
Non-Parametric Time Series Classification

Scott Lenser and Maneula Veloso
Carnegie Mellon University

Pittsburgh, PA
{slenser,mmv }@cs.cmu.edu

Abstract

We present a new state-based prediction algorithm for time series. Given
time series produced by a process composed of different underlying
states, the algorithm predicts future time series values based on past time
series values for each state. Unlike many algorithms, this algorithm pre-
dicts a multi-modal distribution over future values. This prediction forms
the basis for labelling part of a time series with the underlying state that
created it given some labelled examples. The algorithm is robust to a
wide variety of possible types of changes in signals including changes in
mean, amplitude, amount of noise, and period. We show results demon-
strating that the algorithm successfully segments signals for a wide vari-
ety of example possible signal changes.

1 Introduction

Segmentation of time series into discrete classes is an important problem in many fields.
We approach the problem from the field of robotics where time series generated by sensors
are readily available. We are interested in using these signals to identify sudden changes
in the robot’s environment allowing the robot to respond intelligently. For this applica-
tion, the signal segmentation must be performed in real time and on line, which requires
algorithms that are amenable to on-line use. Usually a mathematical model of the process
that generates the sensor signal is unavailable as are the number of possible states in this
process. Therefore, we focus on techniques that require little a priori knowledge and few
assumptions.

In previous work [1, 2], we developed a technique for segmenting a time series into differ-
ent classes given labelled example time series. In [1], we showed that our algorithm can
successfully segment signals from robotic sensors. In this work, we improve on our previ-
ous technique by replacing a windowed approach to signal classification with a recursive
solution based on a simple HMM.

We have named our new algorithm for classifying time series the Probable Series Classifier
(PSC). It is based on a time series prediction component which we will refer to as the
Probable Series Predictor (PSP). Unlike many other methods, PSP predicts amulti-model
probability density over next values. PSC uses several PSP modules to classify a time series
into one of a set number of pre-trained states. PSC uses one PSP module per state. Each
PSP module is pre-trained from an example time series generated by one state. PSP uses an
internal non-parametric model trained from an example time series to make its predictions

PSC runs each PSP module on a time series to be classified and uses the one which best
predicts the time series as the classification of the unknown time series.

There has been much interest in time series analysis in the literature due to the broad ap-
plicability of time series techniques. There have also been many approaches to time series
predictions, most of which are focused on producing a single predicted value. For example,
time series prediction has been done using AR, ARMA, IMA, and ARIMA models (e.g. [3]
) and neural networks (NNs). All of these techniques produce a single estimated next value
in the time series. These techniques can be converted into predicting a distribution over
values by assuming a Gaussian deviation around the predicted value. This approach is used
by Petridis and Kehagias for NNs [4, 5] and Penny and Roberts for HMM-AR models [6].
A related approach is that of using Gaussian Processes [7] for prediction. Unfortunately,
this technique requires the inversion of annxn matrix which takesO(n3) time forn obser-
vations. In contrast, our approach takesO(n log(n)) time in our current implementation.
The chief advantages of our approach over these previous approaches are that we are capa-
ble of predicting a multi-modal distribution over values and that our method is amenable to
on-line training as more data from a particular state becomes available.

There are a wide variety of algorithms based on change detection, particularly in the domain
of fault detection and identification (FDI). These FDI algorithms (e.g. [8, 9]) are usually
specialized for the case of two states, one for normal system operation and one for failure
cases. Because data can only be collected about the normal state of the system, these
algorithms are attempting to solve a different problem and are generally more specialized
for this task. We take a very general approach where we detect a wide variety of types of
changes to the signal which sets PSC apart from these other techniques.

There has also been a lot of interest in HMMs and switching state-space models, e.g. [6, 10].
These techniques require an a priori knowledge of the underlying structure of the system
or extensive off-line training. PSC requires no knowledge about the system structure, as
we only require labelled time series examples. PSC also requires negligible training time
since almost all of the work is done at query time.

