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 Abstract - The paper investigates the global ρ -
exponential stabilizability for nonholonomic Caplygin systems 
that are linear in certain state variables. A simple and easily 
verified controllability condition is proposed to guarantee the 
global ρ -exponential stabilizability. For an important 
subclass of Caplygin systems, the controllability condition is 
further reduced to some conditions relating to the degree and 
non-zero property of the lowest nonzero polynomials in the 
Taylor expansion of constraint function. A new feature in this 
paper is that all parameters can be explicitly determined from 
the constraint function. Moreover, a novel coordinate 
transformation between Caplygin systems can be used to 
enhance the proposed criterion so that it can be applied to 
various situations. Several interesting examples, including of 
the rolling wheel system and a set-point problem of hopping 
robot, are provided to validate the effectiveness of the 
proposed results.  
 
 Index Terms –Caplygin  systems. Coordinate transformation. 
Decomposition. ρ -exponential stabilizability.  Controllability 
condition.  
 

I.  INTRODUCTION 

The paper investigates the global ρ -exponential  
stabilizability of Caplygin systems that can be described as 
follows: 

uq =1��                                         (1) 
                                       ,)( 112 qqJq �� −=                            (2) 

where nq ℜ∈1 , mq ℜ∈2 , nu ℜ∈ and the constrain function 

J  is a matrix-valued analytic function defined on nℜ  [2]. 
The target of this paper is to propose a simple and easily 
verified criterion. 

Caplygin systems as a subclass of nonholonomic 
systems were introduced in [2] for the control community. 
Practical examples includes the knife-edge, the extended 
power form, the rolling wheel and the hopping robot 
systems, e.t.c.,  [2], [3], [6], [9], [13]. In recent years, the 
interests for such systems follow from the fact that they 
cannot be stabilized by static time-invariant continuous 
controllers [4]. Simultaneously, there are no time-varying 
smooth controllers that can exponentially stabilize them. To 
overcome these obstacles, several approaches, such as the 
homogeneous and the discontinuous feedback methods, 
were proposed [1], [6], [7], [12], [14], [15]. See the survey 
paper [8] and numerous references therein. 

Among these results, the homogeneous feedback 
method usually needs a special construction for the design 
of  controllers and thus can only be applied to certain 

specific systems. By contrast, the discontinuous feedback 
approach can be used in a large class of nonholonomic 
systems [1], [14], [15]. However, its weakness is that the 
proposed controllers become very large when the initial 
state is near a singular hyperplane. In [10], this drawback 
was further improved by employing non-zero exponentially 
decaying divisors in the σ -processing. While the derived 
controllers are smooth and can guarantee some kind of 
exponential stability, the equilibrium point is loss of 
Lyapunove stability. 

 Quite recently, another kind of continuous controllers 
was proposed to guarantee the global ρ -exponential 
stabilizability for a class of cascaded systems including of 
Caplygin systems in the form (1)-(2) [11]. The proposed 
criterion provides a systematic way to verify the ρ -
exponential stabilizability. But, due to the criterion 
depending on the choices of certain parameters, it is not so 
trivial to determine that a given nonholonomic system is or 
is not ρ -exponentially stabilizable based on the approaches 
given in that paper. Thus, it deserves a further improvement. 
This paper toward this direction and would like to propose a 
simple and direct criterion to verify ρ -exponential 
stabilizability of  Caplygin systems. Indeed, a 
decomposition of the partial state 1q  and the input u  will 
be given first. The constraint function J  will be assumed to 
be linear in partial state variables of 1q .  Then, a simplified 
controllability condition can be proposed to guarantee the 
global ρ -exponential stabilizability based on the result of 
[11]. A new feature in this paper is that all parameters can 
be explicitly determined from the constraint function J  
when compares with the previous paper. Moreover, a novel 
coordinate transformation between Caplygin systems can be 
used to enhance the proposed criterion so that it can be 
applied to various situations. For an important subclass of 
Caplygin systems, the controllability condition will be 
further reduced to certain easily tested conditions relating to 
the degree and non-zero property of constraint function J . 
Several interesting examples, including of the rolling wheel 
systems and a set-point control problem for an extended 
system of hopping robot, will be provided to validate the 
effectiveness of the proposed results. From these 
applications, it can be seen that the proposed criterion does 
provide a direct and easily checked condition with respect to 
the results given in present literature in determining whether 
a Caplygin system can be exponentially stabilized. 
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II.  BRIEF REVIEW OF NEWLY DEVELOPED CRITERION 

