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Abstract—The E* algorithm is a path planning method
capable of dynamic replanning and user-configurable path
cost interpolation. It calculates a navigation function as a
sampling of an underlying smooth goal distance that takes into
account a continuous notion of risk that can be controlled in
a fine-grained manner. E* results in more appropriate paths
during gradient descent. Dynamic replanning means that
changes in the environment model can be repaired to avoid the
expenses of complete replanning. This helps compensating for
the increased computational effort required for interpolation.

We present the theoretical basis and a working implemen-
tation, as well as measurements of the algorithm’s precision,
topological correctness, and computational effort.

Index Terms— Mobile robot path planning, dynamic re-
planning

I. INTRODUCTION
A. The Need for Smooth Dynamic Planning

During work on planning in highly cluttered dynamic
environments such as mass exhibitions [7], [13], the need
arose for a path planner that is capable of taking into
account a continuous risk measure, defined on regions that
are neither static nor known beforehand. The planner must
produce topologically correct and smooth paths that trade
off collision risk against expected path length. Changes to
the environment model are frequent and the planner should
be able to efficiently adapt existing plans.

Here, we treat planning in highly cluttered dynamic
environments as a weighted region path planning prob-
lem [12], [14], but in this context the regions can not be
pre-determined because they depend on movement in the
environment. A more flexible environment representation
such as a grid-based risk map is more appropriate.

B. Planning with Environment Dynamics

Among the published research that incorporates envi-
ronment dynamics during path planning, we cite some
examples of related work [1], [2], [4]-[6], [10]. However,
these approaches are not appropriate for an application
in highly cluttered dynamic environments. They either
rely on information and computational resources that are
not available for such unpredictable settings (extending C
to a full-fledged state-time representation [5], a velocity
space [4], [10], essentially off-line simulations [2]), or are
limited to constant velocity models [6] (however, the latter
is expected to adapt rapidly to changes in the motion
model). In [1], environment dynamics are treated using
worst-case scenarios that take into account the sensor

capacities, but it treats all known obstacle information as
static during planning.

II. APPROACH
A. Distance Maps and Wavefront Propagation

Mobile robot path planning approaches can be divided
into five classes [11]. Roadmap methods extract a network
representation of the environment and then apply graph
search to find a path. Exact cell decomposition methods
construct non-overlapping regions that cover free space
and encode cell connectivity in a graph. Approximate
cell decomposition is similar, but cells are of predefined
shape (e.g. rectangles) and do not exactly cover free space.
Potential field methods differ from the other four in that
they treat the robot as a point evolving under the influence
of forces that attract it to the goal while pushing it from
obstacles. Navigation functions are commonly considered a
special case of potential fields. We adopt a different stance
which is key to formulating the E* algorithm.

A grid is an approximate cell decomposition. Calculating
the navigation function is like graph search: It starts at the
goal location(s) and propagates through the grid until a
path is found. By gradient descent, the robot monotonically
reduces the “height” of its location on the grid just as it
decreases the distance to the goal. Thus, we interpret nav-
igation functions as a sampling of an underlying distance
Sfunction.

Purely graph-based planners have drawbacks due to their
discontinuous representation of workspace VW or configu-
ration space C. Potential field methods produce smoother
paths and can be expressed in terms of sensor readings,
but they are flawed by the existence of local minima.
Graph-based planners usually require replanning if the
underlying environment model changes. This drawback is
addressed by the D* algorithm [17], [18], which minimizes
the replanning cost by recalculating the path only where
necessary.

Imagine a continuous contour to sweep outward from the
goal throughout the environment (see figure 1), and record
when it crosses each cell. The crossing time divided by the
speed yields a distance. The main insight comes from turn-
ing the problem around: Consider the crossing times at the
nodes as samples of an underlying continuous navigation
function, instead of extending a discretely defined distance
function into the continuous domain.

