camera using mappings analogous to
those described above. We then simply estimate the
change in heading by taking the median of the observed
angular displacements. Note that one should not naively use
the horizontal displacement of the flow vector as an estimate
for heading change since, particularly for wide-angle lenses,
the mapping from the camera plane to cylindrical coordi-
nates will depend on the position of the observed feature in
the image. However, for certain low-cost, highly-barrel-
distorting wide-angle lenses (such as the ones used in most
of our tests), we have empirically observed that the barrel
distortion fortuitously approximates the cylindrical map-
ping. Thus one could achieve comparable accuracy with a

significant savings in computation simply by performing
optical flow in the uncorrected image and using the median
of horizontal displacements as an indicator of heading
change. While our present algorithm does not take advan-
tage of this trick, we are developing an extension that will
be able to do so. Obviously, this trick cannot be employed
when estimating translation because the transformation re-
quired is entirely different.

To estimate translation, we first subtract the rotational
flow field implied by our estimated heading change. We
then attempt to find the pure translation vector that best ex-
plains the resulting flow observed in the “ground” region of
the image. This is done by back-projecting the flow vectors
on to the ground plane as outlined in (3). This inverts the
perspective distortion induced by the camera, and the
lengths of each vector correspond to actual displacements
on the ground plane. For an ideal image sequence, the re-
sulting flow field would consist of identical vectors; in real-
ity, the flow field is perturbed by unmodeled effects such as
tracking error, variations in the height of the ground surface,
and the motion of other objects in the scene. We obtain a
robust estimate of the robot’s translation by taking the me-
dian of the set of x-displacements and the median of the set
of y-displacements. Such a simple scheme works because
we have already accounted for the effects of perspective
projection and rotation. Note that this simplicity is possible
due to the strong (but valid) assumptions described above.

The median x displacement serves as our estimate of
instantaneous translation along the focal plane (i.e., side-
ways motion) and the median y displacement serves as our
estimate of instantaneous translation parallel along the cam-
era axis (i.e., forward/reverse motion). Or in the case where
the camera is tilted these two axes are defined by the projec-
tions onto the ground plane of the focal plane and the cam-
era axis.

C. Estimating Global Motion
The previous subsection described our algorithm’s ap-

proach for estimating incremental robot motion using a con-
sensus of appropriately back-projected optical flow vectors.
These incremental changes in robot pose are chained frame-
by-frame to derive the global estimate of the robot’s posi-
tion.

Horizon Zone

“Ground” Region

“Sky” Region

Fig. 3 Classifying Optical Flow Field Vectors
Vectors above the horizon are used to estimate robot rotation,

vectors below the horizon are used to estimate robot translation.

VII. DETECTING HAZARDS

In addition to accurately estimating translation and rota-
tion of the robot in a planar environment, our system ex-
ploits optical flow to identify potential hazards, such as ob-
stacles and precipices. In contrast to traditional obstacle-
detection techniques, we do not recover a depth map of the
scene, nor do we rely on the reflectance properties of obsta-
cles. The basic idea is straightforward: discontinuities in the
optical flow field signal the presence of both obstacles
(positive violations of the planar world hypothesis) and
precipices (negative violations). Our current approach to
detecting these discontinuities relies on somewhat ad hoc
heuristics. The image plane is divided into several sub-
regions, each of which independently computes the median
optical flow field direction and velocity. Adjacent sub-
regions are then compared for evidence of a discontinuity.

Since obstacles or precipices are, by definition, located
at a different depth from the camera, the observed flow due
to parallax will be different. A region with disproportion-
ately-short flow vectors signals a depression while a region
with longer vectors is indicative of a looming obstacle.
Thus, when our algorithm notices a sudden change in the
median value of flow vectors in a region, it signals the pres-
ence of a hazard. The robot can monitor the location of
hazards as it continues its careful advance, and can safely
stop before the hazard becomes a threat. This is illustrated
in Fig. 4.

In practice, our robots can safely detect precipices as
near as 3cm away and can autonomously maneuver on small
table-tops (approximately 1 m2) without falling.

