
What Are the Ants Doing? Vision-Based Tracking and
Reconstruction of Control Programs

M. Egerstedt⋆, T. Balch†, F. Dellaert†, F. Delmotte⋆, and Z. Khan†
⋆{magnus,florent}@ece.gatech.edu †{tucker,dellaert,zkhan}@cc.gatech.edu

School of Electrical and Computer Engineering The BORG Lab – College of Computing
Georgia Institute of Technology Georgia Institute of Technology

Atlanta, GA 30332, U.S.A. Atlanta, GA 30332, U.S.A.

Abstract— In this paper, we study the problem of going
from a real-world, multi-agent system to the generation of
control programs in an automatic fashion. In particular,
a computer vision system is presented, capable of simul-
taneously tracking multiple agents, such as social insects.
Moreover, the data obtained from this system is fed into a
mode-reconstruction module that generates low-complexity
control programs, i.e. strings of symbolic descriptions of
control-interrupt pairs, consistent with the empirical data.
The result is a mechanism for going from the real system to
an executable implementation that can be used for controlling
multiple mobile robots.

I. INTRODUCTION

Control and coordination of multiple mobile robots is a
problem that has received a significant amount of attention
during the last decade. Different types of solution strategies
have emerged, either based on purely theoretical consider-
ations [4], [12], [13], [26], or by drawing inspiration from
biologically available systems, such as ants, fish, birds, or
slime mold, just to name a few [1], [21], [23].

In this paper we take the biologically inspired point-of-
view, but attack the problem from a control-theoretic rather
than biological vantage point. Hence, we will not assume
any underlying description of what the ants are doing, but
rather let the control programs be generated directly from
the data. This has the obvious advantage that such a system
would be transferable between different biological systems
and no extensive, initial biological research investment is
needed. Our proposed solution will rely on two distinctly
different technologies, namely vision-based tracking and
automatic control generation. We will thus, in the first part
of this paper (Section 2), develop novel computer vision
algorithms and demonstrate their usefulness to the problem
of tracking and examining encounter rates between ants in
a colony of Aphaenogaster cockerelli.

On the control side, we continue the development begun
in [3], [10], where the programs are viewed as having an
information theoretic content. In other words, they can be
coded more or less effectively. Within this context, one can
ask questions concerning minimum complexity programs,
given a particular control task. But, in order to effectively
code symbols, drawn from a finite alphabet, one must be

The reserach of Magnus Egerstedt and Florent Delmotte was supported
under NSF EHS Award 0207411 and NSF ECS CAREER Award 0237971.
The reserach of Tucker Balch, Frank Dellaert and Zia Khan was supported
under NSF ITR Award 0219850.

able to establish a probability distribution over the alphabet.
If such a distribution is available then Shannon’s celebrated
source coding theorem tells us that the minimal expected
code length l satisfies H(M) ≤ l ≤ H(M)+1, where M
is the set of possible modes, and where H is the entropy.
The main problem that we will study in the second part of
this paper (Section 3) is thus how to produce an empirical
probability distribution over the set of modes, given a string
of input-output data, which is equivalent to establishing
what modes generated the data string in the first place. We
will conclude the paper in Section 4 by applying the control
generation procedure to the data obtained in the first part
of the paper.

II. TRACKING MULTIPLE TARGETS

We let the experimental data be gathered by video cam-
era. Hence, our system must therefore identify and track
multiple interacting targets (ants) in sequences of images.
The objective is to obtain a record of the trajectories of
the animals over time, and to maintain correct, unique
identification of each target throughout.

The classical multi-target tracking literature approaches
the problem by performing a target detection step followed
by a track association step in each video image (frame).
The track association step solves the problem of convert-
ing the detected positions of animals in each image into
multiple individual trajectories. The multiple hypothesis
tracker and the joint probabilistic data association filter
(JPDAF) [6], [15] are the most influential algorithms in
this class. These multi-target tracking algorithms have been
used extensively. Some examples are the use of nearest
neighbor tracking in [11], the multiple hypothesis tracker
in [9], and the JPDAF in [22]. Recently, a particle filter
version of the JPDAF has been proposed in [25].