In order to use this approach for path planning, the
propagation speed is made to depend on position. By



Fig. 1. Continuous domain wavefront formulation. A contour sweeps
outward from the goal throughout the environment, taking into account
obstacle information.

adding a time axis, the surface traced by the evolving curve
becomes a navigation function. The gradient method [9],
as well as [3] and [19] take similar stances.

Such continuous formulations have been treated in fields
such as fluid mechanics or computer vision. The large body
of work on Level Set Methods [15] provides a theoretical
foundation for robustly interpolating the crossing time.

B. The Fast Marching Level Set Method

As the Level Set Method (LSM) is not commonly known
in the field of mobile robotics, this section serves as
introduction. It also introduces the concepts of upwind
property and the Fast Marching Method necessary for
understanding this paper. This section is based on chapters
1, 2, and 9 of [16].

The so-called Lagrangian formulation to describing an
evolving curve implies parameterizing the curve, deriving
its normal vector, and moving discrete points of the curve
along this normal. This approach presents serious draw-
backs [16]. A solution lies in using a Eulerian formulation,
which adds a dimension to the problem and then treats
the wavefront as the intersection between a graph' and the
zero-level of the additional dimension. This is illustrated
in figure 2 and equation (1).

I(t) : closed (N — 1)D surface

o(7,t): RY - R )
to - O(Z,t =0) = xd(Z,T'(t =0))
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where I' denotes the wavefront, N is the supporting dimen-
sion, ® is the graph that is intersected with the zero level
to yield T', the line labelled ¢, indicates that ® is initialized
to the signed distance from the initial wavefront, and the
last line formalizes the way in which I' and & are related.

The advantage of adding the extra dimension is that
topology changes can now occur without special treatment,
and that numerically stable methods are available for
solving the differential equation that describes the front’s
evolution. This is illustrated in the inset of figure 2 and
equation (2).
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'In this section, graph is used in the sense of a function’s values
throughout its domain, as opposed to the notion of nodes connected by
edges.

I(t) —{=z | o(z,t) - 0}

Fig. 2. In the Eulerian perspective, the wavefront is interpreted as the
intersection between a graph and the zero-level of an additional dimension
®. The inset shows the one-dimensional case of the Eulerian formulation
to clarify how equation (2) describes the wavefront’s evolution: In order
to make the intersection move towards the right with speed F', the whole
curve @ has to move downwards with speed F|V®|.

T

Fig. 3. The Eikonal case leads to a simplified formulation of the Level
Set Method that can be solved very efficiently. Notation has changed from
P toT.

The Level Set Method can be summarized as follows:
Convert the initial wavefront I'(¢ = 0) into a graph
®(Z,t = 0) by taking the signed distance from & to the
initial front; repeatedly solve equation (2) using a fixed
timestep; determine the front’s evolution I'(t) by inter-
secting ®(t) with the zero level. This requires a discrete
approximation of the gradient operator V, as well as some
other heuristics to make it efficient and stable.

The Eikonal case is applicable when the propagation
speed is always positive (or negative) and depends on
position only, i.e. the path planning problem we want to
solve. The Fast Marching Method can then be applied:
It treats ® as a crossing-time map and I'(¢) is now by
intersecting ¢ with the level of height ¢. In order to
stress this change of interpretation, a notational change
is introduced: ® becomes 7. Figure 3 and equation (3)
illustrate the Eikonal case.

F=F&) >0
I(t) = (& | T(#) = t} 3)
VT|F =1

where F' denotes the propagation speed, the wavefront I’
is the intersection between the crossing-time map 7" and a
given instant ¢, and the simplified differential equation that
has to be solved is given in the last line.

In the Eikonal case, T' can be built outward starting
at T' = 0. This is due to the upwind property: A given
location is traversed only once by the wavefront. Given
that the LSM is calculated on a grid, a discrete notation
is introduced. Equation (4) is obtained by applying a first-
order gradient approximation to (3).
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where Di_j“c denotes the finite difference along negative z
at grid point (4, 5), Tg“ is the crossing time at (¢, 5) for
the next step, and F;; is the propagation speed at (4, j).

