
Fast Implementation of Lemke’s Algorithm for

Rigid Body Contact Simulation

John E. Lloyd

Computer Science Dept., University of British Columbia

Vancouver, Canada http://www.cs.ubc.ca/spider/lloyd

Abstract— We present a fast method for solving rigid body
contact problems with friction, based on optimizations incor-
porated into Lemke’s algorithm for solving linear complemen-
tarity problems. These optimizations improve computation
time in general and reduce the expected solution complexity
from O(n3) to nearly O(nm + m3), where n and m are the
number of contacts and rigid bodies. For a fixed number of
bodies the expected complexity is therefore close to O(n). Our
method also improves numerical robustness, and removes the
need to explicitly compute the large matrices associated with
rigid body contact problems.

Index Terms— Haptics, contact, simulation, virtual reality

I. INTRODUCTION

Computing the reaction forces that arise between rigid

bodies in contact is important in robotics, computer graph-

ics, animation, haptics, and mechanical simulation.

This calculation is generally expensive whenever there

are multiple contacts, which can occur even in simple

situations involving extended contact between two bodies

(Fig. 1). For example, contact between two polygonal faces

can be modeled by placing contacts at the vertices of the

convex hull of their intersection (Fig. 2), but even for two

squares this may produce up to eight contacts. Some of

these contacts may be redundant, but eliminating redundant

contacts in advance involves calculations equivalent to

solving the contact problem itself.

Rigid body contact can be formulated as a linear com-

plementarity problem (or LCP, described below), which

can then be solved by either indirect (iterative) methods,

or direct (pivoting) methods [1], [2]. Iterative methods

include impulse-based techniques [3], [4], and are useful

for handling collisions and producing visually plausible

behaviors for large numbers of objects, but may suffer

from low accuracy or slow convergence [5]. Convergence

is also hard to prove, particularly with friction, which

makes the associated linear system asymmetric. For direct

methods, the only one which has been proven to work in

the presence of friction [6], [7] is Lemke’s algorithm, which

produces an exact answer but has a nominal expected time

complexity of O(n3) in the number of contacts. Lemke’s

algorithm is also numerically sensitive, particularly in the

presence of redundant contacts, and requires working with

large matrices: for example, the LCP for a problem with

16 contacts and an 8-sided polygonal friction cone has a

matrix size of 160.

We present here an implementation of Lemke’s algo-

rithm for contact problems that removes some of these

difficulties. First, the method is fast: in tests described

Fig. 1. Extended contacts with many contact points. From left: block-in-
corner (12 contacts), face-on-face (6 contacts), peg-in-hole (arbitrary).

Fig. 2. Contacts (arrows) modeling an extended face-on-face contact.

below, the average solution time for a 16 contact peg-in-

hole problem was reduced from 30 msec to 2 msec. The

expected complexity also appears to reduce from O(n3) to

nearly O(nm + m3), where n and m are (respectively)

the number of contacts and rigid bodies; for fixed m
this becomes O(n). This increases the practicality of rigid

body simulation for real-time interactive applications, such

as haptics. Furthermore, there is no need to explicitly

calculate the (large) LCP matrix, and numerical robustness

is improved because of internal reductions in problem size.

Our method has been coded in Java and is available from

http://www.cs.ubc.ca/spider/lloyd/fastContact.html.

Sections II, III, and IV give background on contact

problems, the solution of LCPs by pivoting methods, and

Lemke’s algorithm. Section V will show how the contact

problem’s structure can be used to reduce the complexity

of the Lemke calculations, and Section VI will show how

to streamline things further by reducing the size of the

LCP that needs to be solved. Performance tests for these

methods are described in Section VII.

II. PROBLEM FORMULATION

Rigid body contact has been described in many publi-

cations (e.g., [8], [9], [10], [11], [7]) and so will only be

summarized here.

The dynamics equation for a rigid body system with n



contact constraints and m bodies can be expressed as

Mv̇ − Ñθ − D̃φ = fx (1)

where M ∈ R
6m×6m is the block-diagonal system mass

matrix containing the mass matrices Mk ∈ R
6×6 for each

body, v, fx ∈ R
6m describe the spatial velocities and

external forces (including coriolis forces) for each body,

Ñ and D̃ are the constraint matrices for normal forces

and friction, and θ and φ are the normal and friction

force components that act along these constraints. Bilateral

constraints can also be included in this formulation, but we

will omit this for brevity.