The tracker that we will use is based on a novel
multi-target particle-filter tracker based on Markov chain
Monte Carlo sampling. (See [18], [19] for details.) The
general operation of the tracker is illustrated in Figure 1.
Each particle represents one hypothesis regarding a target’s
location and orientation. The hypothesis is a rectangular
region approximately the same size as the ant targets.
In the example, each target is tracked by 5 particles. In
actual experiments we typically use the equivalent of one
thousand particles per target.

Proceedings of the 2005 IEEE
International Conference on Robotics and Automation
Barcelona, Spain, April 2005

0-7803-8914-X/05/$20.00 ©2005 IEEE. 4182

(a)

(b)

Fig. 1. Particle filter tracking. (a) A set of particles (white rectangles), are scored according to how well the underlying pixels match the appearance
model (left). Particles are resampled (middle) according to the normalized weights determined in the previous step. Finally, the estimated location of
the target is computed as the mean of the resampled particles. (b) Motion model: The previous image and particles (left). A new image frame is loaded
(center). Each particle is advanced according to a stochastic motion model (right). The samples are now ready to be scored and resampled as above.

Fig. 2. The appearance model used in tracking ants. This is an actual
image drawn from the video data.

We assume that we start with particles distributed around
the target to be tracked. After initialization, the principal
steps in the tracking algorithm include:

1) Score: each particle is scored according to how well
the underlying pixels match an appearance model.

2) Resample: the particles are “resampled” according to
their score. This operation results in the same number
of particles, but very likely particles are duplicated
while unlikely ones are dropped.

3) Average: the location and orientation of the target
is estimated by computing the mean of all the as-
sociated particles. This is the estimate reported by
the algorithm as the pose of the target in the current
video frame.

4) Apply motion model: each particle is stochastically
repositioned according to a model of the target’s
motion.

5) Load new image: read the next image in the se-
quence.

6) Go to Step 1.

The algorithm just described is suitable for tracking an
individual ant, but it would likely fail in the presence of
many targets. Several additional extensions are necessary
for multi-target tracking: First, each particle is extended
to include the poses of all the targets (i.e. they are joint
particles). Second, in the “scoring” phase of the algorithm,
particles are penalized if they represent hypotheses that we
know are unlikely because they violate known constraints
on ant movement (e.g. ants seldomly walk on top of each

Fig. 3. Blocking. Particles that overlap the location of other tracked
targets are penalized.

Fig. 4. Joint particles. When tracking multiple animals, we use a joint
particle filter where each particle describes the pose of all tracked animals.
In this figure there are two particles – one indicated with white lines, the
other with black lines.

other). These extensions are reported in detail in [18],
[19], and after trajectory logs have been gathered they are
checked against the original video. In general, our tracker
has a very low error rate (about one of 5000 video frames
contains a tracking error).

The next step in our automated process is to examine
the trajectory logs to find encounters. Typically, ant be-
haviorists describe an encounter as occurring when two
ants approach each other, then experience brief or extended
antennal contact. Our computer vision algorithms, however,
cannot resolve the motions of ant antennae at the scale
we observe the animals. If we zoomed in so close that

4183

Fig. 5. Sensory field is formed by simple geometric inputs to our
modeling software.

we could track their antennae, we would only be able to
observe a small portion of the arena at once. So we make
the simplifying assumption that interactions occur when the
sensory fields of two ants overlap.

In order to do this we approximate an ant’s antennal and
body sensory fields with a polygon and circle, respectively
(Figure 5). An encounter is inferred when one of these
regions for one ant overlaps a sensory region of another
ant. Our model is adapted from the model introduced for
army ant simulation studies, introduced in [8].

The following are details of our sensory model for
Aphaenogaster cockerelli. We estimate the front of the head
to be a point half a body length away from the center point
along the centerline. From the head, the antennae project to
the left and right at 45 degrees. We project an additional
point, one antenna length away, directly along the ant’s
centerline in front of the head. The inferred “antennal field
of view” is a polygon enclosed by the center point and
these other three points. We assume a body length of 1cm
and antenna length of 0.6cm. We estimate an ant’s “body”
sensory field to include a circle centered on the ant with a
radius of 0.5cm.