III. OVERVIEW OF THE E* FRAMEWORK
A. Abstractions

Several abstractions make E* generic. The interpolation
kernel makes E* independent of the choice of approxi-
mation scheme and wavefront propagation is incorporated
as a generic event-based process. The environment and
navigation function is stored in a grid of cells. E* relies
on other processes to keep the environment model up
to date, which use a high-level interface to communicate
with it>. Environmental information is stored in a cell’s
meta information, which is an encoding of the traversal
risk. Whereas the risk is normalized to [0,1], the meta
information is a kernel-dependent mapping of the risk.

B. Backpointers

An important aspect of the LSM is the upwind property.
In D*, the upwind property is traced using backpointers
needed for dynamic replanning: They store on which neigh-
bor a cell’s path cost depends, such that all descendants of
a location can be visited if that location’s environmental
information changes. E* extends backpointers to an ordered
set. See section V-C for more details on this seemingly
straightforward extension.

C. Generic Interpolation Kernels

An interpolation kernel is a function that calculates a
given cell’s crossing time T;. Cells ¢; belong to a given
domain C, each ¢; has a set of neighbors IN; and stores
environment properties as meta information F; (5). The
cell’s propagator set P; C N; and meta information F;
influence the kernel (6). Each cell has a set of backpointers
B, C P;. The generic interpolation kernel is denoted k.

CiGO,NiCC,CZ‘¢Ni,61€N2<:>CQGN1 %)

F,>0,T;, >0, {T;,B;} = k(F;,P C N;) 6)

The remainder of this paper treats interpolating the
wavefront between two cells. As a consequence, a special
case of the above formulation is used: P = {ci,ca},
{Ti, Bz} = k(Fi7C]_,CQ>.

At first sight, the propagators are the same as the
backpointers. However, the kernel might fail to provide
valid interpolation for certain combinations, and the use of

2Describing this high-level interface is outside the scope of this paper,
but note that it provides a convenient way of using E* as a global planner.
Details can be found in [13].

fallback or degenerate solutions is required in these cases,
and this information has to be passed to E* such that the
backpointers reflect the actual dependency between cells
(see section V-C). This is why the kernel provides not only
the updated value, but also backpointer information needed
to trace propagation direction during dynamic replanning.

D. The Wavefront as Event Queue

An event encapsulates the elemental propagation step.
Events are stored in a queue that ensures upwind propaga-
tion order. A queue key is assigned to each event, and the
queue is sorted by ascending key. Three types of events
are used to implement generic wavefront propagation:
LowerEvent for path cost decreases, RaiseEvent for
path cost increases, and RetryEvent for attempting to
decrease a path cost after a wake of RaiseEvents has
swept an area.

The queue key corresponds to the upper bound on the
optimal path cost at which the event must be triggered in
order to respect the upwind property. The upper bound on
optimal path costs is a value maintained by the wavefront,
all cells with values at or below this bound are valid (they
can not be influenced by further event propagations).

IV. Two KERNELS
We present two interpolation kernels which will be used
in the evaluation of E* in section VI
A. Graph Distance: NFI Kernel

The simplest kernel is one that uses only one propagator
and does not interpolate at all. This is useful to quantify
the effects of interpolation. Update equation (7) and en-
vironment representation (8) are fairly straightforward for
this kernel.

TO = minceNo (Tc + h + F())

. 7
By = argmineen, (T. + h + Fp) )
0 < ¢; € free space
F, = P ®)
00 <= ¢; € C-space obstacle

where Ty is the value after propagation, h is the grid
resolution, Fj is the meta information of the cell which
is being updated, and Ny is the set of its neighbors. Here,
meta information is treated as the additional cost of going
from a cell to the one that is being updated. A risk of 0
corresponds to F; = 0, a risk of 1 implies F; = oo.