Each contact i is associated with one column of Ñ and d
columns of D̃, corresponding to the contact normal n̂i and

d directions spanning the plane perpendicular to n̂i which

form a polyhedral approximation to the friction cone1 (see

[12], [6], [9]). Because each contact affects at most two

bodies, each column of Ñ and D̃ has at most 12 non-zero

entries. Size-wise, we have Ñ ∈ R
6m×n and D̃ ∈ R

6m×nd.

It is common to combine the solution of (1) with

integration over a time step h, in order to ensure the

existence of solutions [9], [11]. Using an explicit Euler

step with v0 denoting the initial velocities, we get

v = M−1(Ñθ + D̃φ + k̃x) (2)

where k̃x ≡ fxh + Mv0 and θ and φ are now impulse

components.

Although (2) will be used in the sequel, other for-

mulations (using v̇, different integration schemes [7], or

first order physics) all result in an LCP with the same

structure as system (6) below and so may benefit from

the results of this paper. System (6) can also be modified

to incorporate numeric stabilization [13] and restitution for

elastic collisions [11], [9].

The computation of v is also subject to constraints.

Quickly summarized, these are2

ν ≡ ÑT v ≥ 0, νT θ = 0, θ ≥ 0, (3)

γ ≡ µθ − ET φ ≥ 0, γT λ = 0, λ ≥ 0, (4)

σ ≡ D̃T v + Eλ ≥ 0, σT φ = 0, φ ≥ 0, (5)

where λ ≡ (λ1, . . . , λn) is a vector of Lagrange multipli-

ers, µ ∈ R
n×n is a diagonal matrix of friction coefficients,

and E ∈ R
nd×n with the form

E =







1

. . .

1






, 1 ∈ R

d, 1 = (1, . . . , 1)T .

Respectively, these enforce non-penetration at the contact

(3), friction cone constraints (4), and keeping friction as

opposite as possible to tangential velocity (5).

To simplify notation in the remainder of this paper, we

use the fact that M is symmetric positive definite and so

can be factored as M = GGT . If we then define

N ≡ G−1Ñ, D ≡ G−1D̃, kx ≡ GT k̃x,

1Larger d creates a more accurate friction cone approximation.
2Relational operators on vectors imply element-wise satisfaction.

we can form (2)-(5) into a single constrained system:




ν

σ

γ



 =





NT N NT D 0
DT N DT D E

µ −ET 0









θ

φ

λ



+





NT kx

DT kx

0



 ,
(6)

ν,σ,γ,θ,φ,λ ≥ 0, νT θ = σT φ = γT λ = 0.

Solving this for θ and φ gives the reaction forces (or

impulses) from which v can then be determined via (2).

System (6) is an example of a linear complementarity

problem (LCP). It has been shown [6], [9], [7] that the

contact LCP can always be solved by a pivoting technique

known as Lemke’s algorithm.

III. SOLUTION OF LCPS BY PIVOTING METHODS

Formally stated, an LCP is defined by a square matrix

M and an associated vector q, and entails solving

w = Mz + q (7)

for the variables w and z, subject to the constraints

w ≥ 0, z ≥ 0, wT z = 0.

If q ≥ 0 then a solution is immediately given by z = 0
and w = q. Otherwise, one can search for a solution by

setting other combinations of z and w variables to zero.