We assume that any object within the head sensory field
will be detected and touched by the animal’s antennae, and
any object within the range of the body can be detected by
sense organs on the legs or body of the ant. By considering
separate sensory fields for the body and the antennae,
we are able to classify each encounter into one of four
different types: head-to-head, head-to-body, body-to-body,
and body-to-head. A head-to-body encounter is one where
the subject ant’s head contacts the body of another. In such
a case the other ant is simultaneously experiencing a body-
to-head encounter.

To determine when an interaction occurs, we look
for overlaps between the polygonal and circular regions
described above. Computationally, determining an over-
lap consists of checking for intersections between line
segments and circles. To gain efficiency we do not test
for interactions between ants that are too far away for
their fields to overlap. Furthermore, we require that two
ants’ orientations must differ by at least 5 degrees before
an interaction can count as “head-to-head.” Without this

constraint, we noticed many spurious “encounters” logged
by the system for ants that were simply standing next to
one another without actually interacting.

III. CONTROL PROGRAM GENERATION

The idea now is to use the data obtained in the previous
section in order to generate strings of control laws that are
consistent with the empirical data. Such strings correspond
to abstract descriptions of multi-modal control programs,
and we say that such strings constitute words in a Motion
Description Language (MDL) [7], [14], [17], [20].

Each string in a MDL corresponds to a control program
that can be operated on by a given controlled dynamical
system. Slightly different versions of MDLs have been
proposed, but they all share the common feature that the
individual atoms, concatenated together to form the control
program, can be characterized by control-interrupt pairs. In
other words, given a dynamical system

ẋ = f(x, u), x ∈ ℜN , u ∈ U
y = h(x), y ∈ Y,

(1)

together with a control program (k1, ξ1), . . . , (kz , ξz),
where ki : Y → U and ξi : Y → {0, 1}, the
system operates on this program as ẋ = f(x, k1(h(x)))
until ξ1(h(x)) = 1. At this point the next pair is read and
ẋ = f(x, k2(h(x))) until ξ2(h(x)) = 1, and so on. (Note
that the interrupts can also be time-triggered, which can be
incorporated by a simple augmentation of the state space.)

If we assume that the input and output spaces (U and
Y respectively) in Equation (1) are finite, which can be
justified by the fact that all physical sensors and actuators
have a finite range and resolution, the set of all possible
modes Σtotal = UY × {0, 1}Y is finite as well. We can
moreover adopt the point of view that a data point is
measured only when the output or input change values,
i.e. when a new output or input value is encountered.
This corresponds to a so called Lebesgue sampling, in the
sense of [2]. Under this sampling policy, we can define a
mapping δ : ℜN ×U → ℜN as xp+1 = δ(xp, k(h(xp))),
given the control law k : Y → U , with a new time
update occurring whenever a new output or input value
is encountered. For such a system, given the input string
(k1, ξ1), . . . , (kz , ξz) ∈ Σ∗ where Σ ⊆ Σtotal, and Σ⋆

denotes the set of all finite length words over Σ (see for
example [16]), then the evolution is given by

{

x(q + 1) = δ(x(q), kl(q)(y(q))), y(q) = h(x(q))
l(q + 1) = l(q) + ξl(q)(y(q)).

(2)
Given a mode sequence of control-interrupt pairs σ ∈

Σ⋆, we are interested in how many bits we need in order to
specify σ. If no probability distribution over Σ is available,
this number is given by the description length, as defined
in [24]:

D(σ, Σ) = |σ| log2(card(Σ)),

where |σ| denotes the length of σ, i.e. the total number of
modes in the string. This measure gives us the number of
bits required for describing the sequence in the ”worst”

4184

case, i.e. when all the modes in Σ are equally likely.
However, if we can establish a probability distribution p
over Σ, the use of optimal codes can, in light of Equation
(I), reduce the number of bits needed, which leads us to
the following definition:
Definition: (Specification Complexity) Given a finite al-
phabet Σ and a probability distribution p over Σ. We say
that a word σ ∈ Σ∗ has specification complexity