B. Gradient Approximation: LSM Kernel

Gradient approximation refers to an implementation of
the first-order upwind interpolation scheme for Fast March-
ing Methods presented in [§], resulting in (9).

maX(D;ij, —D:;ZT, 0)%+
max(D'T, - D'T,0)* = 1/F}  (9)

where D;jw is the finite difference operator along negative
x at the grid point (4, j), and F}; is the (known) propagation



speed at (i,7). T corresponds to the navigation function
that is to be calculated.

Developing D;';{‘T’y}T leads to a quadratic equation with
coefficients that take values based on a switch on the
sign and magnitude of the finite difference operators. A
geometric interpretation of (9) is useful to determine the
propagator set that will yield the optimal solution prior
to interpolating. The inset in figure 4 shows the situation,
following the development in [8]. The cell in the center
is being updated. Interpolation implies using up to two
neighbors, which need to lie on different axes. Without
loss of generality, it can be assumed that the two neighbors
leading to the best interpolation are A and C, and that
Ta < T¢. The update equation becomes (10).

(T —Ta)? + (T — Tc)? = h?/F?
T= ta = tc ( 1 0)
(ta — Ta)? + (tc — Tc)? = h* /F?
where T is to be determined, T and ¢ are the values of
the best neighbors, h is the distance between two neighbors,
and F is the propagation speed at (3, j).

The novel geometrical interpretation is based on intro-
ducing two parameters tc and ta that are interpreted as the
axes of a Cartesian coordinate frame. The solutions for (10)
are found at the intersections between the diagonal tp = t¢
and a circle of radius h/F centered at (Tc,Th).

The switch expressions surrounding Dij;{x’y}T in (9)
lead to constraints that need to be added to (10): Either it
has a real solution 7" with T" > T, or a real solution to the
degenerate form (11) with Ty < T < T¢. The degenerate
(fallback) solution is equivalent to finding the intersection
between a horizontal line tx = T + h/F and the diagonal
ta = tc.

h? T =ts =tc

—- & 11
F2 tA:TA+h/F ( )

(T —Ta)* =

Figure 4 shows the overall geometrical interpretation for
a given (Tc,Ta). Equation (10) has to be solved only if
the point (Tc,Ta + h/F) lies above tc = ta (i.e. the
interpolating curve in figure 4), and that only the higher of
the two intersections has to be found. The final equation
is (12).

- Ta+h/F < Te—Ta > h/F
- %<_ﬁ+ \/M) otherwise

p=—(Ta+1Tc)
where
{ v =3 (IR +T¢ — B*/F?)

(12)
recall that Ty < T¢ and note that ' — 0 = T — oc.
Also note that cells on the border of the grid might not
have neighbors of type A and C, in which case the fallback
solution is used.

Fig. 4. Geometric interpretation of LSM interpolation, the inset shows
the cell neighborhood. Equations (10) and (11) can be read as finding the
intersection between the line tc = ta and the curve labelled interpolating
(thick solid line). Two dashed curves illustrate how the interpolation
behaves when h/F becomes smaller (limit and fallback curves). The
small solid circle indicates the intersection that serves as solution for
the interpolating case, and the small dashed circles show the same for the
limit and fallback cases.

The LSM kernel maps zero risk to the maximum propa-
gation speed (we use Fjj max = 1), and the maximum risk
implies F;; = 0.

V. IMPLEMENTATION DETAILS
A. Propagating an Event

LowerEvents are sent to all neighbors of a cell whose
value decreases, e.g. when a previously blocked passage
is discovered to be open. The value after the decrease
is used as queue key: The lower event was triggered
because the highest known optimal path cost reached its
target cell, lowering that cell’s value implies the same
decrease for the path cost bound. Propagating a lower event
means calculating the best possible path cost estimate and
updating the backpointers accordingly. Then, lower events
are sent to all neighbors whose value lies above the current
one.