In particular, let zα and wα̃ be equally-sized subsets of

the variables z and w, formed from the index sets α and

α̃, and let the remaining variables by given by zβ and wβ̃

(with index sets β and β̃). Under a suitable row/column

rearrangement, (7) can then be partitioned as
(

wα̃

wβ̃

)

=

(

Mα̃α Mα̃β

Mβ̃α Mβ̃β

)(

zα

zβ

)

+

(

qα̃

qβ̃

)

. (8)

If Mα̃α is non-singular, we can exchange wα̃ and zα to

get a pivoted system
(

zα

wβ̃

)

= M′

(

wα̃

zβ

)

+ q′, (9)

where

M′ =

(

M−1

α̃α −M−1

α̃αMα̃β

Mβ̃αM−1

α̃α Mβ̃β − Mβ̃αM−1

α̃αMα̃β

)

,

q′ =

(

q′

α̃

q′

β̃

)

=

(

−M−1

α̃αqα̃

qβ̃ − Mβ̃αM−1

α̃αqα̃

)

. (10)

The variable sets {zα,wβ̃} and {wα̃, zβ} are called the

basic and non-basic variables, respectively, and the set of

basic variables defines a basis for the pivoted system. w

and z variables whose indices match are called complemen-

tary, with each being the complement of the other. If the

index sets α and α̃ are identical, then zα is complementary

to wα̃ and the basis is a complementary basis.

If the basis for the pivoted system (9) is complementary

and q′ ≥ 0, then we have a solution to the LCP given by

zα = q′

α̃, wβ̃ = q′

β̃
, and wα̃ = zβ = 0.

Generally speaking, a pivoting method solves an LCP by

incrementally exchanging, or pivoting, variables (usually

one pair at a time) in order to find a complementary basis

for which q′ ≥ 0.



IV. LEMKE’S ALGORITHM

Lemke’s algorithm [1], [2] is a pivoting method where

the search is facilitated by augmenting the LCP (7) with

an auxiliary variable z0 and a covering vector c ≥ 0:

w = M̄

(

z

z0

)

+ q, with M̄ ≡
(

M c
)

This augmented system can be partitioned and pivoted

exactly as shown in (8) and (9), with c now included in

the appropriate partitions M̄α̃α, M̄β̃α, etc.

The algorithm works as follows:

• Step 0. If q ≥ 0, stop; z = 0 solves the system.

Otherwise, choose variable wr in w for which r =
arg min{qi/ci}, and pivot z0 with wr. Set the driving

variable yr to zr.

• Step 1. Let m′ be the column of the pivoted matrix

M̄′ corresponding to yr. If m′ ≥ 0, stop: the LCP has

no solution or is unsolvable by Lemke’s algorithm.

Otherwise, let ys be the (basic) variable indexed by

s = arg min{−q′i/m′

i : m′

i < 0} (11)

• Step 2. If ys = z0, pivot z0 with yr and stop: the

resulting q′ solves the LCP. Otherwise, pivot ys with

yr, set the new driving variable yr to the complement

of ys, and return to step 1.

If test (11) results in a tie, the LCP is degenerate, and

additional columns of M̄′ may be needed to resolve the

tie; see section 4.9 in [1] or 2.2.7 of [2].

Generally, each pivot step requires computing q′ and a

single column m′ from M̄′, using the formulae (10). q′

takes the recursive form

q′ =

(

q′

α̃

q′

β̃

)

=

(

−M̄−1

α̃αqα̃

qβ̃ + M̄β̃αq′

α̃

)

. (12)

For m′, if the driving variable yr is a z variable, then

m′ =

(

m′

α̃

m′

β̃

)

=

(

−M̄−1

α̃αmα̃

mβ̃ + M̄β̃αm′

α̃

)

(13)

where mα̃ and mβ̃ are the α̃ and β̃ partitions of mα̃, which

is the column of M corresponding to yr. Otherwise, if yr

is a w variable,

m′ =

(

m′

α̃

m′

β̃

)

=

(

M̄−1

α̃αer

M̄β̃αm′

α̃

)

(14)

where er is the α̃ partition of the r-th column of the identity

matrix.

Calculations (12)-(14) each entail solving a system

M̄α̃αx = b (15)

where b is qα̃, mα̃, or er. If M̄α̃α is available in factored

form, this, plus the other calculations in (12)-(14), can be

done in O(n2) time. Each pivot makes a rank-1 change to

M̄α̃α, and so its factorization can then be updated in O(n2)
time [1], [14] (although this must be done carefully to limit

numerical errors [15], [16]). Then, since Lemke’s algorithm

typically requires O(n) pivots [1], its overall expected

complexity is O(n3). It should be noted, however, that

pathological problems exist for which Lemke’s algorithm

has a worst-case complexity of O(2n) ([2], Chapter 6).

