
IEEE Int. Conf. on Robotics and Automation (ICRA), Orlando, Florida, May 2006 

Extended EM for Planar Approximation of 3D Data 
 

Rolf Lakaemper Longin Jan Latecki 

Computer and Information Sciences Dept. Computer and Information Sciences Dept. 
Temple University Temple University 

Philadelphia, PA, 19122, USA Philadelphia, PA, 19122, USA 
Email: lakamper@temple.edu Email: latecki@temple.edu 

 
 Abstract – The paper deals with fitting of planar patches to 
3D laser range data obtained by a mobile robot. The number and 
the initial position of the patches are unknown, hence their 
estimation is a challenging problem. It is solved by adding 
iterated steps of split and merge to a modified Expectation 
Maximization (EM) algorithm. This allows for  precise 
adjustment of the number of patches, independent from the 
initial model. The proposed approach overcomes the problem of 
classical EM, which produces an optimal solution only if the 
number and position of model components is well estimated. 
 
 Index Terms - 3D Robot Mapping, EM 
 
 

I.  INTRODUCTION 

Our domain of interest is approximation of 3D data points 
using planar patches. Existing solutions make assumptions 
about the number of fitted patches, extend of noise, and/or the 
order of data points. We do not make any assumptions about 
the order of data points and extent of noise. On contrary to the 
existing approaches, the proposed method avoids the problem 
of a locally optimal solution and produces stable 
approximations to 3D datasets. Moreover, the final number of 
fitted patches is not pre determined but depends on the objects 
represented by the data and the extent of noise in the data. 
This means that the number of model components is adjusted 
to achieve the best possible approximation accuracy as a 
function of noise extent. The proposed approach adds two 
new steps to EM that are well and intuitively integrated with 
the standard E and M steps. In the first new step, the model 
components (i.e. the patches) obtained by a previous EM 
iteration are examined for support of the data points. The main 
idea is that a higher and homogeneous point density around a 
patch indicates a presence of a linear structure in the data 
points. Parts of the components that do not have sufficient 
support are removed, leading to component splitting and 
removal. This results in a new set of model components for 
the next EM iteration.  
The second new step is merging similar model components. It 
prevents generating statistical models that overfit the data, i.e., 
fit noise in the data. This step requires a similarity measure of 
patches. Our approach bases the similarity on principles of 
perceptual grouping used to merge pairs of patches, visually 
belonging together, to a single patch. Perceptual grouping is 
rooted in human perception and is an active research topic in 
computer vision It dates back to the German school of Gestalt 
psychology in the beginning of 20th century [10]. 

  
Since the similarity measure of model components requires 
domain specific knowledge, we present the proposed 
methodology in a context of a particular domain. However, 
the proposed framework provides a domain independent 
extension of EM. 
 
Assuming that the initial number of model components is well 
estimated, the main difficulty of fitting planes or patches to 
point data is that the correspondence of data points to them is 
unknown. The Expectation Maximization (EM) algorithm 
presented in [2] provides an iterative solution to the 
correspondence problem (in fact, EM applied to (2D) line 
fitting is known as the Healy-Westmacott procedure in 
statistics [3], and predates EM by many years). Our departing 
point is a 3D EM plane-fitting algorithm. However, since our 
goal is to fit patches, not planes, to point data, we trim planes 
to patches, which is a simple extension of EM (Section II.A). 
 
The main contribution of this paper is the introduction of non-
reversible split and merge steps. Both split and merge require 
only local evaluation. Due to the integration of these 
operations in the EM framework, we are able to obtain a 
globally optimal solution after just a few iterations (between 5 
and 15) in all our experiments. 
Other 3D mapping approaches, including Hough 
transformation, grid based and EM based algorithms can be 
found in [4],6],[7],[9],[11],[12]. An overview of approaches 
to obtain polygonal 2D maps from laser range data can be 
found in [8].  
The proposed approach provides a solution to the well-known 
problem of local optimum in EM. A classical case of an EM 
local optimum problem is illustrated in Fig. 4 . Iterative steps 
and results of our approach on generated (ground truth) and 
real datasets and are found in section III. 
 

II. SPLIT AND MERGE IN THE EM FRAMEWORK 
 
We begin with a short overview of EM applied to plane 
fitting. The core of the procedure is simple least square fitting 
which is dimension independent, hence plane fitting is the 3D 
version of line fitting, being presented in detail in [1]. 3D EM 
fits (infinite) planes to the data given. Taking a set of data 
points in 3D space and an initial set of 2D planes as input, the 
algorithm alternates the following two steps until it converges 
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(the algorithm is guaranteed to converge to some local 
optimum).  
 