S(σ, Σ) = |σ|H(Σ),

where H is the entropy of the distribution.
Now, consider the problem of establishing a probability

distribution over Σ ⊆ UY × {0, 1}Y by recovering modes
(and hence also empirical probability distributions) from
empirical data. For example, supposing that the mode
string σ = σ1σ2σ1σ3 was obtained, then we can let Σ =
{σ1, σ2, σ3}, and the corresponding probabilities become
p(σ1) = 1/2, p(σ2) = 1/4, p(σ3) = 1/4. In such a case
where we let Σ be built up entirely from the modes in the
sequence σ, the empirical specification complexity depends
solely on σ:

Se(σ) = |σ|He(σ) = −

M(σ)
∑

i=1

λi(σ) log2

λi(σ)

|σ|
, (3)

where M(σ) is the number of distinct modes in σ, λi(σ)
is the number of occurrences of mode σi in σ, and where
we use superscript e to stress the fact that the probability
distribution is obtained from empirical data.

Based on these initial considerations, the main problem,
from which this work draws its motivation, is as follows:
Problem: (Minimum Specification Complexity) Given an
input-output string

S = (y(1), u(1)), (y(2), u(2)), . . . , (y(n), u(n)) ∈ (Y ×U)n,

find the minimum specification complexity mode string σ ∈
Σ∗

total that is consistent with the data. In other words, find
σ that solves

P(Σtotal,y,u) :























minσ∈Σ∗

total
Se(σ)

subject to ∀q ∈ {1, . . . , n}






σl(q) = (kl(q), ξl(q)) ∈ Σtotal

kl(q)(y(q)) = u(q)
ξl(q)(y(q)) = 0 ⇒ l(q + 1) = l(q),

where the last two constraints ensure consistency of σ
with the data S, and where y = (y(1), . . . , y(n)), u =
(u(1), . . . , u(n)) give the empirical data string.

Note that this is slightly different than the formulation in
Equation (2) since we now use σl(q) to denote a particular
member in UY ×{0, 1}Y instead of the l(q)-th element in
σ. Unfortunately, this problem turns out to be very hard to
address directly. However, the easily established property

0 ≤ He(σ) ≤ log2(M(σ)), ∀σ ∈ Σ⋆
total

allows us to focus our efforts on a more tractable problem.
Here, the last inequality is reached when all the M(σ)
distinct modes of σ are equally likely.

As a consequence, we have Se(σ) ≤ |σ| log2(M(σ))
and thus it seems like a worth-while endeavor, if we want
to find low-complexity mode sequences, to try to minimize
either the length of the mode sequence |σ| or the number
of distinct modes M(σ):
Problem: (Minimum Number of Modes) Given an input-
output string

S = (y(1), u(1)), (y(2), u(2)), . . . , (y(n), u(n)) ∈ (Y ×U)n,

find σ that solves

P1(Σtotal,y,u) :























minσ∈Σ∗

total
|σ|

subject to ∀q ∈ {1, . . . , n}






σl(q) = (kl(q), ξl(q)) ∈ Σtotal

kl(q)(y(q)) = u(q)
ξl(q)(y(q)) = 0 ⇒ l(q + 1) = l(q).

Problem: (Minimum Distinct Modes) Given an input-
output string

S = (y(1), u(1)), (y(2), u(2)), . . . , (y(n), u(n)) ∈ (Y ×U)n,

find σ that solves

P2(Σtotal,y,u) :























minσ∈Σ∗

total
M(σ)

subject to ∀q ∈ {1, . . . , n}






σl(q) = (kl(q), ξl(q)) ∈ Σtotal

kl(q)(y(q)) = u(q)
ξl(q)(y(q)) = 0 ⇒ l(q + 1) = l(q).

IV. WHAT ARE THE ANTS DOING?

Both the Minimum Number of Modes Problem and the
Minimum Distinct Modes Problem have been solved [3],
[10] and the first solution relies on dynamic programming,
while the second solution relies on the initial construction
of mode sequences where the interrupts always trigger.
These sequences are then modified in such a way as
to be maximally permissive in terms of their interrupts,
while maintaining consistency with the data. Due to space
limitations, we do not give these solutions explicitly, and
the reader is referred to [3], [10] for the technical details.
Instead we apply these methods to the problem of con-
structing mode sequences from the ant data, and in particu-
lar we consider an example where ten ants (Aphaenogaster
cockerelli) are placed in a tank with a camera mounted
on top, as seen in Figure 6. A 52 second movie is shot
from which the Cartesian coordinates, x and y, and the
orientation, θ, of every ant is calculated every 33ms using
the previously discussed vision-based tracking software.