In this section, a criterion given in [11] will be 
reviewed briefly. It can be viewed as a preliminary result in 
our study of the exponential stabilizability for Caplygin 
systems. 

Consider the following cascaded system  
11111 uBxAx +=�                                    (3) 

                          211221122 ),(),( uuxBxuxAx +=� ,            (4) 

where in
ix ℜ∈  and im

iu ℜ∈ , 2,1=∀i ; 1A  and 1B  are 
matrices with suitable dimensions; ),( 112 uxA  and ),( 112 uxB  
are matrix-valued analytic functions [11]. Throughout this 
paper, let ˆ ˆn m×ℜ  denote the set of all ˆ ˆn m×  matrices and rD  
denote the diagonal matrix with diagonal elements taken 
from the elements of a vector r in order.  

    Let us recall and extend some notations from [11]. Let 
ˆ ˆ: n n mA ×ℜ →ℜ  be a matrix-valued analytic function. 

Definition 1. For any ˆ1 i n≤ ≤  and ˆ1 j m≤ ≤ , let A
ijp denote 

the lowest nonzero homogeneous polynomial in the Taylor 
expansion of the ),( ji entry of A at the origin and A

ijd  

denote the degree of A
ijp . When 0≡A

ijp  (i.e., the ),( ji entry 

of A  is the zero function), let ∞=A
ijd . Moreover, denote 

ˆ1
minA A

i ijj m
d d

≤ ≤
=�  and ˆ1 2( , , , )A A A A T

nd d d d= � � �" .  

Definition 2. Let ˆ ˆ( , ) n mr s ∈ℜ ×ℜ be any integer-valued 

vector satisfying jidsr A
ijji ∀∀+≤ ,, . Let rsA

ijp  be defined as 
follows: 

                       






+<

+=
=

.,0

,,
A

ijji

A
ijji

A
ijrsA

ij
dsrif

dsrifp
p                    (5) 

 The definitions of dilation operation, homogeneous 
norm and global ρ -exponential stability are recalled as 
follows [11]-[12]. 
Definition 3. Let ˆ

ˆ1 2( , , , )T n
nv v v v= ∈ℜ" . A dilation 

ˆ ˆ:r n n
ζ∆ ℜ →ℜ  on n̂ℜ  is defined by assigning n̂  real 

numbers ˆ1 2( , , , )T
nr r r r= "  and a nonzero real number ζ  

such that ˆ1 2
ˆ1 2( , , , )nrr rr
nv v v vζ ζ ζ ζ∆ = " . Similarly, let 

ˆ ˆ( ) n m
ijA a ×= ∈ℜ . A dilation ˆ ˆ ˆ ˆ:rs n m n m

ζ
× ×∆ ℜ →ℜ  on ˆ ˆn m×ℜ  is 

defined by assigning ˆ ˆn m+  real numbers ˆ1 2( , , , )T
nr r r r= "  

and ˆ1 2( , , , )T
ms s s s= " , and a nonzero real number ζ  such 

that )( ij
srrs aA ji −=∆ ζζ .                                     

Definition 4. A positive definite continuous function 
ˆ: nρ ℜ →ℜ  is called a homogeneous norm w. r. t. the 

dilation r
ζ∆  if ˆ( ) ( ), 0,r nx x xζρ ζρ ζ∆ = ∀ ≠ ∀ ∈ℜ .                                    