V. SIMPLIFICATION USING MATRIX STRUCTURE

We now show how the structure of (6) allows us to

compute q′ and m′ efficiently and without having to

explicitly form the LCP matrix.

To simplify the presentation, we will ignore the covering

vector c (so that M̄ = M), and assume a complementary

basis (so that α̃ = α and β̃ = β). Full details on

the complete calculations required by Lemke’s algorithm,

which must consider the covering vector, are given in the

appendix of [12].

A. Simplification for Complementary Bases

Comparing (7) with (6), we see that M and q have a size

of n(2+d), with wT =
(

νT σT γT
)

and zT =
(

θT φT λT
)

.

With respect to the partitioned system (8), denote the

basic z variables zα by θα, φα, and λα, and let Nα

and Dα be the submatrices of N and D corresponding

to θα and φα. Because we are assuming a complementary

basis, we have M̄α̃α = Mαα, and if we let
(

θT
αφT

αλT
α

)

correspond to x in (15), this relation takes the form




NT
αNα NT

αDα 0
DT

αNα DT
αDα Eαα

µαα −ET
αα 0









θα

φα

λα



 = b

(16)

where µαα and Eαα are α-indexed submatrices of µ and

E.

Since each column of Eαα has at least one non-zero unit

entry (proven in [12]), it can, with a suitable rearrangement,

be partitioned into

Eαα =

(

Eκκ

I

)

.

Noting that each row of Eαα is associated with an element

of φα, let φκ and φx be those elements of φα associated

with Eκκ and I, respectively, and let Dκ and Dx be the

corresponding submatrices of Dα. This allows (16) to be

further partitioned into






N
T
αNα N

T
αDκ N

T
αDx 0

D
T
κ Nα D

T
κ Dκ D

T
κ Dx Eκκ

D
T
x Nα D

T
x Dκ D

T
x Dx I

µαα −E
T
κκ −I 0













θα

φκ

φx

λα






=







bν

bκ

bx

bγ






.

Now we can solve for φx:

φx = µααθα − ET
κκφκ − bγ . (17)

Then, using a block elementary operation of the form
(

A B
C −I

)(

I 0
C I

)

=

(

A + BC B
0 −I

)

and defining

N∗ ≡ Nα + Dxµαα, D∗ ≡ Dκ − DxE
T
κκ, b∗ ≡ Dxbγ

(18)

we can eliminate φx and reduce the system to

(

N
T
αN∗ N

T
αD∗ 0

D
T
κ N∗ D

T
κ D∗ Eκκ

D
T
x N∗ D

T
x D∗ I

)(

θα

φκ

λα

)

=

(

bν

bκ

bx

)

+

(

N
T
α

D
T
κ

D
T
x

)

b∗.



Next, we can define

vc ≡ N∗θα + D∗φκ − b∗, (19)

solve for λα:

λα = −DT
x vc + bx, (20)

and then use a block elementary operation to eliminate λα

and further reduce the system to
(

NT
αN∗ NT

αD∗

DT
∗
N∗ DT

∗
D∗

)(

θα

φκ

)

=

(

bν

b′

κ

)

+

(

NT
α

DT
∗

)

b∗

(21)

where b′

κ ≡ bκ − Eκκbx. This smaller system is solved

for θα and φκ, after which we back-solve for φx and λα

using (17) and (20).

Computations (12)-(14) also involve calculating M̄β̃αx.

Again, because we are assuming β̃ = β, we have

M̄β̃α = Mβα =





NT
β Nα NT

β Dα 0

DT
β Nα DT

β Dα Eβα

µβα −ET
αβ 0





where Nβ and Dβ are submatrices of N and D corre-

sponding to the basic elements of ν and σ, and Eβα, Eαβ ,

and µβα are submatrices of E and µ indexed by α and β.