From this experimental data, an input-output string is
constructed for each ant as follows: At each sample time τ ,
the input u(τ) is given by (u1(τ), u2(τ)) where u1(τ) is
the quantized angular velocity and u2(τ) is the quantized
translational velocity of the ant at time τ . Moreover, the
output y(τ) is given by (y1(τ), y2(τ), y3(τ)) where y1(τ)
is the quantized angle to the closest obstacle, y2(τ) is the
quantized distance to the closest obstacle, and y3(τ) is
the quantized angle to the closest goal. Here, an obstacle
is either a point on the tank wall or an already visited ant

4185

Fig. 6. Ten ants are moving around in a tank. The circle around two
ants means that they are ”docking”, or exchanging information.

within the visual scope of the ant, and a goal is an ant
that has not been visited recently. Figure 7 gives a good
illustration of these notions of visual scope, goals and
obstacles.

Fig. 7. This figure shows the conical visual scope as well as the closest
obstacles (dotted) and goals (dashed) for each individual ant.

In this example, we choose to quantize
u1(τ), u2(τ), y1(τ), y2(τ) and y3(τ) using 8 possible
values for each. Thus u(τ) and y(τ) can respectively
take 64 and 512 different values. For each ant, a mode
sequence σ1 with the shortest length as well as a minimum
distinct mode sequence, σ2, have been computed from the
input-output string of length n = 106. Results including
string length, number of distinct modes, entropy and
specification complexity of these two sequences for each
of the ten ants are given in Table 1. In the table, results
marked with a star are optimal. For σ1, it is the length |σ|
that is minimized and for σ2, it is the number of distinct
modes M(σ).

The minimum length sequence σ1 has been constructed
using a dynamic programming algorithm (see [3]), in which
every element of the mode sequence is a new mode.

TABLE I

ant# |σ| M(σ) He(σ) Se(σ)
σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2

1 21∗ 57 21 5∗ 4.4 1.4⋆ 92 82⋆

2 34∗ 66 34 5∗ 5.1 1.5⋆ 172 99⋆

3 25∗ 68 25 6∗ 4.6 2.0⋆ 116⋆ 139
4 33∗ 64 33 6∗ 5.0 1.8⋆ 166 116⋆

5 20∗ 65 20 6∗ 4.3 1.9⋆ 86⋆ 121
6 26∗ 73 26 6∗ 4.7 1.8⋆ 122⋆ 133
7 33∗ 71 33 6∗ 5.0 2.0⋆ 166 145⋆

8 19∗ 74 19 7∗ 4.2 2.2⋆ 80⋆ 166
9 25∗ 71 25 10∗ 4.6 2.4⋆ 116⋆ 169
10 23∗ 60 23 4∗ 4.5 1.7⋆ 104 102⋆

Consequently, |σ1| = M(σ1). Moreover, the entropy of σ1

is exactly equal to log2(|σ1|) as every mode is used only
once in the sequence. The entropy of σ2 is always smaller
because the number of distinct modes is minimized and the
modes are not equally recurrent in σ2.

Finally, the specification complexity is smaller with σ1

for five of the ten ants, and smaller with σ2 for the five
others. On the average, there is a little advantage for σ2,
with a total of 1152 bits compared to 1220 bits for σ1.
An efficient way to ensure a low complexity coding would
be to estimate both sequences for each ant and pick the
one with lowest specification complexity. In our example,
the total number of bits needed to encode the ten mode
sequences using this coding strategy is 1064 bits.

It should be noted, however, that even though we have
been able to recover mode strings, these strings can not be
directly used as executable control programs without some
modifications. Since the input-output string is generated
from empirical data, measurement errors will undoubtedly
be possible. Moreover, the dynamic system on which the
control program is to be run (e.g. we have implemented
mode strings obtained from the ant data on mobile robots)
may not correspond exactly to the system that generated
the data. Hence, a given input string might not result in
the same output string on the original system and on the
system on which the mode sequence is run.