Definition 5. The equilibrium point 0=x  is globally ρ -
exponentially stable if there exist a homogeneous norm ρ  
and two positive constants 1σ  and 2σ such that for any 
solution x , the following inequality holds: 
                     .,))(())(( 0

)(
01

02 ttetxtx tt ≥∀≤ −−σρσρ       (6)  

To state the main result of [11], we need the following 
hypotheses. 

(H1) There exists an integer-valued vector 2 2( , ) n mr s ∈ℜ ×ℜ  
satisfying the following inequalities 

2A
ijji drr +≤  and .~,,,2~~ jjidsr B

jiji ∀∀∀+≤                (7) 

(H2) For some positive constant k  and some vector 
11),( mnba ℜ×ℜ∈  satisfying 0)( 11 =++ bBaAkI , the pair 

),( 11 BA  and )),(),,(( 22 baBbaA  are both controllable where 
2

2 ( )r rA
r i jA kD p= +  and 2

2 ( )rsB
i jB p= � .  

The following result was proven in [11]. 

Proposition 1. Consider a system of the form (3)-(4). 
Suppose that (H1)-(H2) hold for some positive constant k  
and some integer-valued vector 2 2( , ) n mr s ∈ℜ ×ℜ . Let  

N
1 2

1

ˆ (1, ,1, ) n nT T

n

r r += ∈ℜ…  and 11
1

nmK ×ℜ∈  and 22
2

nmK ×ℜ∈  

be two matrices such that the matrices 111 KBAkI ++  and 

222 ),(),( KbaBbaA +  are both stable. Then, the origin of the 
closed-loop system is globally ρ -exponentially stable when 
the controller ),( 21 uu  is chosen as follows 

,)( 1111 xKaKbu +−= λ  





=
≠∆

=
,0))(),((,0
0))(),((,

0201

020122
2 txtxif

txtxifxK
u

sr
λ                  (8) 

for any 00 ≥t  where ))(),(( 0201
)( 0 txtxe ttk ρλ −−=  with ρ  

being any homogeneous norm w.r.t. dilation r̂
ζ∆ .               

 

III.  CONTROLLABILITY CONDITION  AND ρ -EXPONENTIAL 

STABILIZABILITY 

A. A Simplified Controllability Condition 

In this subsection, Caplygin systems will be 
transformed into the form of (3)-(4) under a mild 
assumption. Simultaneously, it will be shown that (H1) 
holds by a suitable choice of dilation vector ),( sr . To verify 
(H2), a simplified controllability condition will be proposed. 
Then, the global ρ -exponential stabilizability can be 
guaranteed based on Proposition 1.  

First, consider the following assumption.  

(C1) (Linear in partial state variables). Suppose the state 
vector 1q  and the input vector u  can be decomposed as 

TTT zzq ][ 211 = and TTT uuu ][ 21=  so that the constraint 
function J  can be described as 

)]()([),( 12211121
2 zJzzJzzJ jj

n
j∑ ==  where 1

1
nz ℜ∈ , 

2

2
),,,( 222212

nT
nzzzz ℜ∈= " , 21

21 , nn uu ℜ∈ℜ∈ , 

1 2n n n+ = , and 11:1
nmn

jJ ×ℜ→ℜ , 21 nj ≤≤∀ , and 
21:2

nmnJ ×ℜ→ℜ  being matrix-valued analytic functions. 
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For the compactness, we define a matrix-valued 
function 211:1

nmnnJ ×ℜ→ℜ×ℜ as follows 

21 1 3 11 1 3 12 1 3 1 1 3( , ) [ ( ) ( ) ( ) ] ,nJ z z J z z J z z J z z= "         (9) 
1 1

1 3, .n nz z∀ ∈ℜ ∀ ∈ℜ  By the definition, 1J  is linear in 3z  
and satisfies the following equation: 

212211111 )(),()( zzJzzzJqqJ ��� += .                      (10) 
By the definitions of 1 ,jJ 1J  and 2J , it can be seen that  

1 2

21
min ( 1, )jJ JJ

i i ij n
d d d

≤ ≤
= +� � � , 11

21
min 1jJJ

i ij n
d d

≤ ≤
= +� � , 1 i m∀ ≤ ≤ .(11) 

Let 1 2min( , )J J
i i id d d= � � , mi ≤≤∀1 .   Then, we have  

                     1 2( , , , ) :J T
md d d d d= ="                            (12) 

where Jd  is the “degree vector” of J defined as in 
Definition 1.  

