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Abstract— The fully flexible navigation of autonomous ve-
hicles in industrial environments is still unsolved. It is hard to
conciliate strict precision requirements with quick adaptivity
to new settings without undergoing costly rearrangements.
We are pursuing a research project trying to combine the
precision of laser-based local positioning with the flexibil-
ity of vision-based robot motion estimation. An enhanced
circle approach to dynamic triangulation combining laser
and odometric signals has been used to improve positioning
accuracy. As regards to vision, a novel technique relating
the deformation of contours in an image sequence to the
3D motion underwent by the camera has been developed.
Interestingly, contours are fitted to objects already present
in the environment, without requiring any presetting. In this
paper, we describe a practical experience conducted in the
warehouse of a beer production factory in Barcelona. A
database containing the laser readings, image sequences and
robot odometry along several trajectories was compiled, and
subsequently processed off-line in order to assess the accura-
cies of both techniques under a variety of circumstances. In
all, vision-based estimation turned out to be about one order
of magnitude less precise than laser-based positioning, which
qualifies the vision-based technique as a promising alternative
to accomplish robot transfers across long distances, such as
those needed in a warehouse, while backing up on laser-based
positioning when accurate docking for loading and unloading
operations is needed.

I. INTRODUCTION

Mobile robots are increasingly used in flexible man-
ufacturing industry and service environments. The main
advantage of these vehicles is that they can operate au-
tonomously in their workspace. To achieve this automation
these vehicles must include a positioning -or localization-
system in order to provide the robot with position and
orientation in the plane as accurately as possible [12].

In the past two decades, several approaches have been
proposed to solve the positioning problem. These can be
classified into two general groups [5]: absolute and relative
positioning. Absolute positioning methods estimate the
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robot position and orientation in the workspace by detect-
ing some landmarks in the robot environment. Two sub-
groups can be further distinguished depending on whether
they use natural or artificial landmarks. Approaches based
on natural landmarks use distinctive features in the envi-
ronment that have a function other than robot navigation.
Conversely, artificial landmarks are placed at known loca-
tions in the workspace with the sole purpose of enabling
robot navigation. The laser-based technique used in this
work falls in the latter category, its main advantage being
the high precision that can be attained.

Relative positioning methods, on the other hand, com-
pute the robot position and orientation from an initial
configuration, and, consequently, are often referred to
as motion estimation methods. A further distinction can
also be established here between incremental and non-
incremental approaches. Among the former are those based
on odometry and inertial sensing, whose main shortcoming
is that errors are cumulative.

Vision can be used under any of the mentioned ap-
proaches. It can serve to detect artificial landmarks [13],
[17] or natural ones [3], [18] for absolute positioning, or
rather be applied to perform motion estimation, as in the
present work. Differing from the other such estimation
methods mentioned above, our vision-based technique is
not incremental and, therefore, doesn’t suffer from the
cumulative error problem.

Precision is expensive in terms of both presetting of the
environment and sensor resolution. Thus, a cost-effective
solution tries to attain it only when needed (in docking
for loading and unloading operations), while backing up
on a cheaper technique in the other cases. This is the final
aim of our project and, to this aim, we are experimenting
with a laser-based goniometer using catadioptric marks for
accurate positioning, and a monocular vision system that
estimates motion on the basis of only the deformation of
natural landmarks as seen by the robot as it moves.

In order to force both techniques to work under realistic
conditions, experiments were carried out in an industrial
plant, namely a warehouse of the brewer company DAMM
in El Prat de Llobregat, Barcelona.

After briefly explaining the two techniques in Sections
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2 and 3, the experimental set-up is described in Section 4,
and the results of the practical experience are discussed in
Section 5, before closing the paper with some conclusions
and prospects for future work.

II. LASER-BASED POSITION ESTIMATION

Many approaches have been proposed to fuse dead reck-
oning with an absolute positioning system in order to solve
the dynamic positioning problem. Most of these approaches
use an Extended Kalman Filter -EKF- to combine all
measurement data [11]. However, several authors agree that
in real operation the signals used have nongaussian noise
density and, consequently, other recursive algorithms have
been put forth [10], [16].