 E-Step (Expectation Step):  Given a current set of 
planes, for each point the probabilities of its 
correspondences to all planes are estimated based on 
its distances to planes. 

 M-step (Maximization Step): Given the probabilities 
computed in the E-step, the new positions of the 
planes are computed using a regression weighted 
with these probabilities. 

 
A. EXPECTATION MAXIMIZATION PATCH FITTING 

(EMPF) 
The data structure we utilize to fit the data is a set of planar 
rectangles, called patches, which are subsets of the planes 
computed by the general EM. To be more versatile, each patch 
is subdivided into a grid of tiles (see fig.1). We distinguish 
between supported and unsupported tiles by the number of 
data points close to the respective tile (more detailed 
explanation below). All computations are solely processed on 
the set of supported tiles, e.g. the distance of a point to a patch 
is the distance of the point to the closest supported tile, see 
fig.1.  
The grid size G of a patch defines the length of the edges of 
its tiles (boundary tiles are resized to fit the patch as 
necessary, see fig. 1). The grid size is an important steering 
parameter of the modified EM. Its computation and role in the 
system is explained in further detail in section II.F. 
To conclude the data structure setup: the final result of the 
modified EM is a set of patches identifying planar macro 
structures (e.g. walls) that consist of a collection of (coplanar) 
supported tiles. The tiles identify the shape of these structures 
in a granularity or resolution determined by the patch's grid 
size. 

 
Fig. 1. Patch with supported tiles. The outer rectangle is the patch, the dark 
inside rectangles are supported tiles. The unsupported tiles, completing the 
grid, are not shown. All tiles are of same size, with the exception of boundary 
tiles, being resized to fit the patch. The distance of the two example data 
points (red) to the patch is the min. distance to the set of supported tiles, as 
indicated by the connections between data points and the closest points 
(green) on the tiles. 
 
The proposed approach requires a minor extension of the 
general EM plane fitting to work with patches, which we will 
call Expectation Maximization Patch Fitting (EMPF). 
The only difference of EMPF in comparison to EM plane 
fitting is, that the input/output consist of patches, instead of 
infinite planes. The input additionally consists of the set of 
data points to be fitted.  
EMPF is composed of the following three steps:  

1. E-step with patches (the EM probabilities are 
computed based on the point distances to sets of 
supported tiles) 

2. M-step with the probabilities computed in the E-step, 
resulting in infinite planes containing the new 
patches. 

3. Trimming planes to patches and determining 
supported tiles. 

 
Step (3) is composed of two sub steps: 

1. Assignment of supporting data points to planes. 
2. Cutting the planes to patches and tiles by distance 

projection. 
 
Detailed description of each step: 
E-step: First we need to recall the computation of EM 
probabilities. Let a1,..., am be a set of data points in 3D space, 
and let s1,...,sn be a set of patches. Usually m is significantly 
larger than n. For each point ai, the probability pij  that ai 
corresponds to patch sj is computed for j=1..n . 
Formally,  pij = p(zi=j), where zi is the hidden variable 
associated with point ai whose values range over the patch 
indices. Analog to EM plane fitting, this probability is 
computed based on the distance d(ai,sj) from point ai to patch 
sj, i.e. the distance to the closest supported tile in patch sj 

:  
 

pij ~ exp(- (d(ai,sj)2 / 2S2)                      (1) 
 
and normalized so that ∑j=1..n pij= 1 for each i. 
The standard deviation S in eq. (1) scales the weights pij with 
respect to the patch's grid size G in a way that points in 
distance G have a constant weight W (in our system 1/100) 
before normalization. This guarantees independence from the 
data points' scale and, since G is decreasing during the 
iterative EM process (see below), emphasizes the role of local 
support (i.e. closer) points to determine the planes' positions 
during the iteration. S is computed by: 
 

S = G/sqrt(-2 log(W))                                  (2) 
 
(Substituting S in (1) with the right side of (2) yields W for 
d(ai,sj)=G). 
Therefore the two differences to the standard EM plane fitting 
are first the replacement of the distance point to plane with the 
distance point to closest supported tile in patch, and second, 
the use of a distance scaling factor S. 
After every E-step we obtain a matrix (pij), with each row i 
representing the patch affiliation probabilities for point ai,  
also called the support of  point ai for the patches sj. Each 
column j can be seen a set of weights representing the 
influence of each point on the computation of a new patch 
position in the M-step. 
 