2 Probable Series Classifier Algorithm

Consider a time series of values~x0, ~x1, . . . , ~xt created by a generator withk distinct states.
At each point in time, one of the states is active and generates the next data value in the
time series based upon the previous time series values. Also assume that the frequency of
switching between states is relatively low, such that sequential values are likely to be from
the same state. We are interested in using the time series of values to recover which state
was active at each point in time using only example time series created by each state.

The belief state at timej for statei is the probability of it being active at timej:

B(sj = i) = P (sj = i|~xj , ~xj−1, . . . , ~x0)

=
P (~xj |~xj−1, . . . , ~x0, sj = i) ∗ P (sj = i|~xj−1, . . . , ~x0)

P (~xj |~xj−1, . . . , ~x0)

We are interested in finding the statei that maximizes this probability. Note that
P (~xj |~xj−1, . . . , ~x0) is just a normalizing constant and thus doesn’t affect whichs = i
has the maximum likelihood. Furthermore, we will make themth-order Markov assump-
tion that values> m time steps ago are negligible, given more current readings. This
assumption simplifiesP (~xj |~xj−1, . . . , ~x0, sj = i) to P (~xj |~xj−1, . . . , ~xj−m, sj = i).

P (sj = i|~xj−1, . . . , ~x0)

=
∑

l

P (sj = i, sj−1 = l|~xj−1, . . . , ~x0)

=
∑

l

P (sj = i|sj−1 = l, ~xj−1 . . . ~x0)P (sj−1 = l|~xj−1 . . . ~x0)

=
∑

l

P (sj = i|sj−1 = l) ∗B(sj−1 = l)

Here we have assumed the current state is independent of old observations (before timej)
given the previous state. These assumptions simplify the problem to finding the statei that
maximizes the following equations providing a recursive solution:

B(sj = i)
∝ P (~xj |~xj−1, . . . , ~x0, sj = i) ∗ P (sj = i|~xj−1, . . . , ~x0)
≈ P (~xj |~xj−1, . . . , ~xj−m, sj = i) ∗ P (sj = i|~xj−1, . . . , ~x0)

= P (~xj |~xj−1 . . . ~xj−m, sj = i)
∑

l

P (sj = i|sj−1 = l)B(sj−1 = l)

This belief update equation is useful for segmentation and classification. Our Probable Se-
ries Classifier algorithm uses the update equation for classification by finding the state that
maximizes the probability of an unknown time series (using PSP for some key probabil-
ity calculations). We assume a uniform distribution over the initial state of the generator.
We also assume thatP (sj = i|sj−1 = l) = .999 if i = l and a uniform distribution of
the remaining probability over other states. The transition probability does not effect the
most likely state at any given time much since the probability is dominated by the sensor
readings. Our algorithm runs in real time on a Athlon XP 2700 processing data at 125Hz.

3 Probable Series Predictor Algorithm

We need a prediction of the likelihood of new time series values based upon previous values
and the current statei.

P (~xj |~xj−1, . . . , ~xj−m, sj = i)
Note, that statei is known in this case, so we know what state we are predicting for.
Assume we have previous time series values generated by this state. We can use these
previous examples to generate an estimate at timej given the previous values of the time
series. We will focus on the case wherem = 1 and~x is a single dimensional value.

We have: a set of value pairs~xi,~xi−1 and a value at timej−1 (~xj−1). We need to generate
a probability for each possible~xj . We can use non-parametric techniques with a locally
weighted approach. The problem is visualized in Figure 1. We need to introduce some
terminology to more easily discuss the problem.

base value(s)Those value(s) used in generating a predicted value. These are the time
series values on which the output is conditioned. In the case ofm = 1, this is just
~xj−1. The conditioning on the state is accomplished by having a separate model
for each state.

output value The value output by prediction.
model points Points in base/output space in the training data for a state. These points

form the model for this state. Each point is a pair of values: an output value~xj

and associated base value(s)~xj−1, . . . , ~xj−m.

base value

base value

ou
tp

ut
 v

al
ue

ou
tp

ut
 v

al
ue

w
ei

gh
t

probability

Figure 1: Data prediction. The dots in the main graph show the data available for use
in prediction. The grey bar shows the range of values used in the prediction. The bottom
graph shows the weight assigned to each model point. The left graph shows the contribution
of each point to the predicted probability of a value at time t as dotted curves. The final
probability assigned to each possible value at time t is shown as a solid curve.

prediction query A query of the model which provides~xj−1, . . . , ~xj−m as input and
generates a probability density over~xj as output.