In this work robot positioning is achieved by dynamic
triangulation relying on a geometric algorithm based on
circle intersections [6]. The proposed technique [2] takes
into account the kinematics of the vehicle to estimate in
real time the evolution of the length (ρi) and bearing
(θi) between the laser-based goniometer and the set of
landmarks used (see Fig.1). The evolution of these variables
can be expressed as:

ρ̇i = − (v1p cos θi + v2p sin θi)

θ̇i =
(v1p sin θi − v2p cos θi)

ρi
− Ψ̇

where v1p and v2p are the components of the speed of the
driving wheel expressed in the laser reference system (P ),
and Ψ is the orientation of the vehicle in world coordinates.

Time integration of these equations between actual mea-
surements leads to the real-time estimation of ρi and θi:

ρi(t) = ρi(tk) +
∫ t

tk

ρ̇idt

θi(t) = θi(ti,k) +
∫ t

ti,k

θ̇idt

where tk is the time of the last positioning measurement,
and ti,k is the time of the last reflection from landmark
i. In this way, the static triangulation algorithm can be

Fig. 1. Different reference frames defined in the forklift mobile vehicle.

accurately applied at any time under dynamic conditions.
The computational cost of the presented technique has been

shown to be lower than the one required by other methods
based on predictive algorithms [2].

The experiments have been performed with a laser-
based goniometer (from a Guidance Control Systems Ltd.)
rotating at 8 Hz, with an accuracy of 0.095 mrad and
with a maximum reflection distance of 30 m. Catadioptric
rectangles - retro-reflecting - that polarize the laser signal
are used as landmarks. The positions of these landmarks
have been topographically measured with submillimeter
accuracy in order to reduce the uncertainties of the method.

The accuracy of the triangulation algorithm depends on
the landmark arrangement, the position of the vehicle in
the workspace, and the laser-based goniometer resolution.
Figure 2 shows the accuracies of positioning measure-
ments obtained under static condition in the laboratory
environment, represented over a 4m×6m grid. Under static
condition, the maximum error -worst accuracy- is located
at the bottom-left-hand corner of the laboratory and its
value is 1.72 mm. The best accuracy (less than 0.25 mm)
is obtained near the center of the laboratory. The accuracy
variability is due to the discretization of the laser-based
goniometer.

Fig. 2. Measurement accuracy of the triangulation algorithm used under
static condition in the laboratory.

III. VISION-BASED MOTION ESTIMATION

By observing the deformation of an active contour along
an image sequence, egomotion can be computed. Equations
have been developed [14], [15] to obtain the complete
motion parameters: translation and rotation, up to a depth
scale factor. Note that the image sequence is acquired with
a monocular camera system, so depth can only be recovered
with some additional information [7].

A weak-perspective camera model is assumed. This
simplified model is a linear approximation to the pinhole
camera when some conditions are satisfied [9] as follows.
The first one is a small field of view: the farther the image
points are from the image center, the worse is the projection
approximation. So interest points (in the current work, the
points defining a contour) must be near the center of the
image. The second condition is that the contour should be
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planar, i.e., all points used to model the contour must have
small depth variations compared to the distance from the
camera to the object.

Assuming only rigid motions of a planar contour, it can
be proved that transformations in 3D space project in the
camera plane as affine deformations of the contour [14]. A
contour can be defined in b-spline form just by providing
the set of control points Q [8]. Consider Q0 the initial
state of the contour, then the deformed contour Q can be
represented as

Q = WS +Q0, (1)

where W is the shape matrix, determining the family of
all possible affine deformations, and S is the shape vector,
coding a particular one.