M-step: the output of the M-step, which performs an 
orthogonal regression weighted with (pij), is a set of 
(untrimmed) planes e1, ... , en corresponding to the input 
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patches s1, ... , sn. The normal vector to the plane ej is the 
eigenvector to the smallest eigenvalue of the matrix Mj 
defined as (all sums to be read as  ∑i=1..m): 
 
∑ pij(aix-X)2 ∑ pij(aix-X) (aiy-Y) ∑ pij(aix-X) (aiz-Z) 
∑ pij(aiy-Y) (aix-X) ∑ pij(aiy-Y)2 ∑ pij(aiy-Y) (aiz-Z) 
∑ pij(aiz-Z) (aix-X) ∑ pij(aiz-Z) (aiy-Y) ∑ pij(aiz-Z)2 

 
where ai=(aix, aiy) are the coordinates of the data points, 
and (X,Y) is their average weighted with pij for i= 1...n.  
(X,Y) also defines a point on  plane ej , hence the plane ej is 
uniquely defined by (X,Y) and M. 
 
Trimming: In order to trim the planes to patches with 
supported tiles, we first need to assign max. supporting data 
points to planes (step 3.1). This assignment is based on the 
probabilities computed in the E-step. 
A support set S(sj) for a given plane ej is defined as set of 
points whose probability of supporting plane ej is the largest 
(in comparison to other planes), i.e.,  
 

S(ej)={ai : pij = max (pi1, ..., pin) }. 
 
A point ai supports a plane ej if ai ∈ S(ej).  
 
Trimming the planes to patches (step 3.2) is a simple step 
now, using the support set S. 
For each j, we define the set SP(ej) as the set S(ej) projected 
(orthogonal) onto the plane ej. The trimmed patch sj is the 
minimum bounding rectangle of SP(ej), with one edge 
direction defined by the principal axis of SP(ej) .We obtain a 
set of patches 

s1, ... , sn with sj ⊂ ej. 
 
The support set for each patch is simply the support set of the 
corresponding plane, i.e., S(sj) = S(ej) for j =1, ..., n, a point ai 
supports a patch sj if ai ∈ S(sj). 
 
Determination of supported tiles: 
A patch sj is decomposed into equal tiles of edge length G 
(the grid size). For each tile tk of  sj we define its support 
support(tk) as the number of data points supporting sj  in the 
cube C(tk), a cube whose edge length is G, placed around tk as 
shown in fig. 2. 
 

 
Fig. 2. Cube around tile tk (shaded). All edges have length G (grid size). 

 
We call the union set of points meeting these requirements for 
all tiles tk of a patch sj the reduced support set of sj , Sr(sj) ⊂ 
S(ej). see fig. 3. 
 
In each iteration a support threshold T is computed from the 
statistics of the support(tk) values over all tiles of a patch. 
Tiles  tk with support(tk) > T are marked as supported tiles. 

If a patch does not contain supported tiles, it is removed. 
 

 
Fig. 3. Single patch with supported tiles and support points. The red data 
points show the reduced support set Sr of the patch. green: other data points. 
 
The parameters G and T are computed dynamically each time 
in the trimming step. G is computed as 3 std(d), where std(d) 
is the standard deviation of point patch distances computed for 
all data points to the patches they support (see also section II.F 
for more information about G). T is computed as mean(c) - 2 
std(c), where c is the number of points in the reduced support 
set Sr. 
It should be noted that computing T needs to be done with the 
current G and not the prior. This can be achieved by 
recounting points in C(tk) before computing T. 
 

B. SPLIT AND MERGE EM PATCH FITTING 
The following introduces the outline of the proposed 
algorithm. The proposed split and merge EM patch fitting 
(SMEMPF) algorithm iterates the following steps (described 
in detail below): 
 

1) EMPF (Expectation Maximization Patch Fitting) 
2) PS (Patch Split): data support evaluation of patch 

obtained by EMPF (Section II.C) 
3) EMPF 
4) Patch merge (Section II.D) 

 
We alternate patch splitting and merging between the steps of 
the patch fitting EM algorithm. 
 