For example, consider the case where we recovered the
mode (k, ξ) and where the available empirical data only
allows us to define the domain of k and ξ as a proper
subset of the total output space Y , denoted here by Yk or
Yξ . (From the construction of the modes, these two subsets
are always identical, i.e. Yk = Yξ.) But, while executing
this mode, it is conceivable that a measurement y 6∈ Yk is
encountered, at which point some choices must be made.
We here outline some possible ways in which this situation
may be remedied:

• If yp ∈ Yk and ξ(yp) = 0, but the next measurement
yp+1 6∈ Yk, we can replace k(yp+1) with k(yp) ∈ U
as well as let ξ(yp+1) = 0. As would be expected, this
approach sometimes produces undesirable behaviors,
such as robots moving around indefinitely in a circular
motion.

• If yp 6∈ Yk, but yp ∈ Yk̃ for some other mode pair

4186

(k̃, ξ̃) in the recovered mode sequence, we can let
k(yp) be given by the most recurrent input symbol
ũ ∈ U such that k̃(yp) = ũ. This method works
as long as yp belongs to the domain of at least one
mode in the sequence. If this is not the case, additional
choices must be made.

• If yp does not belong to the domain of any of the
modes in the sequence, we can introduce a norm on Y ,
and pick ỹ instead of yp, where ỹ minimizes ‖yp−ỹ‖Y

subject to the constraint that ỹ belongs to the domain
for at least one mode in the sequence.

Note that all of these choices are heuristic in the sense
that there is no fundamental reason for choosing one over
the other. Rather they should be thought of as tools for
going from recovered mode strings to executable control
programs in an automatic fashion.

As for the question ”What are the ants doing?”, the
proposed method provides the answer in terms of mode
strings rather than qualitative descriptions of ant behaviors.
In fact, the driving motivation behind the proposed research
is to come up with executable programs, i.e. strings of
control laws and interrupt conditions that can be operated
on by robotic devices to produce ”ant-like” behaviors rather
than to produce insights into the lives of ants. However,
a closer inspection of the recovered mode strings reveals
that the most frequently occurring modes are qualitatively
generating behaviors like ”go straight slowly if no obstacles
or goals are visible” or ”go fast, turning left/right when
an obstacle is to the right/left and/or the goal is to the
left/right”. These qualitative descriptions indicate that the
hypothesis of labeling recently encountered ants as ”obsta-
cles” and other ants as ”goals” is consistent with the ant
behavior. Moreover, this fact is supported by the results
reported in [5], where the head-to-head encounter rates
were investigated as functions of the ant density.

V. CONCLUSIONS

In this paper, we presented a computer vision based
software system that is able to track multiple social insects
simultaneously, and our software was able to automatically
infer aspects of their behavior. We demonstrated how
the track information could be used to infer interactions
between animals. We used the obtained ant data to generate
low-complexity control programs consistent with the data.
Such programs are built up from strings of control-interrupt
pairs and can be thought of as strings of executable control
code that can be applied in a number of robotic multi-agent
scenarios.

REFERENCES

[1] R.C. Arkin. Behavior Based Robotics. The MIT Press, Cam-
bridge, MA, 1998.

[2] K.J. Åström and B.M. Bernhardsson. Comparison of Riemann
and Lebesgue Sampling for First Order Stochastic Systems. In
IEEE Conference on Decision and Control, pp. 2011–2016, Las
Vegas, NV, Dec. 2002.

[3] A. Austin and M. Egerstedt. Mode Reconstruction for Source
Coding and Multi-Modal Control. Hybrid Systems: Computation
and Control, Springer-Verlag, Prague, The Czech Republic, Apr.
2003.

[4] T. Balch and R.C. Arkin. Behavior-Based Formation Control
for Multi-Robot Teams. IEEE Transactions on Robotics and
Automation, Vol. 14, pp. 926-939, Dec. 1998.

[5] T. Balch, H. Wilde, F. Dellaert, and Z. Khan. Automatic Detection
and Analysis of Encounter Rates in the Desert Ant Aphaenogaster
Cockerelli Using Computer Vision. Technical Report, College of
Computing, Georgia Institute of Technology, Atlanta, GA, July
2004.

[6] Y. Bar-Shalom, T.E. Fortmann, and M. Scheffe. Joint probabilistic
data association for multiple targets in clutter. Proc. Conf. on
Information Sciences and Systems, 1980.