Let 1][ 111
nTTT zzx ℜ∈= �  and 2][ 2222

nTTTT zzqx ℜ∈= �  
with 11 2nn =  and 22 2nmn += . Then, (1)-(2) can be 
rewritten into the form of (3)-(4) where the matrices 1A  and 

1B , and the matrix-valued functions 2A  and 2B  can be 
described as follows: 









=

00
0

1
I

A  , 







=

I
B

0
1 , 















 −−
=

000
00

0 21

2 I
JJ

A  and 















=

I
B 0

0

2
.                                                                  

(13) 
It is easy to see that ),( 11 BA  is in the controllable canonical 
form (CCF) [5]. By the direct computation, it can be 
checked that the “degree matrices” of 2A  and 2B  can be 
described as follows 

          



















∞∞∞
∞∞

∞

= 0

)()(

)(

2

2

1

1

2

J
ij

J
ij

A
ij

dd

d and .
0

)( 2~
















∞
∞

=B
jid        (14) 

Choose the dilation vector ( , )r s  as follows 

    N
2

1 2
2

( 1, 1, , 1,1, ,1)T
m

n

r d d d= + + +" " , 
2

(1,1, ,1) .T

n

s = "��	�
     (15) 

Let 2nm
dE ×ℜ∈  be a matrix defined as 

2

[ ]d
n

E d d d= "��	�
 . 

Then, the following inequalities hold: 

),(

00

00)( 2A
ij

T
d

T
d

dd

ji drr ≤



















Ε−

Ε−

ΕΕ∗

=−  
2( ) 0 ( ),

0

d
B

i j ij

E
r s d

 
 

− = ≤ 
 
 

� �
        (16) 

by the definition of d . Hypothesis (H1) follows from the 
inequalities above.  
    In the following, let us compute the matrix-valued 
functions 2A  and 2B .  To this end, define two matrix-
valued functions as follows: 

1

1

0
1 1 1 1( ) ( ( , ))d J

ijP z p z z=  and 2

2

0
2 1 1( ) ( ( ))d J

ijP z p z=        (17) 

for all 1z  in 1nℜ where  ˆ0
ˆ

jd J

i jp  , ˆ 1,2,j = is the function 

defined in (5) with r d=  and 0s = . Notice that for any 
positive constant k , every solutions 112),( nnba ℜ×ℜ∈  
satisfying the equation 0)( 11 =++ bBaAkI  can be 

described as TTT ka ],[ ηη −=  and η2kb =  for all 1nℜ∈η  
in view of the form of 1A  and 1B  given in (13). By (9), it 
can be seen that 

1 1 1

1 1

0 0
1( ( , )) ( ( , )) ( ), .d J d J n

ij ijp k k p kPη η η η η η− = − = − ∀ ∈ℜ  (18) 

Notice that the functions 2rrA
ijp  and 2rsB

i jp �  are nonzero 

functions and equal to 2A
ijp  and 2B

i jp � , respectively, only if 
inequalities (16) became the equalities. Thus, it can be 
directly checked that 

 [ ]2
2 ( ) 0 0 TrsB

i jB p I= =� .                     (19) 
In view of (17)-(18),  we have 

2

1 2

1 2

0 0
1 2

( ( , ))

0 ( ( , ) ) ( ( )) 0 ( ) ( )
0 0 0 0
0 0 0 0 0 0

rrA
ij

d J d J
ij ij

p k

p k p kP P
I I

η η

η η η η η

− =

 − − −  −
   

=   
   

   

 (20) 

for all 0>k  and all 1nℜ∈η .  Thus,  

2

1 2

2

( ) ( )
( ( , )) 0 0

0 0 0

d
rrA

r ij

k D kP P
A kD p k kI I

η η
η η

 −
 

= + − = +  
 
 

 . (21) 

To check the controllability of the pair 2 2( , )A B , the 
following condition is necessary. 