The main goal of PS is to evaluate the quality of the EMPF 
output, i.e., how well the EM positioned the new patches. 
Patches will be split into multiple patches based on the 
distribution of supported tiles. If a patch contains a large 
number/area of unsupported tiles, it will be split into multiple 
coplanar patches to allow a better fit of the supported tiles to 
the data in the next EMPF step (3). Hence PS creates a higher 
number of patches in order to optimally fit the input data 
points; the number of patches is not constant, as it is in 
classical EM. This way we overcome the problem of locally 
optimal solutions as appearing in the classical EM due to a 
wrongly defined number (too low) of fitting patches, since 
such a solution will not have a good global support in the data 
points. Additional to the starting number of patches the initial 
position of the patches also does not matter, since the 
following EMSF will reposition the split patches to better fit 
the data.  
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In the merging step (4), pairs of similar patches are merged to 
single patches. Due to this process, the number of patches 
cannot grow to infinity. Hence the number and position of the 
new patches introduced by the split is not critical in the 
modified EM framework. Iterating split and merge in the EM 
framework is a powerful tool to adjust the number and 
position of patches to better fit the data points. 
 
A few iterations of the proposed algorithm are illustrated in 
fig. 7 and 8. The proposed algorithm converges, since EM 
converges and the PS procedure (Section II.C) stops splitting 
if a certain goodness of fit criterion is met. Usually just a few 
iterations of steps (1)-(4) are required, e.g. 8 iterations in the 
outdoor experiment (Stanford Campus, fig. 8, 9). Our stop 
condition is the stability of distances of data points to the 
closest patches. It has to be mentioned that in between certain 
iterations (e.g. all 5 iterations) new patches are added if there's 
a high number of points not supporting any patches. This 
situation can occur if the initial patch setup is placed far away 
from certain data points. 
 

C. PS: Patch Split 
A classical case of the EM local optimum problem is 
illustrated in fig. 4. 
 

 
A) 

 

 
B) 

Fig. 4: Fitting data without and with splitting. A) fitting the dataset with one 
patch (result of classical EM with initial model of 1 patch). B) after splitting 
into 4 patches using SMEMPF. The ground truth model can be seen in fig. 7 
 
Clearly, the problem in fig.4 A) is that only one patch is used, 
while 4 patches are needed. B) shows the result using 
SMEMPF, automatically gaining the required number of 
patches. 
 
Fig. 5 illustrates the split operation described in this section. 
Splitting is processed along axes in the patch having 
insufficient support of data points. First the points ai∈Sr(sj) of 
the reduced support set of patch si are projected onto the 
patch, yielding a point set in a 2D coordinate system defined 
by si. In this 2D system, the points ai are projected onto the X-
axis under different rotations (0,45,90,135 degree) to gain 
density information along the respective directions. On the X-
axis, they are quantized into bins of size G, the grid size. The 
bin containing the minimum amount of points minp defines 
position and direction of a split axis. If minp falls below a 
threshold minp < 2/3(#Sr(sj)), (# = number of points), a split is 
caused. The split divides Sr(sj) into two sets of points Sr+(sj) 

and Sr-(sj), left and right of the split axis. Two new patches sj
+ 

and sj
- are created in the plane ej, the plane containing sj. 

Using Sr+(sj) and Sr-(sj), they are trimmed and their supporting 
tiles are determined. sj

+ and sj
- then replace the original patch 

sj in the model. The split procedure is recursive: sj
+ and sj

- 
again are processed the same way, until each resulting patch 
has a sufficiently homogeneous distribution of supporting 
points and is not split further. 
 

 
Fig. 5: Split. Left the original patch, right the split patches. The three new 
patches are slightly replaced compared to their origin, due to new patch 
directions determined by the principal axis of projected support points. Yet, by 
definition they still are coplanar with the original patch. 
 
Note that the (number of) points in Sr(sj) depends on the grid 
size G, which therefore indirectly steers the splitting process. 
A smaller G enables reaction to more local density 
differences, and the split resolution is higher (due to smaller 
bin size). See section II.F for further notes on G. 
The resulting new patches are coplanar with the original patch 
sj, split determines a new number of patches, a number that 
leads to a better fit to the data due to the replacement of the 
newly created patches in the follow up EMPF step 3. 
 

D. Merging 
Motivation: iterated EMPF followed by PS only, without 
merge, could possibly grow the number of patches with each 
iteration to a potentially large number. Therefore, merging 
'similar' patches is necessary. Merging is responsible for the 
accuracy of the statistical model, without it the model may end 
up fitting the noise. The main idea is, that if a given patch is 
properly split, then EMPF will reposition the resulting patches 
to better fit the data points in a way that will turn them away 
from each other. If a patch is unnecessarily split, the patches 
remain very similar after an EMPF iteration, where similar 
means that they will be nearly collinear and close to each 
other. This suggests that merging should combine two 
perceptually similar patches to a single one, and leave 
unchanged perceptually dissimilar patches. 
 