RaiseEvents are created when a cell’s value in-
creases, e.g. due to a previously undetected obstacle across
the planned path. It is sent to all neighbors that have a
backpointer to the cell, using the value before increase as
queue key: It indicates that path costs higher than the cell’s
old value are now non-optimal, which is required such that
the neighbors with backpointers to the just-updated cell
get propagated next. When a raise event is propagated, the
destination’s value is set to infinity? and its backpointers
set to null. Then, raise events are sent to all concerned
neighbors in order to propagate the information upward.
Finally, a RetryEvent is triggered on the cell that has
just been increased, with a queue key determined to allow
subsequent path cost decreases as soon as possible.

A RetryEvent is the same as a LowerEvent, except
for its higher priority (see next section). It acts as a sort
of rear guard trailing behind wakes of RaiseEvents to
prevent backpointer loops and a “back wash” phenomenon

3The implementation of oo is a finite value much higher than the
maximum meaningful accumulated path cost.



(a duplicate raise wake going in the opposite direction of
the original one).

B. Resolving Event Conflicts

During insertion of events into the queue, attention has
to be paid to not overwrite existing ones. Events win by
priority, or by their queue key in a tie. Priorities reflect the
importance of events: RetryEvent > RaiseEvent >
LowerEvent. Raise events are considered more important
than lower events, because missing an existing shortcut is
less critical than trying to go through a region that is known
to be of high risk. Also note that raise events trigger retry
events after they have been propagated: Retry events have
the same effect as lower events, in other words a lower
event is only delayed by the higher priorities of raise and
retry events. Overriding raise by retry events is consistent
because the latter are only triggered after a raise event has
been propagated (the cell in question has an infinite value
anyways, it cannot be raised further).

C. Ensuring Backpointer Consistency

There is a fundamental difference between Raise-
Event propagation in E* and RAISE state calculations
in D*. The latter does not set the node’s path cost to
infinity, but calculates the usual path cost propagation.
This is consistent with the single backpointers used in
D*, but interpolation and the multiple backpointers needed
to trace cell dependencies raise the following problem in
E*: Suppose a cell receives a raise event from one of
its neighbors. If we now recalculate the interpolation, this
would likely result in a change of backpointers because the
previously good propagator is now at a higher path cost.
However, the backpointers are needed to propagate a path
cost increase to all descendants of a location. Changing
a backpointer while this chain has not been completed
violates the upwind property.

These issues are addressed by setting a cell’s value to
infinity when a raise event is propagated, and passing on
the raise wake to the unmodified backpointers. Now that
the cell is at infinity, the backpointers become useless (the
cell cannot be raised further in any case), which is why
they are set to null to avoid creating spurious raise events
that would result in no change of the navigation function.
In any case, after a raise event, a cell will be subject to
a retry event which applies the interpolation and sets new
backpointers.

VI. EVALUATION AND PERFORMANCE

In order to verify that E* yields useful results, it is
necessary to test the consistency of the framework and
its ability to incorporate various interpolation kernels. We
compare E* with ground truth distances in completely
known environments to verify that the distance to the
goal is appropriate and evaluate the precision of different
kernels. Then we evaluate the consistency of dynamic re-
planning: Does it produce the same results as reinitializing
and replanning the whole grid? Dynamic replanning is sup-
posed to make it more efficient to change the environment
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Fig. 5. Simulation setup for evaluating E*— solid lines denote a-priori
known obstacles, dotted lines indicate obstacles that need to be discovered
by the robot during its movement. The empty circle is the start, and the
solid circle the goal. The empty environment is used for determining in
which way the initial goal radius influences the convergence towards the
true Euclidean distance. The zig-zag and maze environments are used to
determine the gain from dynamic replanning and to compare the path
smoothness produced by different interpolation methods.

Actual cell sizes vary in the experiments. The grid resolution shown
here is very coarse in order to illustrate how the grid is placed onto
the environment.

model after a navigation function has been calculated. How
much work can actually be saved?