(C2) (Reduced order controllability). Suppose 

0( , ( ))dD P η  is a controllable pair for some 1
0

nℜ∈η  where  

1 2.dP P D P= −                                   (22) 
The following lemma is useful. Its proof is not difficult 

and omitted here. 

Lemma 1. Consider three matrices nmA ×ℜ∈ , pmB ×ℜ∈  
and nnC ×ℜ∈ . Suppose the matrix C  is invertible and 

mBrank =)( . Then, the following equality holds: 

                      .
0

nm
C

BA
rank +=








                                    

Under condition (C2), the controllability of 2 2( , )A B  
can be guaranteed as follows. 

Lemma 2. Suppose (C2) holds. Then, 2 0 2( ( ), )A Bη  is 

controllable where [ ]TIB 002 =  and 2A  is the matrix-
valued function defined in (21).   
Proof. Since the elementary column operations do not affect 
the rank of a matrix, the following equality relating to the 
controllability matrix can be derived  

0 0 2 0 1
2 2 2 2 2 2 2 2 3 4 3[ , , ( ) , , ( ) ] [ , , , , ],m

mrank B A B A B A B rank B B B B+
+=" "  

where  0
2 2 0( )A A η= , 

2 0
0

3 2 2 2

( )

0

P
B A B kB I

η −
 

= − =  
 
 

,
0

0
4 2 3 3

( )
(1/ )( ) 0

0

P
B k A B kB

η 
 

= − =  
 
 

 and 

0
0

4 2 3 3

( )
(1/ )( ) 0 , 1 1

0

i
d

i i i

D P
B k A B kB i m

η

+ + +

 
 

= − = ∀ ≤ ≤ − 
 
 

.  
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Since 







0

0
I

I  is invertible and 

1
2 0 0 0 0

2 3 4 3

0 ( ) ( ) ( ) ( )
[ , , , , ] 0 0 0 0 ,

0 0 0 0

m
d d

m

P P D P D P
B B B B I

I

η η η η−

+

 −
 

=  
 
 

"
" "

"

 the controllability of  2 0 2( ( ), )A Bη follows from (C2) and 
Lemma 1. This completes the proof of the lemma.             

The following theorem can be proposed based on the 
previous discussions. 

Theorem 1. Consider a Caplygin system of the form (1)-(2). 
Suppose (C1)-(C2) hold for some 1

0
nℜ∈η . Let d  be the 

vector defined in (12). For any positive constant k , let 
1111][ 12111

nnnnKKK ×× ℜ×ℜ∈=  and 
22222][ 2322212

nnnnmnKKKK ××× ℜ×ℜ×ℜ∈=  be two matrices 
such that  









+ 1211 KkIK
IkI  and  

1 0 2 0

21 22 23

( ) ( )
0 0

dkD kP P
kI I

K K K

η η −
 

+  
 
 

         (23) 

are both stable. Choose the controller ),( 21 uu  as follows 

11211101211
2

1 )( zKzKkKKIku �+++−= λη                      (24) 
and          







=
≠++∆

=
.0))(),(),((,0

,0))(),(),((,)(

020101

0201012232222/121
2 tqtqtqif

tqtqtqifzKzKqKu
d

�
��λ   

                                                                                         (25) 
where ))(),(),(( 020101

)( 0 tqtqtqe ttk �ρλ −−=  with ρ  being any 
homogeneous norm w.r.t. dilation vector 