 
Fig. 6: Merging of two patches (left) to a single one (right). The merged patch 
results from fitting a single plane to the union of supporting points of the two 
original patches, followed by trimming. 
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Merging is derived from 2D line merging algorithms based on 
principles of perceptual grouping [10]. Intuitively spoken, the 
underlying similarity measure takes into account the 
closeness, coplanarity and angle between normals of two 
patches. Note that the similarity therefore is based on the 
model, not on the dataset to be fit. 
Merging of a single pair sa , sb of patches is processed in two 
steps. 

1. determine similarity 
2. if sufficiently similar: merge by creating a single 

patch using least square fitting and trimming 
 
Step 1: similarity determination 
The patches have to be sufficiently close. This is defined by 
checking for overlap of bounding cubes of each patch, 
expanded by G (grid size) in each direction. If this condition 
is met, then the patches are tested if they are also sufficiently 
coplanar and parallel. To determine this, the points ai∈ Sr(sa) 
supporting sa are projected onto the plane eb containing  sb and 
vice versa (bj∈ Sr(sb) are projected onto ea). The mean 
distance of the points to their projections is computed for both 
sets, resulting in two values da, db. If min(da, db) < G the 
patches will be merged. Note that again the parameter G plays 
an important role. 
 
Step 2: merge 
A new plane is fit to the set union Sr(sa) ∪Sr(sb) with a 
classical regression and trimmed to a patch. 
Merging is done iteratively until all possible pairs of patches 
are sufficiently dissimilar. 
 

E. DETERMINATION AND INFLUENCE OF THE 
GRID SIZE PARAMETER G 

A central parameter in the modified SMEMPF process is the 
grid size G. Apart from its visible manifestation as the edge 
length of each tile of a patch, it controls different instances in 
the process: 

 the tiling size (as mentioned) 
 the distinction between 

supported/unsupported tiles 
 indirectly, by determining tile support, it 

steers the split process  
 it determines candidates for merging  

 
G is newly determined in each iteration of the EMPF process, 
based on the distribution of the distances of data points to 
patches/tiles they support. It is computed as 3std(d), where 
std(d) is the standard deviation of point patches distances 
computed for all data points to the patches they support. G can 
be seen as quality of approximation of the patches to the data, 
a lower value shows a better approximation. Note that this 
measure of quality is only a valid measure if the number of 
patches is fixed: increasing the number of patches, e.g. to a 
value such that each patch is exactly supported by 3 data 
points yields G=0, but simply measures overfit to noise 
instead of data. Experimental results show, that the interplay 

between split and merge leads to a decreasing value of G in 
each iteration step in the beginning of the SMEMPF process 
(when starting with a high value) until it balances itself. The 
decrease is due to two facts:  

1. The re-computation of G is made using the reduced 
support set. Since this is a subset of the closest points 
in the support set, the standard deviation is smaller 
than the standard deviation of the (unreduced) 
support set. 

2. But mainly: split leads to a better fit. 
 
In contrast, the merge process increases the standard deviation 
due to a less optimal fit. Hence, as long as, intuitively, there's 
a stronger rate of split than merge, as it naturally is in the first 
iteration steps if the process is started with a low number of 
patches, G decreases until it balances itself to an appropriate 
value due to the increasing force of merge during the iteration. 
 

III. EXPERIMENTAL RESULTS 
 
The final result of the SMEMPF algorithm consists of 
coplanar point sets, we use orthogonal projection to project 
the reduced support sets Sr(sj) onto their supported patches sj. 
The result therefore can be seen as a segmentation of the 
original point set into sets  of  replaced (projected) data points, 
related by their support to the same patch. Non assigned data 
points are seen as outliers and are dropped.  Fig. 8 shows 
SMEMPF using an outdoor dataset, fig. 9 illustrates the final 
result. We conducted two experiments to show the 
performance of the algorithm. 
 