In the general 6 d.o.f. case of planar affine transforma-
tions, the matrix W has the form

W =
([

1
0

]
,
[

0
1

]
,
[

Qx
0
0

]
,
[

0
Q

y
0

]
,
[

0
Qx

0

]
,
[

Q
y
0
0

])
,
(2)

and the shape vector is expressed as [15]:

S = (tx, ty,M11 − 1,M22 − 1,M21,M12)T . (3)

where tx and ty correspond to the translations in the plane,
and [Mij ] is the matrix encoding rotation and scalings.

Different deformation spaces can be defined correspond-
ing to constrained robot motion. In the case of a planar
robot, with 3 degrees of freedom, the working space is
parametrized with two translations (Tx, Tz) and one rota-
tion (θy). Obviously, the rest of the possible motions are not
possible with this kind of robot. Forcing these constraints
in the equations of the affine deformation of the contour,
a new shape space can be deduced. This corresponds to a
shape matrix with also three dimensions.

However, for this to be so, both reference frames, the
camera one and the robot one, should be perfectly aligned.
Any misalignment between both frames will result in errors
in tracking and egomotion computation, since deformations
produced in the camera plane will not be well modelled by
the reduced shape matrix.

To avoid misalignment problems and ensure a correct
contour tracking, it suffices to allow the shape space to
include also the parameters that model Ty translations. The
deduced shape matrix can then be expressed as

W =
([

1
0

]
,

[
0
1

]
,

[
Qx

0

0

]
,

[
0
Qy

0

])
, (4)

and the shape vector as

S = (tx, ty,M11 − 1,M22 − 1)T . (5)

Note that each shape vector parameterizes the deformation
of the active contour in relation to the initial set of points.
The main advantage is that, since egomotion is expressed
relatively, this method does not suffer from typical bias
problems.

Once a contour deformation has been obtained as a shape
vector, it is possible to derive the 3D camera motion up to a

scale factor. Centering the reference frame on the calibrated
camera, the equations to obtain the scaled translations are

Tx

Z0
=

tx

f
√
λ1

−R13, (6)

Ty

Z0
=

ty

f
√
λ1

−R23, (7)

Tz

Z0
=

1√
λ1

−R33., (8)

where f is the focal length of the camera, Z0 is the
estimated depth of the plane containing the contour points,
λ1 is the largest eigenvalue of the MMt matrix with
M = [Mij ] as before, and Rij are components of the Euler
rotation matrix

R = Rz(φ)Rx(θ)Rz(ψ). (9)

This matrix gives the rotation components of the 3D
motion, and can be deduced with equations

cosθ =
√
λ2

λ1
, (10)

v1 =
[
cosφ
sinφ

]
. (11)

where v1 is the eigenvector of the largest eigenvalue, and

Rz|2(ψ) = (1 + Tz

Z0
)
[
1 0
0 1

cosθ

]
Rz|2(−φ)M. (12)

IV. SET-UP DESCRIPTION

The mobile robot used (see Figs. 1 and 3) is a Still EGV-
10 modified forklift. This is a manually-guided vehicle with
aids in the traction. To robotize it, a motor was added in the
steering axis with all needed electronics. This electronics
was specifically designed. The kinematics of this platform
is that of a tricycle-like vehicle, and it is provided with a
driving encoder and a steering encoder for dead reckoning.
These odometric sensors are used to determine the variables
v and γ shown in Fig. 1.

Fig. 3. The mobile robot used in the experience.

The hardware used to compute the vehicle positioning
is an industrial PC (PC104 based) Pentium III Celeron
clocked at 400 Mhz smartcore. This PC runs with a real-
time OS RT-Linux 3.2. For the odometric and laser signals
capture, specific firmware implemented in FPGA is applied.
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By means of this equipment, positioning can be calculated
at a rate as fast as one measurement every 126 ms.

The practical experience was carried out in a warehouse
of the brewer company DAMM in El Prat del Llobregat,
Barcelona. Figure 4 shows the environment of the mobile
robot, a portion map of the factory. One can see the
catadioptric landmarks (Rx).