1 2
2

(1,1, ,1, 1, 1, , 1)T
m

n

r d d d= + + +� " "��	�
 . Then, the origin of the 

closed-loop system is globally ρ -exponentially stable.                                      
Proof. Based on previous discussions and Lemma 2, 
hypotheses (H1)-(H2) hold for TTT ka ][ 00 ηη −=  , 0

2ηkb =  
and the dilation vector ( , )r s  defined as in (15). Moreover, 
any homogeneous norm ρ w.r.t. r

ζ∆
�
�  can be written as a 

homogeneous norm ρ̂  w.r.t. r̂
ζ∆  where ),1,,1(ˆ

12

rr
n

	�…=  and 

),][,]([),(ˆ 2212121 qzzzzxx TTTTTT ��ρρ = for all TTT zzx ][ 111 �=  and all 
TTTT zzqx ][ 2222 �= . Notice that the matrices given in (23) are 

equal to 111 KBAkI ++  and 2 2 2A B K+ , respectively. Thus, 
it remains to show that the controllers given in (8) can be 
written into the form (24)-(25) based on Proposition 1. 
Using the fact that TTT ka ],[ 00 ηη −= , 0

2ηkb = , 
TTT zzx ][ 111 �=  and ][ 12111 KKK = , it can be directly 

computed that 
11211101211

2
1111 )()( zKzKkKKIkxKaKbu �+++−=+−= ληλ . 

Thus, the first controller 1u  given in (8) can be written into 

the form of (24). Since TTTT zzqx ][ 2222 �=  and 
][ 2322212 KKKK = , the following equations hold: 

                
2

0 0
2 2 21 22 23 2 21 2 22 2 23 2

2

[ ] ,sr d d

q
K x K K K z K q K z K z

z
λ λ λ

 
 ∆ = ∆ = ∆ + + 
  

�
�

 

according to the definitions of ( , )r s in (15). Let )(21 ijkK = . 
Then, 

1 2

1 2

1 2

2 2 2

11 12 1

0 21 22 2
21

1 2

( )

m

m
j

m

dd d
m

dd d
dd m

ij

dd d
n n n m

k k k

k k k
K k

k k k

λ

λ λ λ

λ λ λ
λ

λ λ λ

−− −

−− −
−

−− −

 
 
 

∆ = =  
 
 
 

"

"
# " #

"

. 

In view of the equation above, it can be seen that 
0

21 2 21 1/ 2.d dK q K qλ λ∆ = ∆  Hence, we have 

.3232222/12122 zKzKqKxK dsr ++∆=∆ λλ  Particularly, 2u  can 
be written into the form of (25) and the theorem follows 
from Proposition 1.                                                            

B. Degree Criterion and Examples 

In this subsection, Theorem 1 will be used to study an 
important subclass of Caplygin systems. A further 
simplified criterion related the degree of constrained 
function will be proposed. Two examples will be given and 
discussed.  

In the following, let us assume that (C1) holds with 
12 =n . Under this assumption, a simple criterion can be 

proposed to check (C2) as follows. 

Proposition 2. Consider a Caplygin system of the form (1)-
(2). Suppose (C1) holds with 12 =n . Let d  be the vector 
defined in (12) and 

1
1 2( ) ( ( ), ( ), , ( )) , nT

mP a a aη η η η η= ∀ ∈ℜ" , be the function 
defined in (22). Then, condition (C2) is true if and only if 
the following conditions hold. 
(a) There exists a vector 1

0
nℜ∈η  so that    

miai ≤≤∀≠ 1,0)( 0η . 

(b)  jidd ji ≠∀≠ , . 