We will generate a probability density by generating a weighted set of output value pre-
dictions, one from each model point. A kernel is used that assigns more weight to model
points with base value(s) near the query base value(s). The predicted output values must
then be smoothed to form a continuous probability density.

We use a bandwidth limited kernel over base value(s) to weight model points for speed
reasons. The kernel used is the tri-weight kernel:

Kt(x, h) =
{

(1− (x/h)2)3 if |x/h| <= 1,
0 otherwise

This kernel is a close approximation to a Gaussian but is much cheaper to compute and
reaches zero in a finite bandwidth. The finite bandwidth allows some points to be elimi-
nated from further processing after this step. The bandwidthh is a smoothing parameter
that must be selected that controls the amount of generalization performed. From non-
parametric statistics, it is known that in order for the prediction to converge to the true
function, asn → ∞ (the number of model points), the following two properties must
hold: h → 0 andnh → ∞. These properties ensure that each estimate uses more data
from a narrower window as we gather more data. We use a ballooning bandwidth for our
bandwidth selection. A ballooning bandwidth chooses the bandwidth as a function of the
distance to thekth nearest neighbor. Since the average distance between neighbors grows
as1/n, we choose a bandwidth equal to the distance to the

√
n nearest neighbor, ensuring

that the bandwidth grows as1/
√

n which satisfies the required statistical properties. Each
model point is assigned a weight by the base kernelKt which is used to scale its prediction
in the next stage.

Table 1: Probable Series Predictor algorithm.

ProcedurePredictOutput(generatormodel,basevalues)
let OP ← generatormodel.modelpoints
let D ← dist(OP.basevalues,basevalues)
Choosebasedistequal to thed

√
neth smallestd ∈ D.

let hb ← basedist+ noisebase
let pred ← {z.output value| z ∈ OP∧

dist(z.basevalues, basevalues) < hb}
Perform correlation correction onpred.
let base← {z.basevalues| z ∈ OP∧

dist(z.basevalues, basevalues) < hb}
Chooseho that minimizesM(ho) overpred.
Return probability density equal to

pdf(z) =
P

i Kg(predi − z, ho)∗
Kt(basei − basevalues, hb)

Figure 1 illustrates the PSP algorithm. The dark circles represent model points that have
already been seen. The x axis shows the base value. The y axis shows the output value.
The dark vertical line shows the query base value. The grey bar shows the range of values
that fall within the non-zero range of the base kernel. The graph underneath the main graph
shows the weight assigned to each model point based on its distance from the query base
value. A prediction is made based on each model point that is simply equal to its output
value (we will refine this estimate later). The dotted lines leading from each model point
used in the prediction shows these predicted output values. PSP is described in pseudo-code
in Table 1.

We need to smooth the predicted output values to get a continuous probability density. We
will once again turn to non-parametric techniques and use a tri-weight kernel centered over
each point. Because this kernel has a finite bandwidth, it may assign a zero probability to
some points. This assignment is undesirable since we never have enough training data to
be absolutely sure the data could not have occurred in this state. Hence, we assign a .0001
probability that the time series value is generated from a uniform distribution and a .9999
probability that it is generated according to the estimated distribution.

We need a method for selecting a bandwidth forKg, the output kernel. We use a modi-
fied form of the ballooning method. For each output value prediction, we assign a band-
width proportional to the distance to the

√
n

th nearest output value with a minimum band-
width. We used a proportionality constant of 0.5. We also experimented with selecting a
bandwidth using the pseudo-likelihood cross validation measure [11, 12]. This alternative
bandwidth selection had similar performance but took about 10 times as long to run.