Fig. 4. Map of the plant where the experiment was carried out.

During the experience, the robot was guided manually.
A logger software recorded the following simultaneous
signals: the position obtained by dynamic triangulation
using a laser-based goniometer, the captured reflexes, and
the odometry signals provided by the encoders. At the same
frequency, a synchronism signal was sent to the camera and
a frame was captured.

A log file was created with the obtained information.
This file permitted multiple processing to extract the results
for the performance assessment and comparison of the
presented estimation techniques. Although this experiment
was designed in two steps: data collection and data analy-
sis, the current implementations of both algorithms run in
real time, that is, 20 fps for the camera subsystem and 8
Hz for the laser subsystem.

V. EXPERIMENTAL RESULTS

Several experiments were performed involving trajecto-
ries of different types (straight, oscillating, turning), varied
environments and landmarks, and also contours falling in
different positions in the image (Fig. 5). Among these
experiments, a representative one has been chosen to be
presented in detail below.

For the vision subsystem, the set of data to analyze were
200 frames. An active contour was initialized manually on
an information board appearing in the first frame of the
chosen sequence (Fig. 6). This board was used as target
object to track, since it appears entirely in all frames. Once
the active contour is initialized in one frame, the tracking
algorithm finds the most suitable affine deformation of
this contour that fits the target in the next frame, yielding
an estimated affine deformation [4]. This is expressed in
terms of a shape vector (5), from which the corresponding
Euclidean 3D transformation is derived: a translation vector
(equations 6-8) and a rotation matrix (equations 9-12).

(a) (b)

(c) (d)

Fig. 5. Some of the experiments performed to log data. First frames,
with contours fitted to salient objects, are shown for four sample robot
trajectories.

Fig. 6. First image, with an active contour fitted to an information board,
of the sequence for which results are presented in detail.

The tracking process produces a new deformation for
each new frame, from which 3D motion parameters are
obtained. If the initial distance Z0 to the target object can
be estimated, a metric reconstruction of motion can be
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accomplished. In the present experiment, the value of the
initial depth was estimated with the laser sensor, as the
target (the information board) was placed in the same wall
as some catadioptric marks, yielding a value of 7.7 m. The
performed motion was a translation of approximately 3.5
m along the heading direction of the robot perturbed by
small turnings. The computed Tx, Ty and Tz values can be
seen in Fig. 7. The reason why the Ty translation is also
computed has been explained in Section III.

0 20 40 60 80 100 120 140 160 180 200
−2e3

−1e3

0

1e3

2e3

3e3

4e3

0 20 40 60 80 100 120 140 160 180 200
−2e3

−1e3

0

1e3

2e3

3e3

4e3

0 20 40 60 80 100 120 140 160 180 200
−2e3

−1e3

0

1e3

2e3

3e3

4e3

0 20 40 60 80 100 120 140 160 180 200
−2e3

−1e3

0

1e3

2e3

3e3

4e3

visioX
visioY
visioZ

Fig. 7. Translati on im millimeters computed by the vision subsystem
for each frame.

Placing the computed values for the X and Z translations
in correspondence in the actual motion plane, the robot
trajectory can be reconstructed (Fig. 8).

−2e3 −1e3 0 1e3 2e3 3e3 4e3
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3e3

4e3

Fig. 8. Trajectory in millimeters in the XZ plane computed by the vision
subsystem.

Once the laser data was processed off-line, the computed
motion estimation was obtained. As explained in Section II,
this estimation can be globally located in the working space
if landmark positions are known. As mentioned above,
catadioptric positions where precisely placed in the digital
factory map (refer to Fig. 5); for this particular run, the
positioning method used landmarks R5, R6 and R9, which
were automatically selected by the algorithm as the most
informative ones. Thus, the computed motion in the plane
can be represented within the map (Fig. 9).