In addition that 2[0 ]J J=  (i.e., 011 ≡J ), (C2) is equivalent 
to the following conditions. 
(c) There exists a vector 1

0
nℜ∈η  so that  

2
1 0( ) 0J

ip η ≠ , 1 i m∀ ≤ ≤ . 
(d) 2 , 1 ,J

id i m∀ ≤ ≤� are all distinct positive integers. 
Proof. The determinant of the controllability matrix of 

0( , ( ))dD P η  can be explicitly computed as follows: 
1
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by using the property of Vandermode matrix [5]. This 
implies that (C2) holds if and only if conditions (a) and (b) 
hold. In case of ]0[ 2JJ = , we have 1 0J = , 1 0P =  and 

2 , 1J
i id d i m= ∀ ≤ ≤� , by the definition of id . This implies  

                 2 20
2 1 1( ) ( )d J J

i iP p p= =   

and           2 2 2
2 1 11 2 21 1( , , , )J J J T

m mdP D P d p d p d p= − = − − −" .  

Then, (a) is equivalent to (c) and 0≠id .1, mi ≤≤∀  This 
particularly shows that  (a)-(b) is equivalent to (c)-(d) when 

]0[ 2JJ =  . It completes the proof of the proposition.    
In the following, let us consider the set-point problem 

of  a hopping robot as an application. 

Example 1. (Hopping robot). Consider a hopping robot 
system as follows (see Fig. 1) [13]: 

,
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)1(
,

,
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+
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=

=
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                        (26) 

where ),,( θψ l  denote the body angle, leg extension, and leg 
angle of the robot; lm  is the mass of the leg at the foot; ω  
and v  are the velocities of ψ  and l , respectively. Let τ  
and T  denote the torque and the force, respectively. Then, 
we have  

       J/τω =� , ,/ MFv =�                          (27) 
where J  and M  represent the inertial mass and the mass, 
respectively.  

The so-called set-point problem is to find a controller 
),( Fτ  so that every trajectory ),,,,( vl ωθψ  of system (26)-

(27) converges to a specific target 
),,,,( vl ωθψ = )0,0,,,( 000 θψ l  for some non-negative 

constant 0l . Define the error and control variables as 
follows: 
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and .],[,/,/ 2121
TuuuJuMFu === τ                             (29) 

Since 0))(),(),((lim 121 =
∞→

tqtqtq
t

�  is equivalent to 

))(),(),(),(),((lim tvtttlt
t

ωθψ
∞←

= )0,0,,,( 000 θψ l , the set-point 

problem is reduced to a stability problem. Moreover, the 
error system can be transformed into a Caplygin system of 
the form (1)-(2) with 1=m . The constraint function can be 
described as [ ])(0 12 zJJ = , with  
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Then, (C1) holds with 1 2 1n n= = and 11 0J = . Notice that 
2 2 2

11 1 0 02 ( 1) /[1 ( 1) ]J
l lp z m l m l= + + +  and thus 2

1 1Jd =� . Then, 
conditions (c)-(d) hold for any 00 ≠η and the origin of the 
error system is globally ρ -exponentially stabilizable 
according to Theorem 1 and Proposition 2. That is to say 
that the set-point control problem can be solved via the 
controller (24)-(25) by employing Theorem 1.                    

In the following, let us discuss the restriction of (C2) 
by a practical example.  

Example 2. (Rolling wheel). Consider a rolling wheel 
system as follows [3]: 
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  (30) 

where iy  is state variable, 61 ≤≤∀ i , and jv  is control 
variable, 21 ≤≤∀ j . Consider the following coordinate 
transformation: 
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Then, (30) can be transformed into a Caplygin system of the 
form (1)-(2) with 2=m  and the constraint function  
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J .                          (32) 

Thus, (C1) holds with 1 2 1,n n= =  011 ≡J  and 
TzzJ )]sin(),[cos( 112 −= . To verify (C2), it is necessary to 

check conditions (c)-(d) in Proposition 2. However,  
condition (d) in Proposition 2 does not hold since 2

11 1Jp =  

and 2
1 0Jd =� . This indicates the restriction of (C2). In next 

subsection, an interesting coordinate transformation will be 
proposed to enhance (C2) so that Theorem 1 can be applied 
to this system. 