As exemplified in Figure 1, there is usually a strong correlation between the time series
value at timet and the value at timet− 1. This correlation causes a natural bias in predic-
tions. Model points with base values below the query base value tend to predict an output
value which is too low and model points with base values above the query base value tend
to predict an output value which is too high. We can correct for this bias by compensating
for the correlation betweenxt andxt−1. We calculate a standard least squares linear fit
betweenxt−1 andxt. Using the slope of this linear fit, we can remove the bias in the pre-
dicted output values by shifting each prediction in both base value and output value until
the base value matches the query base value. This process can shift the predicted output
value a substantial amount, particularly when using points far from the query base value.
This process improves the accuracy of the algorithm slightly. This correlation removal was
used in all the tests performed in this paper.

4 Evaluation

We tested the PSC using simulated data, allowing us to know the correct classification
ahead of time. It also allowed us to systematically vary different parameters of the signal
to see the response of the classification algorithm.

We used PSC to segment a signal generated from a 2 state generator. One state was a fixed
baseline signal. The other state was a variation of the baseline signal formed by varying one
parameter of the signal. The algorithm was graded on its ability to correctly label segments
of the signal that it hadn’t been trained on into the 2 states. We tested the performance of
PSC by varying the following test parameters:

Training window size The number of data points used to train on each state. The
smaller the window size the harder the problem.

Parameter value The value of the parameter used in the modified signal. The closer
the parameter to the baseline value the harder the problem.

Parameter modified The parameter chosen for modification. We tested changes to the
following parameters: mean, amplitude/variance, observation noise, and period.

For each test we generated a time series with 4000 data points. The baseline state (class
1) generated the first and third quarter of the data signal and the modified state (class 2)
generated the second and fourth quarter of the data. We chose to use a sine wave for the
underlying signal for the baseline. We added uniform observation noise to this underlying
signal to better reflect a real world situation. The signal is parameterized by amplitude,
mean, period, and noise amplitude resulting in 4 parameters. The standard signal used an
amplitude of5 ∗ 105, a mean of0, a period of20 observations, and a noise amplitude of
5 ∗ 104, resulting in±10% noise on each observation relative to the signal range.

For each test, we trained a model of each state on an example signal from that state. This
example signal was not included in the testing data. The length of the example signal
(training window) was varied from 5 data points to 100 data points to show the effect on
the results. We tested with 14 different example signals for each state and averaged the
results. For each test, we calculated the fraction of time the most likely state matched the
actual state of the system. This fraction is reported on all of the result figures. A value of
1 indicates a perfect segmentation of the test segments into classes. A value of0.5 is the
performance expected from randomly guessing the class. This metric equals the probability
of getting the correct labelling using a random training example signal for each class.

We summarized our test results in a series of figures. The y axis shows the fraction of
correct labellings achieved by PSC. In each figure, there is a point at which the performance
of PSC falls to chance levels (0.5). These points occur where the states for class 1 and class
2 have the same parameters and are hence generate the same signal. Since a signal cannot
be segmented from itself, we expect the algorithm’s performance to fall to chance levels
at these points. We gathered results pertinent to applications where a constant amount of
training data is available as would occur in on-line labelling applications.

Figure 2 shows the performance of PSC with respect to changes in the amplitude of the
signal. PSC performs quite well even for small training window sizes. This type of change
to the signal would not be detected by algorithms that are only sensitive to mean shifts as a
change in amplitude does not change the mean but only the variance.

Figure 3 shows the performance of PSC with respect to mean shifts. PSC performs well
and is able to detect small mean shifts. This type of change to the signal can be detected
by algorithms capable of detecting mean shifts. Many mean shift algorithms would have
trouble with a periodic signal like this sine wave, though, unless the data was averaged over
a full period which would slow detection time.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

fr
ac

tio
n

co
rr

ec
t

amplitude

win size 20
win size 40
win size 80
win size 100

Figure 2: Detection of changes to the signal amplitude with a fixed training window size.
The x axis shows the factor by which the amplitude was multiplied.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