The first suite of tests (ground truth comparison) is run
in environments that are empty or have a zig-zag hallway
(left of figure 5). Consistency and performance of dynamic
replanning are measured by simulating a robot’s movement
through an environment with unknown obstacles that are
discovered when they enter the sensor range of the vehicle
(the “zig-zag” and “maze” maps in figure 5).

The goal region is a circle, all cells within this region are
initialized to the Euclidean distance to the goal point. All
cells outside the goal are initialized to infinity, except the
cells just outside the border of the goal which are assigned
lower events. Using larger goal radii increases the number
of initial cells and gives the interpolation a better starting
condition. In the extreme case, only one cell is in the goal
region, and the kernels are forced to start out with fallback
solutions.

Note that for all these experiments, obstacle information
is binary: A cell is either in free space (risk=0) or occupied
(risk=1). Also, obstacles are not grown to the robot radius
(the robot is considered a point). These simplifications
are acceptable for evaluating the general characteristics
of E*. A more elaborate planning approach that uses
continuous risks, realistic robot sizes, and buffer zones
around obstacles is presented in [13].

A. Precision

The relative error of the propagation result is measured
to investigate how the kernel, the resolution, and the goal
radius influence the relative error (13).

T. —d.

=~ 13)

where 7T; is the value of the navigation function at cell ¢
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Fig. 6. These plots summarize the relative error between propagation
result and true distance in an empty environment of 10 X 30. The top
graph shows the maximum error e.. in function of the interpolation method
and the goal radius. The bottom graph shows the mean error. It can be
seen that LSM performs better than HPR (another kernel not presented
in this paper), which performs slightly better than NF1. The three lines
per interpolation method correspond to the three cell sizes: 1 at the top,
0.5 in the middle, and 0.1 at the bottom. Note the case where the cell
size equals the goal radius, it illustrates the maximum error because the
interpolation can not take advantage of a smoothly initialized goal region.

and d. is the true distance from c to the goal. Figure 6
shows the maximum and mean values of e..

None of the kernels underestimates the distance to the
goal*. All improve e, when increasing the ratio of goal
radius over cell size. Note that the first run in each series
of a given cell size is initialized using a single goal cell
and thus indicates the effects of fallback solutions. Running
these ground truth comparisons in the zig-zag environment
indicates that the wavefront is capable of “going around
corners”. The results are given in figure 7.

B. Computational Effort

How much work can be saved by dynamic replanning?
This depends on the environment and how many changes
to the meta information occur before the robot reaches the
goal. We thus simulate a simple point robot following the
negated gradient with bounded acceleration and speed. The
robot is equipped with a sensor of limited range. When
a previously unknown obstacle is detected, propagation is
performed until the highest known optimal path cost lies
above the value at the robot’s position. Computational com-
plexity is measured by counting the number of events that

4At least not to within an error of 10~1% which is considered to be
due to numerical effects
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Fig. 7.  Relative error of E* in a 33x33 zig-zag environment. As
in figure 6, the top graph shows the maximum error and the bottom
graph shows the mean error. The overall heightened error with respect
to the empty environment is due to the difference between ground truth
calculation (which can use the exact endings of the interior walls) and
the propagation (which is forced to go through the first non-occupied cell
near the end of each wall).

are propagated until the robot can resume its movement.
Simulations are run with and without interpolation. In the
latter case, the method requires fewer events because there
is only one backpointer. The LSM kernel requires up to
two backpointers, so raise events are propagated to up to
twice as many descendants than for the NF1 kernel.

Table I compares the performance with and without
interpolation. The gain is calculated without taking into
account the initial planning. The meanings of the line labels
in these tables are: cell size is the grid spacing h e.g.
in (10); N° dyn. propagations is the event propagation
count over the whole run when using dynamic replanning;
N° replan prop. is the event count over the whole run when
using complete replanning; gain is the relative reduction in
the number of events when using dynamic replanning. It is
calculated as (ncomplete - ndynamic) / Ncomplete -

The cost of interpolation improvement stems from two
aspects: An increase of computational complexity due to
the higher number of backpointers, and an increase in
the duration of each operation due to the more elaborate
calculations required for interpolation.