Experiment I: angular distance, ground truth dataset 
This experiment generates 25 sets N1..25 of ~7000 points each 
by randomly sampling a 3D model of 4 walls with a different 
amount of Gaussian relocation (replacement noise), see fig. 7. 
The standard deviation of point distances to the ground truth 
walls is 1-25 for N1 to N25 respective, i.e. std(Ni )=i . 
Therefore the representation of the walls by the point clouds is 
more blurred in higher indexed data sets, see fig. 7 C,D,E for 
examples of  N2, N15, N23. The length of the short edges of the 
walls forming the small corner (front left in fig.7 a) is 150 
units, therefore the structure of this corner gets lost in the 
point cloud representation with high standard deviation (15-25 
units, point sets N15 to N25). For each set Ni=1..25 the EMSMPF 
is processed, initialized with a set of 3 patches, see fig. 7B. 
Similar to the evaluation used in [7], the result is analyzed by 
summing the angular distances of all patch normals to their 
corresponding ground truth, giving the quality of 
approximation. Fig. 7F shows a graph of the resulting 
differences for the 25 sets. It can be seen that the 
approximation is constantly good even up to a high noise level 
(std=15, see fig. 7D,F). The value of a difference of ~4 
degrees shows an average difference of 1 degree for each 
patch. The jump in values for N22 to N23 result from wrong 
fitting: the high amount of noise destroyed the corner feature, 
see fig. 7E,F. 
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A  B  C  

D  E  F  
Fig. 7: Fitting to a ground truth dataset. A) the original model (4 walls)  B) set (no noise) of simulated scan points created from A) and initial 3 patches. The 
figures C)-E) show the result of the SMEMPF algorithm (each after 6 iterations), using the initial patch configuration shown in B) but with random replaciement 
of scan points. C) replacement with standard deviation of 2, D) std = 15, E) std= 23. The length of the short walls being misrepresented in E) is 150, the 
representation fails due to the high amount of noise, the original structure is not visible in the point set. F) Sum of angular errors of patch normals. Y-axis: angular 
error, x-axis: standard deviation of replaced data points. The values at x=2, 15, 23 correspond to C), D) E) 

Experiment II: outdoor dataset 
The dataset, taken by a real mobile robot equipped with a 
3D laser scanner on Stanford Campus, consists of ~100000 
data points. The points, resulting from multiple scans, are 
aligned using the technique explained in [5]. Due to the 
mechanical properties of the robot the dataset is extremely 
noisy, e.g. points corresponding to the (planar) side wall of 
the archway (see fig. 8) create a point cloud of width about 
50cm. The initialization for the experiment is a set of 10 
randomly placed patches. Fig. 8 shows a) initialization, B)-
C) patches and supported tiles after iterations 4 and 8 (final 
iteration). The result contains 61 patches. The direction of 
the patches' bounding edges is determined by the principal 
axis of the supporting dataset (see section II.A), and is 
therefore not always in correspondence with the visual 
expectation. This has no influence on the final result, shown 
in fig. 9, consisting of the reduced support sets Sr(ej) 

projected onto their corresponding planes ej. Different 
colors mark different sets. The final result decomposes the 
original point set into subsets of points belonging together 
(i.e. supporting one patch), the points of each subset being 
relocated to be coplanar. It can be seen that the algorithm 
found a fit using 61 patches, segmenting the original dataset 
into planar objects, adjusting the initial under estimation of 
10 planes in random locations to an intuitive solution. The 
(planar) point sets achieved can be processed further, e.g. to 
find the outlines of objects.; analysis of the corresponding 
supporting points can detect planar/non planar objects in the 
data set: the standard deviation of the (non reduced) support 
set gives immediate information about the planarity, 
enabling the system to distinguish between walls, trees etc., 
a topic out of the scope of this paper.  

 
 

   
 
Fig. 8: Performance of SMEMPF on the data set  Stanford Campus: A) data set and initial patches (10 patches, randomly selected)  B) after iteration 4, C) final 
result: iteration 8, 61 patches. See also fig. 9 for a different visualization of C). 
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Fig. 9: final result of SMEMPF on Stanford Campus. Shown are the reduced support sets Sr(ej) projected onto their corresponding planes ej, using the points and 
patches of the result shown in fig. 8 C). Different colors mark different sets.  The final result decomposes and relocates the original point set into coplanar subsets 
of points belonging to a single planar structure.
 

IV. CONCLUSION 
The SMEMPF, used as a mapping procedure in robotics as a 
combination of Expectation Maximization patch fitting with 
alternating patch splitting and merging was proven to be a 
powerful tool to gain a patch representation of maps formerly 
consisting of independent LASER range scanner reflection 
points. The newly introduced merging step balances the 
number of patches, created by splitting, in a visually natural 
way and therefore allows for the number of starting patches 
for the EM step to be highly imprecise. 
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