VIII. MEASURING THE PERFORMANCE OF A VISUAL
ODOMETRY SYSTEM

A visual odometry system may be used in two modes:
open loop (i.e., passive observation of the robot’s motion),
or closed loop (i.e., integrated with the robot’s motion con-
trol logic as a feedback sensor). Closed-loop operation is
more useful and ultimately more likely in practice, but open
loop testing is substantially more informative when evaluat-
ing a visual odometry system. This is because in certain
modes of closed loop operation (e.g., whenever velocity in
one dimension or one axis is being held at zero), a wide
variety of control loop gain values may yield satisfactory
performance. This flexibility corresponds to insensitivity to
an unknown scale factor in estimated change is position or
orientation. By contrast, open loop evaluation highlights
bias errors in translational and angular velocity estimation
that manifest as cumulative error.

In the following evaluation we use a combination of
open loop and closed loop methods, including open loop
experiments patterned after the procedure we outlined in [6]
and closed loop evaluations versus other forms of dead
reckoning. To measure the relative benefit of open loop
visual odometry we consider three types of position estima-
tion error (also as proposed in [6]), including a) incremental
translational error, b) incremental rotational error, and c)
long-run net (cumulative) translational error. In the case of
(c) we express this error as a percentage of total distance
traveled to enable comparisons between test scenarios done

at different scales. To measure these we use several
ground-truthed visual odometry video sequences.

In the closed loop analysis we measure the net Euclid-
ean distance between the final robot position and the goal
position at the end of a commanded path. We then divide
this distance by the total distance traveled to obtain a basic
measure of cumulative error rate in translational motion.
Each of the robot paths involved around 1000 frames of
video taken over 4-10 m of forward travel and included at
least 360° of cumulative rotation to test the ability to cor-
rectly chain estimates derived from different sets of features.

For both open loop and closed loop tests we use real
imagery obtained from on-robot cameras. While real im-
agery is somewhat more difficult to acquire and ground-
truth, simulated data does a poor job of capturing a host of
factors which can have a significant impact on vision system
and robot performance, including variable lighting, motion
blur, optical imperfections, complex motions, and temporal
and spatial aliasing. The complex interplay of these factors
also offers strong incentive to test robot vision systems in as
wide a variety of environments and lighting conditions as
possible.

IX. CLOSING THE LOOP

To implement the closed loop tests we developed a
simple proportional controller for one of our robots. This
controller uses visual odometry to estimate robot position
relative to the starting point and attempts to execute com-
pound motion plans consisting of sequences of pure transla-
tion and pure rotation. Although the motion plan is con-
structed from segments of pure translation and rotation, the
controller employs mixed translation and rotation to

Fig. 4 Hazard detection
The upper image shows a precipice, lower image shows a pair of obstacles.
Each shaded circle indicates the relative optical flow field velocity at that
point. Lighter circles denote higher velocities and darker circles denote

lower velocities.

smoothly correct errors observed during execution. This
allows the controller to appropriately counteract steady-state
drift due to differential drag forces, uneven tire wear, and
drivetrain irregularities, as well as transient conditions such
as loss of traction and deliberate human interference. Spe-
cifically, the controller maintains 3DOF estimates of the
robot’s pose error and adjusts motor drive speeds and steer-
ing angles to correct those errors.

Given the number of stages involved in obtaining the
video images, processing them, and commanding the robot,
the total latency of the control loop is relatively large – ap-
proximately 300 ms. This leads to substantial overshoot on
each motion segment involved in executing a motion plan.
Rather than improving the controller to get better single-
movement accuracy we instead use the vision system to
measure these additional errors and factor them into the
execution of the next motion segment. Thus we take advan-
tage of strong visual dead-reckoning performance to coun-
teract the failings of both a naïve controller and kinematic
indeterminacy (e.g., wheel slip, experimenter interference,
surface irregularities).

X. RESULTS

We have integrated the closed loop version of the vis-
ual odometry system described above into a mobile robot
system based on the Personal Exploration Rover (PER) plat-
form [20]. The vision system itself runs on a laptop com-
puter which sits adjacent to the robot and is connected via a
tether. This mode of operation is most appropriate for dem-
onstrations and interactive experiments where accessibility
to the user interface displayed on the laptop is important.
Via this interface the user can control vision system parame-
ters such as number of trackpoints, image patch size, and
required corner quality. The laptop can also be attached to
the back of the robot for longer-distance experiments where
tethered operation is impractical or when access to the user
interface is unnecessary. This mobile robot vision system
has proven effective in a variety of difficult conditions such
as polished floors (challenging due to specular reflections),
and crowded rooms full of humans (challenging due to the
many independently moving entities in view).