fr
ac

tio
n

co
rr

ec
t

mean shift

win size 20
win size 40
win size 80
win size 100

Figure 3: Detection of changes to the signal mean with a fixed training window size. The
x axis shows the mean shift as a fraction of the signal amplitude.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

fr
ac

tio
n

co
rr

ec
t

noise amplitude

win size 20
win size 40
win size 80
win size 100

Figure 4: Detection of changes to the observation noise with a fixed training window size.
The x axis shows the observation noise as a fraction of the signal amplitude.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80

fr
ac

tio
n

co
rr

ec
t

period

win size 20
win size 40
win size 80
win size 100

Figure 5: Detection of changes to the period with a fixed training window size. The x axis
shows the period of the signal.

Figure 4 shows the performance of PSC with respect to changes in observation noise. This
type of change is very difficult to detect as it produces no mean shift in the signal and a
negligible variance change. Nevertheless, PSC is still able to detect this type of change
effectively. Many algorithms fail to detect this kind of change to a signal.

Figure 5 shows the performance of PSC in detecting changes in the period of the signal.
PSC performs well at detecting a change of the period most of the time. PSC fails to detect
the change in the period for the case where the period is longer than the training sequence
but in this case the training signal is not fully representative of the full signal for the state.

5 Conclusion

We have presented an algorithm for generating predictions of future values of time series.
We have shown how to use that algorithm as the basis for a classification algorithm for
time series. We proved through testing that the resulting classification algorithm robustly
detects a wide variety of possible changes that signals can undergo including changes to
mean, variance, observation noise, period, and signal shape. The algorithm runs in real-
time and is amenable to on-line training.

References
[1] Scott Lenser and Manuela Veloso. Classification of robotic sensor streams using non-parametric

statistics. Init To appear: Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems(IROS), 2004.

[2] Scott Lenser and Manuela Veloso. Automatic detection and response to environmental change.
In Proceedings of ICRA-2003, 2003.

[3] Kan Deng, Andrew Moore, and Michael Nechyba. Learning to recognize time series: Combin-
ing arma models with memory-based learning. InIEEE Int. Symp. on Computational Intelli-
gence in Robotics and Automation, volume 1, pages 246–250, 1997.

[4] V. Petridis and A. Kehagias. Modular neural networks for MAP classification of time series and
the partition algorithm.IEEE Transactions on Neural Networks, 7(1):73–86, 1996.

[5] V.Petridis and A.Kehagias.Predictive modular neural networks: applications to time series.
Kluwer Academic Publishers, 1998.

[6] William Penny and Stephen Roberts. Dynamic models for nonstationary signal segmentation.
Computers and Biomedical Research, 32(6):483–502, 1999.

[7] A. Girard, C. E. Rasmussen, J. Quionero-Candela, and R. Murray-Smith. Multiple-step ahead
prediction for non linear dynamic systems — a gaussian process treatment with propagation of
the uncertainty. In Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors,Advances
in Neural Information Processing Systems, volume 15, pages 529–536. MIT Press, 2003.

[8] Michèle Basseville and Igor Nikiforov.Detection of Abrupt Change - Theory and Application.
Prentice–Hall, Englewood Cliffs, N.J., 1993.

[9] Masafumi Hashimoto, Hiroyuki Kawashima, Takashi Nakagami, and Fuminori Oba. Sensor
fault detection and identification in dead-Reckoning system of mobile robot: Interacting multi-
ple model approach. InProceedings of the International Conference on Intelligent Robots and
Systems (IROS 2001), pages 1321–1326, 2001.

[10] Zoubin Ghahramani and Geoffrey E. Hinton. Switching state-space models. Technical report,
6 King’s College Road, Toronto M5S 3H5, Canada, 1998.

[11] J. D. F. Habbema, J. Hermans, and K. van den Broek. A stepwise discrimination analysis
program using density estimation. InProceedings of Computational Statistics (COMPSTAT
74), 1974.

[12] R. P. W. Duin. On the choice of smoothing parameters of Parzen estimators of probability
density functions. InProceedings of IEEE Transactions on Computers, volume 25, pages 1175–
1179, 1976.