Now, combining the definition of vc in (19) with (18) and

(17), we get

vc = (Nα + Dxµαα)θα + (Dκ − DxE
T
κκ)φκ − Dxbγ

= Nαθα + Dαφα,

so that Mβαx becomes

Mβαx =





NT
β

DT
β

0



vc +





0
Eβαλα

µβαθα − ET
αβφα



 .
(22)

B. Expected Complexity

The above calculations can be done quite rapidly, since

(1) each column of Eαα has at most 2 non-zero unit entries,

(2) each column of N and D (and hence Nα, N∗, Dκ, and

D∗) has at most 12 non-zero entries, and (3) each row and

column of µαα has at most one non-zero entry.

Moreover, if n and m are the number of contacts and

bodies, and r is the size of the matrix in the reduced

system (21), then it is shown in [12] that the complexity

of computing q′ or m′ is O(m + n + r2), assuming the

matrix in (21) is kept in factored form if necessary.

To bound r, we note that the matrix in (21) factors as
(

NT
α

DT
∗

)

(

N∗ D∗

)

.

The non-singularity of Mαα ensures that this matrix has

full rank, and so its size r must be bounded by the rank of

each factor. Each factor has one dimension equal to 6m,

and hence a rank ≤ 6m, and so we obtain r ≤ 6m. The

per-pivot complexity of O(m + n + r2) is hence bounded

by O(n + m2). Since the expected number of pivots in

Lemke’s algorithm is of the same order as the size of M,

which is n(2+d), we obtain an overall expected complexity

of O(n2 + nm2).

Generally speaking, we can expect m ≤ n, since

otherwise there will be more bodies than contacts and the

problem will likely decompose into subproblems. If m is

noticeably smaller than n, we should get a large improve-

ment over the standard Lemke algorithm, for which the

expected complexity is O(n3). If m is fixed, the complexity

improves still further to O(n2), which is consistent with the

tests labeled structural in section VII.

In summary, what we have done is reduce the calcula-

tions to a form that is partly constrained by the number of

degrees of freedom in the system, rather than the number

of contacts.

VI. REDUCING THE SIZE OF THE LCP

We now show how to reduce the complexity still further

by reducing the expected number of pivots.

The number of pivots is bounded from below by the

number of basic z variables in the final solution. From

(6), we can determine that a λ variable will be non-zero

(and hence basic) for every contact i exhibiting tangential

motion. Since this is possible at all contacts, we can expect

O(n) λ variables to be basic, implying O(n) pivots.

To reduce this, we observe that we don’t need all the

values of λ in order to solve the contact problem. In

particular, we needn’t consider values of λ (or φ) for any

contact i which is inactive (i.e., for which θi is non-basic):

if θi is non-basic, then θi = 0, and, by the friction cone

constraints (4), all the associated φ variables must also be

zero. Inactive contacts therefore make no contribution to

v.

Put another way, we need not be concerned about the

frictional aspect of a contact until that contact becomes

active. We can therefore begin the solution of a contact

problem using a reduced, frictionless, LCP of the form

ν = NT Nθ + NT kx,

and then incrementally expand the system into the form of

(6) by adding appropriate φ, λ, σ, and γ variables (and

the corresponding matrix rows and columns) as contacts

become active. This process of expanding an LCP online

is described in Section 4.6 of [1], and specific details for

the contact problem are given in [12].

Ideally, most contacts which become active will remain

active in the final solution, so that few pivots will be

expended for contacts which are later deactivated. Since

the number of active contacts equals the number of basic

θ variables, it is bounded by the size r of the matrix in

(21), and since r is O(m), we can, in the best case, expect

the number of pivots to be reduced from O(n) to O(m).

Combined with the per-pivot complexity of O(n + m2)
described in Section V-B, this would give an overall

expected complexity of O(nm + m3), or O(n) when m
is fixed. We do in fact observe behavior close to O(n) in

the tests labeled reduced in section VII.



fa

Fig. 3. Peg-in-hole, with 16 contacts and an applied wrench fa.

VII. EXPERIMENTAL RESULTS

We now present some tests to demonstrate the utility of

these methods. The tests were implemented in Java 1.4.2

(with HotSpot) and executed on a 1 GHz Pentium III. Each

computation was done with d = 8 and friction coefficients

µi in the range 0.2 to 0.3. Each test measured expected

solution times for three different methods:

• Standard: Used a standard, efficient implementation

of Lemke’s algorithm as described in [14].