We have also evaluated our algorithm using prere-
corded video data where ground-truth has been established
with the fiducial-based robot tracking system we described
in [6]. This has allowed us to evaluate the performance of
our algorithm in a variety of outdoor and indoor situations,
including such comparatively extreme cases as ice, high-
glare asphalt and grass. Results are presented in Table I.
For comparison, consider that a recently published result in
visual odometry using calibrated stereo cameras on a
ground vehicle yielded corresponding cumulative (open
loop) error measures of 3.6% and 4.6% on two long test
runs [19]. Our proposed visual odometry algorithm makes
more restrictive assumptions but uses only a monocular
camera and achieves similar error rates while being substan-
tially less complex to implement. While our tests involve
substantially shorter distances than those in [19], the relative
error measurements and motion topologies are comparable.

TABLE I
VISUAL ODOMETRY PERFORMANCE ON VARYING TERRAIN

Terrain
(any special circumstances)

Mean
Incremental
Error Magni-
tude

Cumulative
Error,
(Cartesian
Distance as %
Of Distance
Traveled)

Open-loop tests
 Indoors / Carpet 0.3 3.3%
 Outdoors / Grass 2.2 5.1%
 Outdoors / Asphalt 4.3 6.1%
 Outdoors / Ice 3.5 5.4%
Closed-loop tests
 Indoors / Polished Concrete

(with active, physical human interference
and an independently moving audience)

unmeasured 7.1%

XI. IMPLICATIONS FOR ROBOT DESIGN

Experimental results validate our contention that con-
sumer-grade cameras offer sufficient perceptual information
to enable effective visual odometry and precipice detection.
Such cameras offer a new price / functionality point in the
space of possible robot sensors.

We believe the present results further the case for vi-
sion-based mobile robotics, and also suggest directions for
robot morphology. Visual odometry requires a large camera
height concordant with both visibility of the terrain over the
robot itself and to facilitate measurement of optical flow for
both nearby and distant features. Placement of the camera
at the robot's center of rotation is often in tension with this
desire to push the camera forward so that the terrain in front
of the robot is visible. Our visual odometry results suggest
that, even with the camera at a significant distance from the
robot center of rotation, odometry remains accurate, and so
the camera can be placed to optimize forward and down-
ward visibility. Furthermore, we believe that holonomic
robots and other systems capable of controlling robot mo-
tion along any arbitrary center of rotation will be able to use
this VO technique to measure position and control trajec-
tory. This is particularly important in the case of holonomic
robots using Swedish 90 wheels, such as the Palm Pilot Ro-
bot Kit (PPRK), because such wheels tend to have signifi-
cantly higher wheel-ground slippage than conventional
fixed or steerable wheels. In effect, the visual odometry
algorithm described here, combined with consumer-grade
vision hardware, imbues the robot designer with the free-
dom to design and deploy robots with more expressive mo-
tion regimes because this technique obviates the need for
accurate wheel encoders and wheel-ground slip constraints.

Cameras are easier to place than sonars or IRs because
they image a broad field of view with relatively high resolu-
tion. With adequate robustness in the VO system, cameras
need not be center-mounted, increasing their flexibility and
offering more opportunities to place them ideally for preci-
pice detection. Given that modern robots are very likely to
incorporate high-performance processors typical of today’s
PCs and laptops a vision system can readily be implemented
without the need for additional hardware. PTZ cameras can
serve several navigational configurations for omnidirec-
tional robots well.

XII. CONCLUSION

Vision is falling in price more rapidly than any other
sensor, and yet is also a richer sensor than traditional rang-
ing devices. In particular because a camera can capture so
much data simultaneously, even a monocular vision system
can play multiple roles within a robot system. This paper
has described a vision system capable of robustly estimating
robot velocity and rotation as well as reliably detecting cer-
tain classes of hazards (precipices and obstacles). This vi-
sion system is readily accessible to all levels of robot build-
ers, requiring only a single consumer-quality webcam. We
have evaluated the proposed system on a variety of small
mobile robots and tested it in a wide variety of environ-
ments (see Fig. 5). Our implementation of this algorithm is
available as open source software and can be downloaded
from

 http://info.pittsburgh.intel-research.net/People/jasonc/vo.