[7] R.W. Brockett. On the Computer Control of Movement. In the
Proceedings of the 1988 IEEE Conference on Robotics and
Automation, pp. 534–540, New York, April 1988.

[8] I. ”Couzin and N. Franks. Self-organized lane formation and
optimized traffic flow in army ants. Proceedings of the Royal
Society of London B, 270:139–146, 2002.

[9] I.J. Cox and J.J. Leonard. Modeling a dynamic environment using
a Bayesian multiple hypothesis approach. AI, Vol. 66, No. 2, pp.
311-344, April 1994.

[10] F. Delmotte and M. Egerstedt. Reconstruction of Low-Complexity
Control Programs from Data. IEEE Conference on Decision and
Control, Atlantis, Bahamas, Dec. 2004.

[11] R. Deriche and O.D. Faugeras. Tracking Line Segments. IVC, Vol.
8, pp. 261-270, 1990.

[12] J. Desai, J. Ostrowski, and V. Kumar. Control of Formations for
Multiple Robots. IEEE Conference on Robotics and Automation,
Leuven, Belgium, May 1998.

[13] M. Egerstedt and X. Hu. Formation Constrained Multi-Agent
Control. IEEE Transactions on Robotics and Automation, Vol.
17, No. 6, pp. 947-951, 2001.

[14] M. Egerstedt. Motion Description Languages for Multi-Modal
Control in Robotics. In Control Problems in Robotics, Springer
Tracts in Advanced Robotics , (A. Bicchi, H. Cristensen and D.
Prattichizzo Eds.), Springer-Verlag, pp. 75-90, Las Vegas, NV,
Dec. 2002.

[15] T.E. Fortmann, Y. Bar-Shalom, and M. Scheffe. Sonar tracking of
multiple targets using joint probabilistic data association. IEEE
Journal of Oceanic Engineering, Vol. 8, July 1983.

[16] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation, 2nd Ed., Addison-
Wesley, New York, 2001.

[17] D. Hristu and S. Andersson. Directed Graphs and Motion Descrip-
tion Languages for Robot Navigation and Control. Proceedings
of the IEEE Conference on Robotics and Automation, May. 2002.

[18] Z. Khan, T. Balch, and F. Dellaert. Efficient particle filter-based
tracking of multiple interacting targets using an MRF-based
motion model. In Proceedings of the 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS’03), 2003.

[19] Z. Khan, T. Balch, and F. Dellaert. An MCMC-based Particle
Filter for Tracking Multiple Interacting Targets. European Con-
ference on Computer Vision (ECCV 04), 2004.

[20] V. Manikonda, P.S. Krishnaprasad, and J. Hendler. Languages,
Behaviors, Hybrid Architectures and Motion Control. In Mathe-
matical Control Theory, Eds. Willems and Baillieul, pp. 199–226,
Springer-Verlag, 1998.

[21] M. Mataric, M. Nilsson, and K. Simsarian. Cooperative Multi-
Robot Box-Pushing. Proc. IROS, Pittsburgh, PA, 1995.

[22] C. Rasmussen and G.D. Hager. Probabilistic Data Association
Methods for Tracking Complex Visual Objects. IEEE Trans.
Pattern Anal. Machine Intell., Vo. 23, No. 6, pp. 560-576, June
2001.

[23] J. Reif and H. Wang. Social Potential Fields: A Distributed Behav-
ioral Control for Autonomous Robots. Robotics and Autonomous
Systems, Vol. 27, No. 3, 1999.

[24] J. Rissanen. Stochastic Complexity in Statistical Inquiry, World
Scientific Series in Computer Science, Vol. 15, River Edge, NJ,
1989.

[25] D. Schulz, W. Burgard, D. Fox, and A. B. Cremers. Tracking
Multiple Moving Targets with a Mobile Robot using Particle
Filters and Statistical Data Association. Proceedings ICRA, 2001.

[26] H. Tanner, A. Jadbabaie, and G.J. Pappas. Coordination of Mul-
tiple Autonomous Vehicles. IEEE Mediterranean Conference on
Control and Automation, Rhodes, Greece, June 2003.

4187