• Structural: Used the structural simplifications de-

scribed in Section V.

• Reduced: Used Section V plus the problem reduction

described in Section VI.

Expected solution times were measured by solving each

problem 20 times with randomly generated external forces,

and averaging the computation times.

The first test was for a single body (m = 1) and involved

computing the reaction forces on a peg passing through a

hole in a fixed block (Fig. 3), in response to a random

wrench applied at the center. Contacts were arranged

around the hole’s top and bottom, and computation times

were measured for different numbers of contacts ranging

from 8 to 32. The results for the three different methods

are shown in 4, and our structural and reduced methods

(shown close-up in Fig. 5) can be seen to be significantly

faster. As the number of contacts n varied from 8 to 32,

the average compute times (in msec) varied from 6.18

to 400.75 (standard), 2.55 to 26.63 (structural), and 1.08

to 4.58 (reduced), corresponding (roughly) to expected

complexities of O(n3), O(n2), and O(n), respectively.

The next test involved a variety of ten different single

body contact situations (again m = 1), similar to those

shown in Fig. 1: block in corner, ball resting in the rim of a

hole, block in groove, face on surface, etc., with the number

of contacts varying from 1 to 16. Results are shown in Fig.

6, with Fig. 7 showing a close-up scatter plot of the results

for the reduced method. The complexity of the reduced

method appears to be just a little greater than O(n): as n
varied from 8 to 16, the computation time varied from 0.57

to 1.34. Over the same range, the other methods varied

from 5.2 to 50.9 (standard) and 2.1 to 12.5 (structural),

again loosely compatible with O(n3) and O(n2).
The last test involved multiple bodies, and computed the

reaction forces for a stack of blocks, subject to gravity,

with a random wrench applied to the top block (Fig. 8).

5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

400

450

Number of contacts

A
v
e
ra

g
e
 c

o
m

p
u
te

 t
im

e
 (

m
s
e
c
)

standard

structural

reduced

Fig. 4. Average compute times for peg-in-hole by three different methods.

5 10 15 20 25 30 35
0

5

10

15

20

25

30

Number of contacts

A
v
e

ra
g

e
 c

o
m

p
u

te
 t

im
e

 (
m

s
e

c
)

structural

reduced

Fig. 5. Close-up of our structural and reduced results shown in Fig. 4.

Ten configurations were tested, with the number of stacked

blocks m ranging from 1 to 5, and the number of contacts

n from 4 to 32, depending on the positioning of the blocks

with respect to each other. The compute times, shown

in Fig. 10, varied from 2.1 to 2136 (standard), 1.45 to

224 (structural), and 1.32 to 96 (reduced). These ranges

are roughly compatible, modulo a constant multiplier,

with expected complexities of O(n3), O(n2 + nm2), and

O(nm + m3).

VIII. CONCLUSION

We have developed a fast method for solving rigid

body contact problems, with friction, based on Lemke’s

algorithm for solving LCPs. In essence, the method exploits

the sparsity of the factors of M to reduce the problem

in size to one that is largely bounded by the number

of degrees of freedom in the system. This amounts to a

reduction in expected complexity from O(n3) down to

nearly O(nm + m3), where n and m are the number of

contacts and bodies in the system. When m is fixed, the

expected complexity is then close to O(n). These results

should improve the utility of rigid body simulation in real-

time and interactive applications.

Our method also improves numerical robustness by de-

creasing the size of the primary linear system that must be

solved during each pivot step. This system, (21), is bounded



0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

Number of contacts

A
v
e

ra
g

e
 c

o
m

p
u

te
 t

im
e

 (
m

s
e

c
)

standard

structural

reduced

Fig. 6. Average compute times for 10 different single body problems with
different numbers of contacts.

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of contacts

C
o

m
p

u
te

 t
im

e
s
 (

m
s
e

c
)

Fig. 7. Close up scatter plot of the reduced results shown in Fig. 6.

in size by 6m, and so if m is small enough (e.g., 3 or 4)

it may be solved directly in real-time using numerically

robust methods, without having to do factorization updates

in which round-off error can accumulate. Our method also

eliminates the need to calculate the LCP matrix M, whose

size can be quite large even for simple problems.