C. Second Form of Caplygin Systems 

In this subsection, an alternative representation of 
Caplygin systems will be given and called as the second 
form. It will be useful in the study of practical systems.  

In the remainder of this paper, we always assume that 
(C1) holds. Thus, the constraints function J  can be written 
as )]()([),( 12211121

2 zJzzJzzJ jj
n
j∑ == . For each 

21 nj ≤≤ , let jJ1
~  be defined as follows: 

                      ,/~
1211 zJJJ jjj ∂∂−=                                 (33) 

where jJ 2  is j-th column vector of 2J . Consider the 
following coordinate transformation: 
                       .)(~

21222 zzJqq +=                                    (34) 
Then, we have  
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where  
]0)(~[),(~

211121
2

jj
n
j zzJzzJ ∑ == .                   (35) 

In new coordinate )~,,( 211 qqq � , the transformed system 
is still a Caplygin system in the form (1)-(2). For the 
convenience, it can be called as the second form of 
Caplygin systems. Moreover, (C1) also holds with 2 0J = by 
(35). Then, Theorem 1 can be used to study the exponential 
stabilizability for new system. We summarize the previous 
discussions into the following proposition. 
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Proposition 3. Consider a Caplygin system of the form (1)-
(2). Suppose (C1) holds. Using the new coordinate 

)~,,( 211 qqq �  with 2
~q  being defined as (34), the transformed 

system is also a Caplygin system of the form (1)-(2) and 
(C1) still holds with the new constraint function described 
as (33) and (35).                                                                   

    In Example 2, it was shown that (C2) does not hold for 
rolling wheel system under some coordinate transformation. 
In the following, let us show that (C2) becomes true by 
employing the new transformation.  

Example 3. (Rolling wheel systems: revisited). Let us try 
to verify (C2) for the second form of Caplygin system 
described in Example 2.  According to (32)-(33), the new 
constrain function ]0~[~

211zJJ =  where 
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In this case, 2 0J =  and 
.,,])cos(,)[sin()(~),( 3131313111311 ℜ∈∀ℜ∈∀== zzzzzzzzJzzJ T  

Thus, 2 0P = , TTJJ zzzpp ],[],[ 3312111
11 =  and 

1 1
1 2 1 2( , ) ( , ) (2,1) .J JT T Td d d d d= = =� �  Then, condition (b) in 

Proposition 2 holds. Moreover,  

1 1

1 1

0 0
1 2 1 11 21
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11 21
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[ ( , ), ( , )] [ , ] , .

d J d J T
d

J J T T

P P D P P p p

p p

η η η η η η η η

η η η η η η η

= − = =

= = ∀ ∈ℜ
Therefore, (a) in Proposition 2 also holds for any 00 ≠η . 
Thus, the origin is globally ρ -exponentially stabilizable for 
the new system by Theorem 1 and Proposition 2.               

Remark 1. At glance over (C2), it is like a controllability 
condition and seems invariant under various coordinate 
transformations. Unfortunately, it is not true in general as it 
was seen in the example of rolling wheel system. That is to 
say that (C2) depends on the used coordinate 
transformations!! This phenomenon points out a fact that a 
suitable representation form is important for the exponential 
stabilization of nonholonomic systems as reflected in 
present literature.                                                                  

 

 VI.  CONCLUSIONS 

The global ρ -exponential stabilizability of the origin 
for nonholonomic Caplygin systems was guaranteed based 
on a simplified controllability condition. The proposed 
criteria are easily checked and simpler than the previous 
result given in [11]. Furthermore, an interesting coordinate 
transformation (second form) of Caplygin systems was also 
given so that the proposed criterion can be applied to 
various situations. Several illustrated examples were given 
to validate the effectiveness of our approaches. The future 
work may toward to deduce a similar result for a more 
general class of nonholonomic systems [16]. On the other 
hand, the robustness for the proposed controllers is also 
interesting and deserves more discussions in view of the 
recent result given in [7]. 
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Fig. 1: An example of Caplygin system: hopping robot.  
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