Table II compares the propagation counts. The theo-
retical increase is twofold (twice as many backpointers),
however the values observed in the zig-zag and maze
environments lie between a 25% and 62% increase. p =
Tdynamic / Ncomplete 18 @ normalized measure of the number of



NF1 kernel in zig-zag map
cell size 0.67 0.37 0.20
N° dyn. propagations 1°242 3°926 | 13’627
N° replan prop. 2°209 7279 | 26226
gain 43.8 % | 46.1 % | 48.9 %
LSM kernel in zig-zag map
cell size 0.67 0.37 0.20
N° dyn. propagations 1’759 6’417 | 20°260
N° replan prop. 2’243 7°337 | 26’192
gain 21.6 % | 12.5 % | 22.6 %
NF1 kernel in maze map
cell size 0.71 0.38 0.20
N° dyn. propagations || 3521 | 11°890 | 43’836
N° replan prop. 6’881 | 25463 | 95’075
gain 48.8 % | 53.3 % | 53.9 %
LSM kernel in maze map
cell size 0.71 0.38 0.20
N° dyn. propagations || 5°464 | 18’887 | 74’880
N° replan prop. 8’565 | 26’880 | 116’271
gain 36.2 % | 29.7 % | 35.6 %
TABLE I

E* PERFORMANCE WITH AND WITHOUT INTERPOLATION ON A 20x20

ZIG-ZAG AND A 20X 25 MAZE MAP. THE GAIN FROM DYNAMIC OVER

COMPLETE REPLANNING IS SLIGHTLY WORSE WHEN INTERPOLATING.
THE DEPENDENCY ON CELL SIZE IS NOT SIGNIFICANT

dynamic replanning events. p(LSM)/p(NF1) indicates how
much wider raise events spread when using interpolation.

Table III presents operation delays. The times for single
kernel calculations and finding the optimum (lowest) in-
terpolation for a cell were measured under desktop system
load. System A is a 466MHz Intel Celeron running linux-
2.6.7, system B is a 1.8GHz Intel Pentium 4 running linux-
2.4.22. The measurements were performed with debug
(dbg) and optimized (opt) executables produced with the
-g and -03 flags of GCC-3.3.

The propagation count depends on the environment due
to the backpointers’ dependency on events which in turn
depend on when the robot discovers which parts of the
environment, whereas the operation delay is concerned
with the operation of the kernels and depends on the
platforms and optimizations used to execute the program.
The complexity increases by up to 62% in the studied
settings. The operation cost for a single calculation of the
interpolation kernel is up to 37% higher’.

C. Path Smoothness

Figure 8 shows the paths produced with and without
interpolation. On the left, the preference for displacements
along coordinate axes and the two diagonals illustrates the
grid-based distance measure of NF1, whereas the paths
produced using LSM are very close to the line-of-sight
towards the edge of a known obstacle or the goal.

Figure 9 illustrates a situation where a passage opens and
provides a shortcut to the goal. Then, an obstacle appears

SOverall run times are also influenced by the complexity of insertion
and removal operations on the event queue, which is O(nlogn) if
balanced binary trees are used in the implementation. Such storage
overhead applies to all methods that rely on ordered propagation.

Relative computational complexity / zig-zag
cell size 0.71 0.38 0.20
relative burden p(NF1) 0.562 | 0.539 | 0.520
relative burden p(LSM) || 0.784 | 0.875 | 0.774
p(LSM)/p(NF1) 1.39 1.62 1.49

Relative computational complexity / maze
cell size 0.71 0.38 0.20
relative burden p(NFI) 0.512 | 0.467 | 0.461
relative burden p(LSM) || 0.638 | 0.703 | 0.644
p(LSM)/p(NF1) 1.25 1.50 1.40
TABLE II

E* COMPUTATIONAL COMPLEXITY WITH AND WITHOUT
INTERPOLATION. THESE NUMBERS ARE PROPAGATION COUNTS THAT
INDICATE THE RELATIVE COMPLEXITY OF INTERPOLATION.