A Java implementation can be downloaded from

http://www.cs.ubc.ca/spider/lloyd/fastContact.html.

ACKNOWLEDGMENT

This work was made possible with funding from IRIS, the Canadian

Institute for Robotics and Intelligent Systems.

REFERENCES

[1] R. E. S. Richard W. Cottle, Jong-Shi Pang, The Linear Complemen-

tarity Problem. Academic Press, 1992.
[2] K. G. Murty, Linear Complementarity, Linear and Nonlinear Pro-

gramming. Helderman-Verlag, 1988.
[3] B. Mirtich and J. Canny, “Impulse-based simulation of rigid bodies,”

in Proceedings of the 1995 symposium on Interactive 3D graphics,
(Monterey, California), pp. 181–188, Apr. 1995.

[4] E. Guendelman, R. Bridson, and R. Fedkiw, “Nonconvex rigid
bodies with stacking,” in Proceedings of SIGGRAPH 2003, pp. 871–
878, July 2003.

[5] C. Lacoursiere, “Splitting methods for dry frictional contact prob-
lems in rigid multibody systems: Preliminary performance results,”
in SIGRAD2003, The Annual SIGRAD Conference, (Umea, Swe-
den), Nov. 2003.

Fig. 8. Stacked blocks used for the multi-body test.

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

Number of contacts

A
v
e

ra
g

e
 c

o
m

p
u

te
 t

im
e
 (

m
s
e
c
)

standard

structural

reduced

Fig. 9. Average compute times for 10 different stacked-block problems
with different numbers of contacts.

[6] D. E. Stewart and J. C. Trinkle, “An implicit time-stepping scheme
for rigid body dynamics with inelastic collisions and Coulomb fric-
tion,” International Journal for Numerical Methods in Engineering,
vol. 39, pp. 2673–2691, Aug. 1996.

[7] M. Anitescu and F. A. Potra, “A time-stepping method for stiff
multibody dynamics with contact and friction,” International Jour-

nal for Numerical Methods in Engineering, vol. 55, pp. 753–784,
Nov. 2002.

[8] D. Baraff, “Fast contact force computation for nonpentrating rigid
bodies,” in Proceedings of SIGGRAPH 94, pp. 23–34, July 1994.

[9] M. Anitescu and F. A. Potra, “Formulating dynamic multi-rigid-body
contact problems with friction as solvable linear complementarity
problems,” Nonlinear Dynamics, vol. 14, pp. 231–247, Nov. 1997.

[10] J. Sauer and E. Schoemer, “A constraint-based approach to rigid
body dynamics for virtual reality applications,” in Proceedings

of ACM Symposium on VR Software and Technology 98, (Taipai,
Taiwan), pp. 153–161, Nov. 1998.

[11] D. E. Stewart, “Rigid body dynamics with friction and impact,”
SIAM Review, vol. 42, pp. 3–39, Mar. 2000.

[12] J. E. Lloyd, “Fast implementation of Lemke’s algorithm for
rigid body contact simulation,” tech. rep., Department of Com-
puter Science, University of British Columbia, Jan. 2005,
http://www.cs.ubc.ca/spider/lloyd/papers/fastContactLemke.pdf.

[13] M. B. Cline and D. K. Pai, “Post-stabilization for rigid body
simulation with contact and constraints,” in Proceedings of the IEEE

International Conference on Robotics and Automation, (Taipei,
Taiwain), pp. 3744–3751, Sept. 2003.

[14] R. W. H. Sargent, “An efficient implementation of the Lemke
algorithm and its extension to deal with upper and lower bounds,”
Mathematical Programming Study, vol. 7, pp. 36–54, 1978.

[15] J. A. Tomlin, “Robust implementation of Lemke’s method for
the linear complementarity problem,” Mathematical Programming

Study, vol. 7, pp. 55–60, 1978.
[16] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, “Main-

taining LU factors of a general sparse matrix,” Linear Algebra and

its Applications, vol. 88/89, pp. 239–270, 1987.