ACKNOWLEDGMENT

 We wish to thank Emily Hamner, Eric Porter, Brian
Dunlavey and the CMU Personal Rover Project for their
supply of a Personal Exploration Rover for this work.
Aroon Pahwa was supported by the Intel First Year Re-
search Experience (IFYRE) program at CMU.

REFERENCES
[1] O. Amidi, T. Kanade, and J. Miller. “Vision-Based Autonomous Heli-

copter Research at CMU.” Proceedings of Heli Japan, 1998.
[2] J. Barron, D. Fleet, S. Beauchemin, and T. Burkitt, “Performance of

Optical Flow Techniques,” International Journal of Computer Vision,
vol. 10, pp. 43-77, 1994.

[3] S. Beauchemin and J. Barron. “The Computation of Optical Flow,”
ACM Computing Surveys, 27(3), pp. 433-467, 1995.

[4] J.-Y. Bouguet. “Pyramidal Implementation of the Lucas Kanade Fea-
ture Tracker,” OpenCV Documentation, Intel Corporation, Microproc-
essor Research Labs, 1999.

[5] G. Bradski, et. al. Intel Open Source Computer Vision Library:
http://www.intel.com/research/mrl/research/opencv/

[6] J. Campbell, R. Sukthankar, I. Nourbakhsh. “Techniques for Evaluating
Optical Flow in Extreme Terrain,” Proceedings of IROS 2004.

[7] R. Cipolla, Y. Okamoto, and Y. Kuno. “Robust Structure From Motion
Using Motion Parallax,” in Proceedings of IEEE ICCV, 1993.

[8] A. Davison, Y. Cid, N. Kita. “Real-Time 3D SLAM with Wide-Angle
Vision,” in Proceedings of IFAC Symposium on Intelligent Autonomous
Vehicles, 2004.

[9] D. Gennery and H. Moravec, Cart Project Progress Report, Stanford
University, contract NASW 2916, Sept 1976.

[10] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge University Press, 2000.

[11] B. Horn and E. Weldon. “Direct Methods for Recovering Motion,”
International Journal of Computer Vision, vol. 2, pp. 51-76, 1988.

[12] S. Hutchinson, G. Hager, and P. Corke. “A Tutorial on Visual Servo
Control,” IEEE Trans. Robotics and Automation, vol. 12, no. 5, pp
651-670, Oct 1996.

[13] A. Levin, R. Szeliski. “Visual Odometry and Map Correlation,” in
Proceedings of CVPR 2004.

[14] C. Liebe. “Star Trackers for Attitude Determination,” IEEE Aerospace
and Electronic Systems Magazine, vol. 10, no. 6, pp. 10–16, June 1995.

[15] B. Lucas and T. Kanade. “An Iterative Image Registration Technique
with an Application to Stereo Vision,” International Joint Conference
on Artificial Intelligence, pp. 674-679, 1981.

[16] R. Marks, H. Wang, M. Lee, and S. Rock. “Automatic Visual Station
Keeping of an Underwater Robot,” in Volume 2, Proceedings of IEEE
Oceans '94, pp. 137–142.

[17] S. Negahdaripour and B. Horn. “Direct Passive Navigation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 9, no.
1, pp. 168-176, January 1987.

[18] Nemosoft Webcam driver: http://www.smcc.demon.nl/webcam
[19] D. Nistér, O. Naroditsky, J. Bergen. “Visual Odometry,” in Proceed-

ings of CVPR 2004.
[20] Personal Rover Project: http://www.cs.cmu.edu/~personalrover
[21] S. Se, D. Lowe, J. Little. “Vision-Based Mobile Robot Localization and

Mapping Using Scale-Invariant Features,” in Proceedings of ICRA
2001.

[22] O. Shakernia, R. Vidal, S. Sastry. “Infinitesimal Motion Estimation
from Multiple Central Panoramic Views,” in Proceedings of IEEE
Workshop on Motion and Video Computing, December 2002.

[23] C. Tomasi and J. Zhang. “Is Structure-From-Motion Worth Pursuing?”
Seventh International Symposium on Robotics Research, ISRR '95, Oc-
tober 1995.

Fig. 5 Environments and Robots On/In Which This Visual Odometry System Has Been Tested

Melting Ice Grass Asphalt Dry-Surface Ice

Polished Concrete Office Carpet Untethered in Corridors Plastic Mat