Relative and absolute operation cost
System A System B
dbg opt dbg opt
overhead [ns] 33.0 31.3 11.3 10.9
N calls | 513’939 | 513°971 | 513’939 | 513’971

NF1 kernel [ns] 33.7 31.6 12.8 11.0
optimum [ns] 225 181 77.2 67.0
LSM kernel [ns] 46.3 34.6 154 12.1
optimum [ns] 273 185 89.8 67.1
ratio kernel 1.37 1.09 1.21 1.10
optimum 1.21 1.03 1.16 1.00

TABLE III

E* OPERATION COST WITH AND WITHOUT INTERPOLATION IN MAZE
ENVIRONMENT (20X 25, CELL SIZE 0.2). THE OPERATIONS OF THE
LSM KERNEL ARE UP TO 37% MORE EXPENSIVE THAN THE
NON-INTERPOLATING ONES.

that makes navigating the passage more difficult (however,
the robot could still fit through). In this case the path
switches back to the detour because the accumulated risk
of the shortcut is too high. Note that this sequence of nav-
igation functions has been created using a more elaborate
approach [13] that uses a user-defined risk transition zone
around obstacles to take into account the robot’s radius
as well as a security distance. This can be seen in the
lower right of figure 9, which shows the risk map (color
scaled cells) and the state of the wavefront when the last
replanning cycle stopped (small dots that go form arcs of
circles).

VII. CONCLUSION AND OUTLOOK

The E* algorithm allows to calculate and update smooth
navigation functions that approximate true distance much
better than other grid or graph based methods — by an
order of magnitude or more given the right conditions.
The additional computational complexity required for this
achievement is a factor of two in the theoretical worst case,
but experiments suggest a factor of approximately 1.2 to 1.6
in practice. Each of the propagation steps becomes more
elaborate as well, this amounts to a factor below 1.4 in the
case of the robust LSM interpolation when compared with
the NF1 kernel that mimics D*.

In addition to providing an interpolated navigation func-
tions with dynamic replanning, E* is independent of inter-
polation details and can thus be used to evaluate different
kernels in terms of their quality and computational costs.
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Fig. 8. Example paths from the simulations, the robot starts in the upper
right without any knowledge of the environment and proceeds to reach
the goal in the lower right, discovering obstacles that come into its sensor
range (illustrated by the large circle). The top row shows the final paths:
On the left, no interpolation was used and the path shows grid effects. On
the right, interpolation has been used to achieve a better distance map. The
bottom row shows histograms of the path directions: On the left, you can
see that the NF1 prefers directions along multiples of 7 /4, whereas there
is less preference for these angles in LSM. Note that the environment
presents sections where the best path direction lies close to a multiple of
/4, the peaks in the LSM histogram illustrate this (note in particular the
peak which is to the left of —45°).

Fig. 9. Obstacle removal and addition with LSM: After the robot has
discovered the L-shaped obstacle, it plans a path around it (top left).
The top right shows the navigation function after freeing a passage in
the obstacle, the optimal path switches topology by going through this
opening. Then, an obstacle was added behind the passage, but such that
the robot could pass (bottom right shows the risk map). However, the
optimal path switches back to the old topology, because the new obstacles
causes a higher accumulated risk: The robot takes a detour to avoid the
dangerous zone (bottom left).

Generalizing E* to higher dimensions and interpolation
orders is possible: Event propagation relies on neighbor-
hood information which can be defined independently of
dimension. Extending to non-grid representation is feasible
as well: The only part of this work which depends on the
grid nature is the LSM interpolation, and this has already
been applied to triangulated domains in [8].
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