Extrinsic parameters from the laser subsystem and the
vision subsystem are needed to be able to compare the
obtained results. They provide the relative position between
both acquisition reference frames, which is used to put in
correspondence both position estimations. In the moment
of the data collection no specific calibration method was

Fig. 9. Trajectory computed by the laser subsystem and plotted in the
factory map.

available. Two catadrioptic landmarks (R5 and R6) used
by the laser were placed in the same plane as a natural
landmark used by the vision tracker. A rough estimation
of the needed calibration parameters (dx and dy) was
obtained with measures taken from controlled motion of
the robot towards this plane, yielding the values of 30 mm
and 235 mm, respectively. To perform the reference frame
transformation the following equations were used:

xcam = x− (sin(ψ) ∗ dx) + (cos(ψ) ∗ dy),
ycam = y − (sin(ψ) ∗ dx) + (cos(ψ) ∗ dy).

While laser measurements are global, the vision system
ones are relative to the initial position taken as reference
[15]. To compare both estimations, laser measurements
have been transformed to express measurement increments.

The compared position estimations are shown in Fig. 10,
where the vision estimation is subtracted from the laser
estimation to obtain the difference for each time step.

The computed difference in the Z direction is more
noisy, as estimations from vision for translations in such
direction are more ill conditioned than for the X or Y
directions. Physically, translation of the camera along the
latter directions induces a larger change in the angle of
incidence of the projection rays from the contour to the
image plane. Rather, translations along the Z direction
induce a smaller change, which is harder to sense due to the
pixelization effect. In all, it is remarkable that the computed
difference is only about 3%.
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Fig. 10. Difference in millimeters between translation estimates provided
by the laser and the vision subsystems for each frame.

The computed differences in X are less noisy, but follow
the robot motion. Observe that for larger heading motions,
the difference between both estimations is also larger. This
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is probably due to misalignments in the reference frame
transformation from the laser to the camera.

Finally, to compare graphically both methods, the ob-
tained translations are represented in the XZ plane (Fig.
11).
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Fig. 11. Trajectories in millimeters in the XZ plane. The black line
corresponds to the laser trajectory, the blue dashed line to the laser-
estimated camera trajectory, and the green dotted one to the vision-
computed camera trajectory.

VI. CONCLUSIONS AND FUTURE WORK

A practical experience of mobile robot localization is
presented. A heavy industrial robot was placed in a real
production plant, and some experiments including data
collection were performed. The robot was equipped with
two main sensor subsystems: laser goniometer and image
acquisition.

For the laser subsystem, it was indispensable to place
some catadioptric landmarks. These landmarks were very
precisely located in the environment, and this permitted the
computation of a global referenced motion.

For the vision subsystem, no intervention in the environ-
ment was needed. The obtained motion was always given
relative to the initial robot position, although not in an
incremental way, thus errors were not cumulative. It has
been shown that, knowing the initial target depth, the scale
indetermination can be removed. In the same manner as in
the laser case, if the target is located in the environment
map, the global position can also be computed.

The relatively small deviation (about 3%) of the vision-
based estimation with respect to the laser-based one qual-
ifies the former technique as a promising alternative in
situations with low-precision demands, and encourages us
to continue our investigation of motion estimation based
on active contours.

The comparison between both estimations has shown the
importance of an accurate laser-camera extrinsic parameter
calibration. It may be the case that part of the error
attributed to the vision-based estimation comes in fact
from a slight miscalibration and, thus, the precision of the
proposed contour-based technique may turn out to be even
better. To elucidate this, an algorithm to obtain the extrinsic
laser-camera parameters with high precision needs to be
developed. Moreover, a physical device to record robot

trajectories is being developed in order to get a ”ground
truth” against which to compare both estimations.

The presented experiments have involved comparisons
between two techniques for position estimation with the
aim of assessing their respective performances in a variety
of situations within an industrial environment. Future work
will combine both techniques in a single procedure in order
to exploit the accuracy of laser when needed (in docking,
narrow crossings, etc.) and to fall back on vision for
transfer between these high-precision demanding places.
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